
ACTA ARITHMETICA
160.2 (2013)

Mordell–Weil ranks of families of elliptic curves associated
to Pythagorean triples

by

Bartosz Naskręcki (Poznań)

1. Introduction. Consider a triple of integers a, b and c that satisfy the
Pythagorean equation

a2 + b2 = c2.

We intend to study the family of elliptic curves E(a,b,c)

(1.1) y2 = x(x− a2)(x− b2)
parametrized by such triples. The family (1.1) is similar to another family
of curves,
(1.2) y2 = x(x− a2)(x+ b2)

with a2 + b2 = c2, which is a special case of the well-known Frey family.
For low conductors there are many curves of high Mordell–Weil rank (up to
rank 6) in the family (1.1). This is, however, usually not the case for the
family (1.2), since generically it is of rank 0.

The family (1.1) is equivalent to the family of curves in Legendre form
y2 = x(x− 1)(x− λ)

with the parameter λ limited to rational numbers of the form

λ =

(
2t

t2 − 1

)2

,

for t rational, not equal to 0 or ±1. The Mordell–Weil rank of the family
(1.1) was considered for the first time in [5], where it was proven that the
group E(a,b,c)(Q) of rational points contains a point (c2, abc) of infinite order.

In order to state our results, we need some extra notation. Consider the
set

T = {(a, b, c) ∈ Z3 : a2 + b2 = c2, ab 6= 0}
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of triples of integers that satisfy the Pythagorean equation, and consider a
smooth curve in the family (1.1). For any triple (a, b, c) ∈ T , the rank of the
Mordell–Weil group of rational points on y2 = x(x − a2)(x − b2) is at least
one by [5, Lemma 6.8]. We now define an infinite subset S of T . A triple
(a, b, c) belongs to S if and only if its coordinates can be written in the form

a = P 2 −Q2, b = 2PQ, c = P 2 +Q2,

where
P

Q
=

2pq

p2 + 5q2
for some p, q ∈ Z.

Our first main result is the following statement.

Theorem 1.1. For infinitely many (a, b, c) ∈ S the curve

y2 = x(x− a2)(x− b2)
has Mordell–Weil group of rank at least two. There are two linearly indepen-
dent points

Q1 =

(
1

2
(a+ b− c)2, 1

2
(a+ b)(a+ b− c)2

)
,

Q2 =

(
1

2
a(a− c), 1

2
ab

1

k2
(p4 − 25q4)

)
,

where k = GCD(2pq, p2 + 5q2) and p and q are as above.

Remark 1.2. The set S splits into countably many nonempty subsets
{Ci}∞i=1 that correspond to isomorphism classes of curves over Q (cf. Propo-
sition 2.1). For all but finitely many i the rank of the Mordell–Weil group
of Q-rational points of the curve y2 = x(x− a2)(x− b2), where a2 + b2 = c2

and (a, b, c) ∈ Ci, is at least two.
Concerning the generic rank of (1.1) we have the following result.

Theorem 1.3. The group of Q(t)-rational points on the curve

(1.3) y2 = x(x− 1)

(
x−

(
2t

t2 − 1

)2)
is of rank one.

We prove Theorem 1.3 by applying the Shioda–Tate formula. In fact, a
stronger result holds. The rank of the group of Q(t)-rational points of the
curve from Theorem 1.1 is equal to 2 but only a subgroup of rank one is
defined over Q(t). A similar investigation of the generic rank of (1.2) shows
that the rank of the Mordell–Weil group of the corresponding model over
Q(t) is equal to 0.

The result in Theorem 1.1 displays the generic rank but the corresponding
geometric result is more involved.
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Theorem 1.4. Let

E : y2 = x

(
x−

((
2t

t2 + 5

)2

− 1

)2)(
x− 4

(
2t

t2 + 5

)2)
be the elliptic curve over Q(t) which is obtained from (1.3) by a suitable
change of the parameter t and a linear change of coordinates (cf. (6.1)). The
geometric Mordell–Weil group E(Q(t)) is isomorphic to Z3 ⊕Z/2Z⊕Z/4Z.
We put u = 2t

t2+5
. The free part of the group E(Q(t)) is generated by the points

P1 =
(
2(1 +

√
2)(−1 + u)2u, 2

√
−1(1 +

√
2)(−1 + (

√
2− u)2)(−1 + u)2u

)
,

P2 =
(
2(u− 1)2, 2(−1 + u)2(−1 + 2u+ u2)

)
,

P3 =

(
1− u2, (−5 + t2)u(−1 + u2)

5 + t2

)
.

The torsion subgroup of E(Q(t)) is generated by the points
T1 = (−4u2, 0),
T2 =

(
2(−u+ u3), 2

√
−1(u2 − 1)u(−1− 2u+ u2)

)
.

Moreover the group of Q(t)-rational points on E is generated by the points
P2, P3, T1 and 2T2.

The proof of Theorem 1.4 requires more involved methods. Note that the
geometric approach of Shioda [13] only implies that the rank is at most 6.
We base the proof of Theorem 1.4 on the approach of van Luijk [19] and
Kloosterman [7].

To the best of our knowledge, the method of van Luijk and Kloosterman
was used in the past exclusively for rational or K3 surfaces (cf. [12], [17], [18]
and [4]). If an elliptic surface is of high geometric genus, then the method
described below becomes very ineffective and it is computationally difficult
to determine the zeta function of the surface. In our case, we perform calcu-
lations on elliptic sufaces which are rational or K3. In particular, we attach
to the elliptic curve E over Q(t) an elliptic surface over P1 (cf. [2]). We find
its integral model S as a scheme over A, where A is a discrete valuation ring
of a number field with a residue field isomorphic to Fq. If the scheme S → A

is smooth of relative dimension 2, we obtain an elliptic surface S̃ = SFq
over

the field Fq. The action of the Frobenius automorphism on the second `-adic
cohomology group H2

et(S̃,Q`), where ` 6= q, gives rise to the characteris-
tic polynomial of the automorphism. The computation of the characteristic
polynomial involves counting of Fqr -rational points on the surface SFq

up to
some r. The Lefschetz fixed point formula allows us to compute the traces
and the characteristic polynomials of the Frobenii. We apply [19, Proposi-
tion 6.2] to estimate the number of eigenvalues of the form qζ, for a root of
unity ζ, which gives a sharp upper bound on the rank of the Néron–Severi
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group NS(SFq
). To conclude the computations, we apply the Shioda–Tate

formula to obtain the rank of the group E(Q(t)). The rank of E(Q(t)) is
equal to rankE(Q(t)) − 1, because only one generator of the free part of
E(Q(t)) is not defined over Q(t).

2. Notation and preliminaries. Let S be the set of Pythagorean
triples,
(2.1) S = {(a, b, c) ∈ Z3 : a2 + b2 = c2}.

For each s = (a, b, c) ∈ S we consider a curve over Q,
(2.2) Es : y

2 = x(x− a2)(x− b2).
When ab 6= 0 the equation defines a nonsingular curve of genus one, hence
an elliptic curve. The discriminant of the equation Es and its j-invariant are

∆(s) = ∆(a, b, c) = 16(a− b)2(a+ b)2b4a4,(2.3)

j(s) = j(a, b, c) = 256
(a4 − a2b2 + b4)3

b4a4(a− b)2(a+ b)2
.(2.4)

Observe that {s ∈ S : ∆(s) 6= 0} = T .
Let us now introduce a notion of equivalence of s1, s2 ∈ T . We call two

such triples equivalent if the smooth curves Es1 and Es2 are equivalent via
a linear change of coordinates defined over Q, transforming one Weierstrass
equation into the other, i.e. we assume that the curves are Q-isomorphic. We
will then write s1 ∼ s2. It is easy to check that (a, b, c) ∼ (A,B,C) if and
only if there exists u ∈ Q× such that either (a, b, c) = (±uA,±uB,±uC)
or (a, b, c) = (±uB,±uA,±uC). The relation ∼ is an equivalence relation.
Hence, if s1 and s2 do not lie in the same equivalence class, the associated
elliptic curves Es1 and Es2 are non-isomorphic over Q.

For any s = (a, b, c) ∈ T we introduce a new parameter

t = t(s) =
b

c− a
.

It is well-defined because a triple with a = c cannot lie in T . We have the
following equalities:

t2 − 1

t2 + 1
=
a

c
,(2.5)

2t

t2 + 1
=
b

c
.(2.6)

Define an elliptic curve over Q(t):
(2.7) Et : y

2 = x(x− (t2 − 1)2)(x− 4t2).

The linear change of variables

x 7→ x
4

(a− c)2
, y 7→ y

8

(c− a)3
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defines a Q-isomorphism between the elliptic curves E(a,b,c) and Eb/(c−a) for
any (a, b, c) ∈ T .

The discriminant and j-invariant of Et are

∆(t) = 256t4(−1 + t2)4(1− 6t2 + t4)2,

j(t) =
16(1− 8t2 + 30t4 − 8t6 + t8)3

t4(−1 + t2)4(1− 6t2 + t4)2
.

The set P = {t ∈ Q : ∆(t) 6= 0} = Q \ {0,±1} consists of all parameters
for which Et is nonsingular. If t ∈ P , then Et is Q-isomorphic to a curve in
Legendre form

y2 = x(x− 1)

(
x−

(
2t

t2 − 1

)2)
.

It is easy to check that Et and Et′ are Q-isomorphic if and only if

t′ ∈
{
t,−t, 1

t
,−1

t
,
1 + t

1− t
,
1− t
1 + t

,−1− t
1 + t

,−1 + t

1− t

}
.

The rational functions in t, appearing above, form a group under compo-
sition. It is the dihedral group of eight elements generated by f(t) = −t
and g(t) = 1+t

1−t . For t, t
′ ∈ P we define t ∼ t′ if and only if the curves Et

and Et′ are Q-isomorphic. Then each equivalence class contains exactly eight
different elements.

Consequently, we obtain the following

Proposition 2.1. There is a a bijection of sets of equivalence classes

(2.8) T /∼ → P/∼
given by (a, b, c) 7→ b/(c− a) on representatives. The inverse is given by

p/q 7→ (p2 − q2, 2pq, p2 + q2).

It follows from Proposition 2.1 that elements in S/∼ map bijectively to
elements in the set

{
u ∈ P : u = 2t

5+t2
for some t ∈ Q

}
/∼. The latter set is

infinite, hence so is the former.

3. Elliptic surfaces and Picard numbers. We start this section by
recalling the necessary theorems and definitions relating to elliptic surfaces.
Then we compute the Picard numbers of several elliptic surfaces and de-
duce the generic rank of the Mordell–Weil group of elliptic curves related to
family (1.1).

Definition 3.1. Let k be an algebraically closed field. Let C be a
smooth, irreducible, projective curve over k. An elliptic surface over C is
a smooth, irreducible, projective surface S over k together with a relatively
minimal elliptic fibration f : S → C with a singular fiber and a zero section.
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To an elliptic curve E over the function field k(C) of the curve C we can
associate an elliptic surface f : E → C with generic fiber E. It follows from
the work of Kodaira and Néron that f always exists and is unique.

Below we define three different elliptic surfaces, starting from three dis-
tinguished elliptic curves over the function field of P1 over Q. Let E1 → P1

be the elliptic surface over P1 associated to

y2 = x(x− (t− 1)2)(x− 4t).

Let E2 → P1 be the elliptic surface over P1 associated to

y2 = x(x− (t2 − 1)2)(x− 4t2).

Finally, let E3 → P1 be the elliptic surface over P1 associated to

y2 = x(x− (u2 − 1)2)(x− 4u2), u =
2t

5 + t2
.

For any smooth, projective, geometrically integral variety V over a field
K we denote by NS(VK) the Néron–Severi group, i.e. the group of divisors
on V modulo algebraic equivalence.

Theorem 3.2 ([13, Corollary 2.2]). Let S → C be an elliptic surface.
The Néron–Severi group NS(S) is finitely generated and torsion-free.

Definition 3.3. Let S → C be an elliptic surface. The Picard num-
ber ρ(S) of the surface S is the rank of the Néron–Severi group NS(S).

We recall the classical Shioda–Tate formula.

Theorem 3.4 ([13, Corollary 5.3]). Let S → C be an elliptic surface.
Let Σ ⊂ C be the set of points under singular fibers. For each v ∈ Σ let mv

denote the number of components of the singular fiber above v. Let E denote
the generic fiber of S, and K the function field of C. Then

ρ(S) = 2 +
∑
v∈Σ

(mv − 1) + rank(E(K)).

Lemma 3.5. Let E be an elliptic curve over Q(t). Let Σ ⊂ P1(Q) be the
set of points of bad reduction of E. Let Fv denote the fiber at v ∈ Σ. Denote
by G(Fv) the group generated by all simple components of Fv. Then there
exists an injective homomorphism

φ : E(Q(t))tors →
∏
v∈Σ

G(Fv).

If Fv is of multiplicative type In in Kodaira notation (cf. [16, Theorem
IV.8.2]), the group G(Fv) is Z/nZ. If Fv is of additive type I∗2n, then G(Fv)
is (Z/2Z)2.

Proof. Let φ be the map taking a section in E(Q(t)) to the respective
fiber component of Fv that it meets. The map φ is a group homomorphism
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by [16, Corollary IV.9.2]. It is injective on the torsion subgroup E(Q(t))tors
by [14, Corollary 7.5].

A multiplicative fiber of type In has exactly n components. An additive
fiber of type I∗2n has 5 + 2n components.

We gather the information about surfaces in Tables 1–3. We apply the
Shioda–Tate formula to the surfaces E1, E2 and E3.

Lemma 3.6.
(1) E1 has Kodaira dimension −∞.
(2) E2 has Kodaira dimension 0.
(3) E3 has Kodaira dimension 1.
Proof. The Euler number e(S) of an elliptic surface S→C (over the base

field of characteristic different from 2 and 3) equals

e(S) =
∑
v∈Σ

e(Fv),

where Σ is the set of points over which there are singular fibers. The lo-
cal Euler number e(Fv) is equal to the number of components mv if the
fiber has multiplicative reduction, or to mv + 1 if the reduction is additive
(cf. [3, Proposition 5.1.6]). An easy computation with the Tate algorithm
(cf. Tables 1–3) shows that e(E1) = 12, e(E2) = 24 and e(E3) = 48. From [2,
Corollary V.12.3] it follows that the Kodaira dimensions are: κ(E1) = −∞,
κ(E2) = 0 and κ(E3) = 1, respectively.

Table 1. Singular fibers, E1 : y2 = x(x− (t− 1)2)(x− 4t)

Place Type of singular fiber Automorphism group
t = 1 I4 Z/4Z
t = 0 I2 Z/2Z

roots of 1− 6t+ t2 = 0 I2 Z/2Z
t =∞ I2 Z/2Z

Table 2. Singular fibers, E2 : y2 = x(x− (t2 − 1)2)(x− 4t2)

Place Type of singular fiber Automorphism group
t = 1 I4 Z/4Z
t = 0 I4 Z/4Z
t = −1 I4 Z/4Z

roots of −1− 2t+ t2 = 0 I2 Z/2Z
roots of −1 + 2t+ t2 = 0 I2 Z/2Z

t =∞ I4 Z/4Z
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Table 3. Singular fibers, E3 : y2 = x(x− (u2 − 1)2)(x− 4u2), u = 2t
5+t2

Place Type of singular fiber Automorphism group
t = 0 I4 Z/4Z

roots of 5 + t2 = 0 I4 Z/4Z
roots of 5− 2t+ t2 = 0 I4 Z/4Z
roots of 5 + 2t+ t2 = 0 I4 Z/4Z

roots of (5− 2t+ t2)2 = 8t2 I2 Z/2Z
roots of (5 + 2t+ t2)2 = 8t2 I2 Z/2Z

t =∞ I4 Z/4Z

The information gathered in Tables 1–3 allows us to prove the following
results.

Lemma 3.7. The generic fiber of E1 has rank 1 over Q(t).

Proof. The surface E1 is rational by Lemma 3.6, hence ρ(E1) = 10. A
section of E1 corresponds to a point on the generic fiber

(3.1) P = (−4t, 4
√
−2 t(t+ 1)).

As 2P and 4P are not zero, the point is non-torsion by Lemma 3.5. The
group E1(Q(t)) is at least of rank 1. By applying the Shioda–Tate formula
we get

ρ(E1)− 2−
∑
v∈R

(mv − 1) = rank(E1(Q(t))),

ρ(E1)− 2−
∑
v∈R

(mv − 1) = 10− 2− (4− 1 + 4(2− 1)) = 10− 2− 7 = 1.

Hence the rank equals 1.

Lemma 3.8. The generic fiber of E2 has rank 2 over Q(t).

Proof. The surface is K3 so ρ(E2) ≤ 20. The points

P = (−4t2, 4
√
−2 t2(t2 + 1)),

Q = (2(t− 1)2, 2(−1 + t)2(−1 + 2t+ t2))

are of infinite order. We compute the height pairing 〈P, P 〉 = 2, 〈Q,Q〉 = 1
and 〈P,Q〉 = 0. Application of the Shioda–Tate formula shows that

20 ≥ ρ(E2) = 2+(4(4−1)+4(2−1))+rank(E2(Q(t))) = 18+rank(E2(Q(t))).

Hence the rank is equal to two.

An application of the Shioda–Tate formula allows us to conclude that
the Mordell–Weil group of Q(t)-rational points of the generic fiber of E3 has
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rank at most 6. More precisely, ρ(E3) ≤ 40 (since χ(OE3) = 4) and

2 +
∑
v∈R

(mv − 1) = 2 + 8(4− 1) + 8(2− 1) = 2 + 24 + 8 = 34.

There are only three sections of infinite order which are linearly independent.
Let X be any scheme over a finite field Fq of characteristic p. Let ` 6= p

be a prime. Let us consider the étale `-adic cohomology groups

H i
ét(XFq

,Ql) = lim←−H
i
ét(XFq

,Z/`n)⊗Z`
Q`

and the groups with Tate twist

H i
ét(XFq

,Ql)(1) = H i
ét(XFq

,Ql)⊗Z`
(lim←−µ`n),

where µ`n ⊂ Fq is the group of `nth roots of unity. For simplicity we denote
them by H i(X,Ql) and H i(X,Ql)(1).

Theorem 3.9 ([19, Proposition 6.2]). Let A be a discrete valuation ring
of a number field L with residue field k ∼= Fq. Let S be an integral scheme
with a morphism S → SpecA that is projective and smooth of relative di-
mension 2. Assume that the surfaces S = SL and S̃ = Sk are integral. Let
l - q be a prime number. Then there are natural injective homomorphisms

(3.2) NS(S)⊗Ql ↪→ NS(S̃)⊗Ql ↪→ H2
ét(S̃,Ql)(1)

of finite-dimensional inner product spaces over Ql. The first injection is in-
duced by the natural injection NS(S)⊗Q ↪→ NS(S̃)⊗Q. The second injection
respects the Galois action of G(k/k).

For any prime p, any positive integer r and a variety X over Fpr , we
denote by FX : X → X the absolute Frobenius morphism which acts as the
identity on points and as f 7→ fp on the structure sheaf. Let ΦX = (FX)

r and
X = XFpr

and denote by ΦX × 1 the morphism which acts on X × SpecFpr .
This induces an automorphism Φ∗X of H i

ét(X,Ql).

Theorem 3.10 ([19, Corollary 2.3]). With notation as in the previous
theorem, the ranks of NS(S) and NS(S̃) are bounded from above by the num-
ber of eigenvalues of the linear map Φ∗

S̃
for which λ/q is a root of unity,

counted with multiplicity.

In order to use the above theorem effectively, we recall the Lefschetz trace
formula (cf. [9, VI, Theorem 12.3]).

Theorem 3.11. Let X be a smooth projective variety over Fq of dimen-
sion n. For any prime l - q and any integer m, we have

#X(Fqm) =
n∑
i=0

(−1)iTr((Φ∗X)m | H i(XFq
,Ql)).
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We explain the use of the Lefschetz trace formula in numerical com-
putations of the characteristic polynomial of the Frobenius automorphism,
which we apply in the proofs of Lemmas 4.6 and 5.3 below. We proceed with
X = SFq

, an elliptic surface fibered over P1. Note that dimH1(X,Ql) =

dimH3(X,Ql) by [6, Corollary 2A10] and dimH1(X,Ql) = 0 by [3, Corol-
lary 5.2.2]. The automorphism Φ∗X acts on H4(X,Ql) ∼= Ql by multiplication
by q2. By the Lefschetz trace formula we obtain

Tr((Φ∗X)
m | H2(X,Ql)) = #X(Fqm)− 1− q2m.

Let V be the linear subspace of H2(X,Ql) generated by the components of
singular fibers and sections. Let W = H2(X,Ql)/V . By the multiplicativity
of the characteristic polynomial char(Φ∗X) we have

char(Φ∗X) = char(Φ∗X |V ) · char(Φ∗X,W )

where the operator Φ∗X,W :W →W is induced by Φ∗X . Moreover,

Tr((Φ∗X)
m) = Tr((Φ∗X |V )m) + Tr((Φ∗X,W )m)

for any m. For T a linear operator acting on a finite-dimensional vector
space U , the characteristic polynomial p(x) = det(I ·x−T ) can be computed
if the traces tn = Tr(Tn) are known for 0 ≤ n ≤ dimU . In order to do that,
we expand

(3.3) p(x) =
xdimU

exp
(∑∞

r=1 tr
x−r

r

)
as a series in 1

x and truncate the series to the polynomial part. In numerical
computations below, we put T = Φ∗X .

4. Twisted elliptic surfaces. Now we prove that the rank of the
Mordell–Weil group over Q(t) of the elliptic curve

y2 = x(x− (u2 − 1)2)(x− 4u2)

for u = 2t
5+t2

is equal to 3. For this purpose the notion of a twist of an
elliptic curve is needed. In this section we use Kloosterman’s approach [7].
We assume that the base curve C of the elliptic fibration E → C is defined
over a field of characteristic not equal to 2 or 3.

Let C be a smooth curve over k = k, and let k(C) be the function field
of C. Let E be an elliptic curve over k(C) given by the Weierstrass equation

(4.1) E : y2 = x3 +Ax+B

for A,B ∈ k(C). Fix u ∈ k(C)∗. We consider the quadratic twist

E(u) : uy2 = x3 +Ax+B

of the curve E by the element u.
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Proposition 4.1. With the above notation,

rankE(k(C)) + rankE(u)(k(C)) = rankE(k(C)(
√
u)).

Proof. See [15, Exercise 10.16].

Definition 4.1. Let f : E → C be an elliptic surface. Fix P,Q ∈ C(k).
Let E/k(C) be the generic fiber of f given by the Weierstrass equation (4.1).
An elliptic surface g : E ′ → C is the twist of f by points P and Q if the
generic fiber of g is isomorphic over k(C) to E(u), where u ∈ k(C)∗ and

ordP (u) ≡ 1 mod 2, ordQ(u) ≡ 1 mod 2.

In addition, we require that for all R 6= P,Q,

ordR(u) ≡ 0 mod 2.

Remark 4.2. For any pair of points P and Q we form the divisor (P )−
(Q) ∈ Div0(C). The group of k-rational points of the Jacobian Jac(C) of the
curve C equals Pic0(C). Since k is algebraically closed, the group Pic0(C) is
2-divisible. We find that (P )− (Q) = 2D + div(f) for a function f ∈ k(C)∗
and D ∈ Div0(C). We put u := f . Let u′ be another function such that
div(u′) ≡ (P ) − (Q) mod 2Div0(C). The twists E(u) and E(u′) may not
be isomorphic over k(C). We have div(u/u′) = 2T for some divisor T ∈
Div0(C). If the genus g of C is greater than 0, then T ∈ Jac(C)(k) is a 2-
torsion point. There are 22g distinct torsion points in Jac(C)(k), hence there
are 22g distinct twists by points P,Q, up to a k(C)-isomorphism. However,
for C = P1, a pair of points P,Q determines a twist uniquely.

Lemma 4.3. Let f : E → C be an elliptic surface and let f (P,Q) : E(P,Q) →
C be the twist by P,Q ∈ C(k). Then there exists a double cover φ : C ′ → C
ramified at P and Q such that the relatively minimal nonsingular models of
E ×C C ′ → C ′ and E(P,Q) ×C C ′ → C ′ are isomorphic as fibered surfaces.

Proof. Let E denote the generic fiber of the elliptic fibration f . Let u be
the function in k(C) satisfying the conditions of Definition 4.1 for the points
P and Q in C(k). The generic fiber of f (P,Q) is the twist E(u) of the curve E.

There exists a projective curve C ′ and a surjective morphism φ : C ′ → C
such that u◦φ = v2 for some v ∈ k(C ′). We denote by eφ(R) the ramification
index of the morphism φ at the point R in the fiber above φ(R) ∈ C(k). By
definition, the function u has div u = (P ) + (Q) + 2D for some D ∈ Div(C).
Hence

div(u ◦ φ) = φ∗(div u)(4.2)

=
∑

R∈φ−1(P )

eφ(R)(R) +
∑

R′∈φ−1(Q)

eφ(R
′)(R′) + φ∗D

= 2div v,
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where φ∗ : Div(C)→ Div(C ′) denotes the induced map. The extension k(C ′)
of k(C) is of degree 2, so

(4.3) 2 = deg φ =
∑

R∈φ−1(P )

eφ(R) =
∑

R′∈φ−1(Q)

eφ(R
′).

Identities (4.2) and (4.3) imply that φ is ramified at P and Q and the preim-
ages φ−1(P ) and φ−1(Q) are singletons.

Let S1 = E ×C C ′ and S2 = E(P,Q) ×C C ′ denote the surfaces obtained
from E and E(P,Q) by the base change φ : C ′ → C. The morphisms f and
f (P,Q) are projective, hence S1 → C ′ and S2 → C ′ are projective. As the
base field k is algebraically closed, all but finitely many fibers of S1 → C ′

and S2 → C ′ are nonsingular elliptic. Let S̃1 denote a relatively minimal
nonsingular model of S1, respecting the fibration over C ′. Similarly, let S̃2
denote the relatively minimal nonsingular model of S2. By a linear change of
coordinates, the generic fibers E and E(u) are isomorphic over k(C ′). This
implies that there is a birational map ψ : S̃1 99K S̃2. Each such map is
a composition of smooth blow-ups and blow-downs. The desingularizations
S̃1 and S̃2 are isomorphic outside the singular fibers. The surfaces S̃1 and
S̃2 are relatively minimal with respect to C ′, so the fibers do not contain
(−1)-curves. Hence, the map ψ is a trivial composition, hence extends to an
isomorphism.

We introduce the following elliptic surfaces which will be used in the com-
putation of ranks of the families associated to Pythagorean triples (cf. proofs
of Theorems 1.1, 1.4).

Definition 4.4. (1) Let E1 → P1 be the elliptic surface with the
generic fiber

E1 : y
2 = x(x− (t− 1)2)(x− 4t).

(2) We denote by E ′1 = E(1/5,∞)
1 → P1 the twist of E1 by the points 1/5

and ∞, which has the generic fiber

E′1 : −(−1 + 5t)y2 = x(x− (t− 1)2)(x− 4t).

(3) We denote by E ′′1 = (E ′1)(0,∞) → P1 the twist of E ′1 by the points 0
and ∞, which has the generic fiber

E′′1 : −t(−1 + 5t)y2 = x(x− (t− 1)2)(x− 4t).

(4) Let E2 → P1 be the elliptic surface with the generic fiber

E2 : y
2 = x(x− (t2 − 1)2)(x− 4t2).

(5) We denote by E ′2 = E
(−1/

√
5,1/
√
5)

2 → P1 the twist of E2 by the points
−1/
√
5 and 1/

√
5, which has the generic fiber

E′2 : −(−1 + 5t2)y2 = x(x− (t2 − 1)2)(x− 4t2).
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(6) Let E3 → P1 be the elliptic surface which has the generic fiber

E3 : y
2 = x

(
x−

((
2t

5 + t2

)2

− 1

)2)(
x− 4

(
2t

5 + t2

)2)
.

Proposition 4.1 implies the following statement.

Corollary 4.5.

rankE3(Q(t)) = rankE2(Q(t)) + rankE′2(Q(t)),

rankE′2(Q(t)) = rankE′1(Q(t)) + rankE′′1 (Q(t)).

Lemma 4.6. The rank of E′1(Q(t)) is equal to 0.

Proof. First we perform the Tate algorithm to compute the types of
singular fibers on our elliptic surface E ′1 → P1 associated with the curve E′1.

A computation in MAGMA reveals that we have one fiber over the point
t = 1 of multiplicative type I4, split over Q. One singular fiber lies above
t = 0 and is nonsplit multiplicative of type I2, but the equations are defined
over Q. We have a fiber over t = 1/5, additive of type I∗0 and again by
the Tate algorithm and MAGMA the defining equations of the fiber have
coefficients in Q. The singular fiber over t = ∞ is additive of type I∗2 given
by equations with coefficients in Q. Finally, we have two singular fibers of
nonsplit multiplicative type I2 above t = 3 + 2

√
2 and t = 3− 2

√
2.

The equations of the fibers are defined over Q(
√
2) by the Tate algorithm.

However, the surface E ′1 is defined over Q, since we have started with the
Weierstrass equation of the elliptic curve E′1 defined over Q and the singular
locus defines an ideal where the generators have Q-coefficients. In fact, E ′1
is defined over Z. We check that the elliptic surface associated with E′1
over F17 has the types of singular fibers above the reductions of the points
t = 1, 0,∞, 3± 2

√
2 the same as in characteristic zero.

Put p = (17) ∈ SpecZ and A = Z(p). The surface E ′1 defines an integral
scheme S → SpecA that is projective and smooth of relative dimension 2.
The smoothness comes from the fact that we have good reduction at 17. The
residue field k = A/p is equal to F17. Hence, the special fiber of S → SpecA
is a surface defined over F17. It determines the elliptic surface S̃ = SF17

→ P1

which is the reduction of our elliptic surface E ′1 → P1.
By Theorem 3.9 the rank of the Néron–Severi group of E ′1 is bounded

from above by the rank of the Néron–Severi group of S̃. The components
of the singular fibers and the zero section generate a rank 18 subgroup in
NS(S̃). The Euler number e(E ′1) equals 24, as follows by an argument based
on the proof of Lemma 3.6. Hence, the surface E ′1 is K3.

Good reduction at prime 17 implies that S̃ is also a K3 surface, so
the subspace NS(S̃) ⊗ Q` ↪→ H2

ét(S̃,Q`)(1) is at most of dimension 22,
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because dimQ`
H2

ét(S̃,Q`)(1) = dimQ`
H2

ét(S̃,Q`) = 22 by [11, Theorem 4,
Part III].

On the subspace V generated by the components of the singular fibers
and by the zero section the Frobenius automorphism Φ∗

S̃
acts by multipli-

cation by 17. This follows from the analysis of the singular fibers, i.e. by
the Tate algorithm. The characteristic polynomial of the Frobenius auto-
morphism Φ∗

S̃
splits as

char(Φ∗
S̃
) = char(Φ∗

S̃
| V ) · char(Φ∗

S̃,H2
ét/V

).

Further, char(Φ∗
S̃
| V ) = det(Id ·x−Φ∗

S̃
| V ) = (x−17)18. For any natural m,

Tr((Φ∗
S̃
)m) = Tr((Φ∗

S̃
| V )m) + Tr((Φ∗

S̃,H2
ét/V

)m).

But Tr((Φ∗
S̃
| V )m) = 18·17m and Tr((Φ∗

S̃,H2
ét/V

)m) = #S̃(F17m)−1−172m by
the Lefschetz trace formula (Theorem 3.11). Combining those facts we obtain

Tr((Φ∗
S̃,H2

ét/V
)m) = #S̃(F17m)− 1− 172m − 18 · 17m.

The characteristic polynomial char(Φ∗
S̃,H2

ét/V
) is of the form x4 + c1x

3 +

c2x
2 + c3x + c4. We present explicit formulas for cm in terms of tm =

Tr((Φ∗
S̃,H2

ét/V
)m) (cf. (3.3)):

c1 = −t1,
c2 =

1
2(t

2
1 − t2),

c3 =
1
6(−t

3
1 + 3t1t2 − 2t3),

c4 =
1
24(t

4
1 − 6t21t2 + 3t22 + 8t1t3 − 6t4).

We compute the number of F17m-rational points on S̃ up to m = 4:

m 1 2 3 4

#S̃(F17m) 604 88312 24227740 6977057176

We obtain the characteristic polynomial

char(Φ∗
S̃,H2

ét/V
) = x4 − 8x3 + 238x2 − 2312x+ 83521.

Suppose a root of this polynomial is x = 17ζ for a root of unity ζ. Then

4913(17ζ4 − 8ζ3 + 14ζ2 − 8ζ + 17) = 0.

But ζ is an algebraic integer and the polynomial 17x4−8x3+14x2−8x+17
is irreducible over Q, hence its roots are not algebraic integers, which leads
to a contradiction.

Hence, the characteristic polynomial

char(Φ∗
S̃
) = (x− 17)18(x4 − 8x3 + 238x2 − 2312x+ 83521)
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has only 18 roots of the shape 17 times a root of unity. By Theorem 3.10 the
rank of NS(S̃) is at most 18. Then by Theorem 3.9 the rank of NS(E ′1) is 18,
since we have an explicit rank 18 subgroup generated by the singular fiber
components and the zero section. By the Shioda–Tate formula the rank of
E′1(Q(t)) equals zero.

5. Computing ranks by reductions. Let p be a prime of good reduc-
tion for an elliptic surface E → C defined over a number field K. Let S be
an integral model of E over OK with special fiber defined over Fpr . We know
by Theorem 3.9 that

NS(SQ)⊗Q ↪→ NS(SFpr
)⊗Q.

Assume for a moment this the map is an isomorphism. Then by classical
lattice theory, the determinants of the Gram matrices of the intersection
pairings on NS(SQ) and NS(SFpr

) differ by a square. In the following, we
denote the determinant of the Gram matrix of a lattice Λ by ∆(Λ).

We will compute discriminants modulo squares using the Tate conjec-
ture and the Artin–Tate conjecture for K3 surfaces, which we recall for the
reader’s convenience.

Theorem 5.1. Let Y be a K3 surface over Fq. Let Φ∗Y be the Frobenius
automorphism acting on the cohomology group H2(Y,Ql)), l - q. Then the
number of roots of the characteristic polynomial of Φ∗Y of the form qζ, where
ζ is a root of unity, is equal to the Picard number ρ(Y ) = rankNS(YFq

).

Theorem 5.2. Let Y be a K3 surface over Fq. Let Φ∗Y be the Frobenius
automorphism and P (T ) = det(1− TΦ∗Y | H2(Y,Ql)). Then

lim
s→1

P (q−s)

(1− q1−s)ρ′(Y )
=

(−1)ρ′(Y )−1]Br(Y )∆(NS(YFq))

qα(Y )(]NS(YFq)tor)
2

,

where α(Y ) = χ(Y,OY ) − 1 + dimPic0(Y ) and Br(Y ) is the Brauer group
of Y . Moreover ρ′(Y ) = rankNS(YFq). The group NS(YFq) is the subgroup
of the Néron–Severi group NS(YFq

) generated by Fq-rational divisors.

Tate conjectures for elliptic K3 surfaces are proven in [1, Theorem 5.2].
J. S. Milne proved that the Tate conjectures imply the Artin–Tate conjec-
tures for characteristic different from 2 (cf. [8, Theorem 6.1]). Finally, in
[10, Theorem 0.4b] the assumption on the characteristic was dropped.

Proposition 5.1 ([7, Proposition 4.7]). Suppose q is a prime power. Let
Y → P1 be an elliptic K3 surface, defined over Fq. Assume that q is a square
and that ρ(Y ) = ρ′(Y ). Then

∆(NS(YFq
)) ≡ − lim

s→1

P (q−s)

(1− q1−s)ρ(Y )
mod (Q∗)2.
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Lemma 5.3. The rank of E′′1 (Q(t)) is equal to 1.

Proof. It is easy to check that the point Q = (1−t, 1−t) lies in E′′1 (Q(t))
and that it is a point of infinite order. The configuration of singular fibers is
given in Table 4.

Table 4. Singular fibers, E′′1 : −t(−1 + 5t)y2 = x(x− (t− 1)2)(x− 4t)

Place Type of singular fiber Automorphism group

t = 1 I4 Z/4Z

t =∞ I2 Z/2Z

t = 0 I∗2 (Z/2Z)2

t = 1/5 I∗0 (Z/2Z)2

t = 3 +
√
2 I2 (Z/2Z)

t = 3−
√
2 I2 (Z/2Z)

It follows by Lemma 3.5 that it is enough to check that 2Q and 4Q are
nonzero. The Euler number e(E ′′1 ) is 24, which shows that E ′′1 is a K3 surface
(cf. Table 4). The surface E ′′1 is defined over Z (cf. proof of Lemma 4.6). We
have two primes of good reduction 11 and 17. Consider the reduction of E ′′1
at 11, which we denote by S11. It is a K3 surface defined over F11. We also
have a K3 surface obtained by reduction at 17. We denote it by S17. Note
that it is defined over F17. Since we are only interested in surfaces defined
over F112 and F172 , we will denote by S11 and S17 the base changes of the
original surfaces to F112 and F172 , respectively.

By an argument similar to the proof of Lemma 4.6 we compute the char-
acteristic polynomials of the Frobenius automorphism acting on the second
`-adic cohomology group for some auxiliary prime ` 6= 11, 17.

For p = 11 using MAGMA we get

char(Φ∗S11
) = (x− 112)20(x2 − 158x+ 14641).

Roots of the polynomial x2 − 158x + 14641 are not of the form 112ζ, for a
root of unity ζ. The rank of NS((S11)F112

) equals 20 by the Tate conjectures
for K3 surfaces (cf. Theorem 5.1) For p = 17 we get

char(Φ∗S17
) = (x− 172)20(x2 + 94x+ 83521).

Roots of the polynomial x2+94x+83521 are not of the form 172ζ for a root of
unity ζ. Hence, the rank of NS((S17)F172

) equals 20 by the Tate conjectures
for K3 surfaces. The rank of NS((E ′′1 )Q) does not exceed the rank of the
corresponding Néron–Severi group after reduction (cf. Theorem 3.9). Assume
for a moment that it is maximal possible, hence equal to 20. This implies
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that the discriminants of the lattices NS((S11)F112
) and NS((S17)F172

) should
differ by a square. We apply Theorem 5.2 to compute the discriminants of
NS(S̃F172

) and NS((S11)F112
). They are not equal modulo squares:

∆(NS((S11)F112
)) ≡ −3 · 7 mod (Q∗)2,

∆(NS((S17)F172
)) ≡ −2 · 3 · 7 mod (Q∗)2.

So the rank of NS((E ′′1 )Q) is ≤ 19. Note that the trivial sublattice generated
by the components of the singular fibers and the zero section is of rank 18.
We also have the point Q of infinite order, so 19 ≤ rankNS((E ′′1 )Q). Hence
the rank equals 19. Now an application of the Shioda–Tate formula reveals
that rankE′′1 (Q(t)) = 1.

Corollary 5.4. The rank of E3(Q(t)) is equal to 3.

Proof. We apply Lemma 4.5 to the ranks obtained in Lemmas 4.6, 5.3
and 3.8.

Remark 5.5. One could give a more direct proof of Corollary 5.4 using
brute force and more powerful numerical computations. The statement of
Corollary 5.4 is equivalent to ρ((E3)Q) = 37 by the Shioda–Tate formula
(see Table 3 for the number of components in singular fibers). Suppose to
the contrary that ρ((E3)Q) ≥ 38. This lower bound holds for the Néron–Severi
group of the reduced elliptic surface at primes of good reduction. Suppose
we have two such primes, p1 and p2. Here 17 is a good candidate, with
the characteristic polynomial of the Frobenius automorphism (acting on the
second cohomology group) equal to

(t+17)8(t−17)30(289−22t+t2)(289−2t+t2)(83521−2312t+238t2−8t3+t4).

To compute the degree 8 factor we need to work with surfaces with points
in the field F178 or F174 , which follows by Poincaré duality. None of the
roots of

(289− 22t+ t2)(289− 2t+ t2)(83521− 2312t+ 238t2 − 8t3 + t4)

are of the shape 17ζ for ζ a root of unity. Note that the Tate conjecture holds
automatically for such a prime. By the results of J. S. Milne [8, Theorem 6.1]
the Artin–Tate conjecture holds as well. Put p1 = 17 and assume we have
another such prime p2. This means that we can compare the discriminants
of the lattices modulo squares and arrive at a contradiction, which proves
that ρ((E3)Q) = 37. Using the method of twists and further computation
other good primes can be found, namely 73 and 97, but no other up to 140.
However, a direct computation of the points on surfaces over F734 or F974 is
beyond the range of our computational resources.
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6. Proofs of main results

Lemma 6.1. The torsion subgroup of E3(Q(t)) is isomorphic to Z/2Z⊕
Z/4Z. It is generated by the points

T1 = (−4u2, 0),
T2 =

(
2(−u+ u3), 2

√
−1(u2 − 1)u(−1− 2u+ u2)

)
,

where u = 2t
5+t2

.

Proof. Let K = Q(t). The elliptic surface associated to E3 has singular
fibers of types I2 and I4 (cf. Table 3), hence

E3(K)tors ↪→ (Z/2Z)a ⊕ (Z/4Z)b

for some natural numbers a and b by Lemma 3.5. The 2-torsion subgroup is
generated by T1 and (0, 0). We will check that T1 /∈ 2E3(K) and T1 + (0, 0)
/∈ 2E3(K), but (0, 0) ∈ 2E3(K).

Let P = (x, y) be any point in E3(K). Then the x-coordinate of 2P is

x(2P ) =
(4u2 − 8u4 + 4u6 − x2)2

4(4u2 − x)(1− 2u2 + u4 − x)x
,

where u = 2t
5+t2

. If T1 were in 2E3(K), then

x(2P ) = 4u2

and so the equation

16t2(25 + 6t2 + t4)2 − 32t2(5 + t2)4x+ (5 + t2)6x2 = 0

would have a solution x ∈ K. The discriminant of the above quadratic
polynomial is equal to

−64t2(5 + t2)6(625− 100t2 − 74t4 − 4t6 + t8)

and it is not a square in K, hence we get a contradiction. Similarly one can
show that T1 + (0, 0) = ((u2 − 1)2, 0) is not in 2E3(K). Finally, it is easy to
check that 2T2 = (0, 0). The claim follows from that.

Lemma 6.2. The group E3(Q(t))/E3(Q(t))tors is free abelian of rank 3.
It is generated by the points

P1 =
(
2(1 +

√
2)(−1 + u)2u, 2

√
−1(1 +

√
2)(−1 + (

√
2− u)2)(−1 + u)2u

)
,

P2 =
(
2(u− 1)2, 2(−1 + u)2(−1 + 2u+ u2)

)
,

P3 =

(
1− u2, (−5 + t2)u(−1 + u2)

5 + t2

)
,

where u = 2t
5+t2

.
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Proof. We follow the proof of [18, Proposition 4.2]. We putK = Q(t). Let
(E3(K)/E3(K)tors, 〈·, ·〉E3) denote the Mordell–Weil lattice with the height
pairing 〈·, ·〉E3 . From the type of singular fibers, I2 and I4 (Table 3), we know
that for each P,Q ∈ E3(K)/E3(K)tors we have 〈P,Q〉E3 ∈ 1

4Z.
Consider the lattice Λ = E3(K)/E3(K)tors with the pairing 〈·, ·〉 =

4〈·, ·〉E3 . Let Λ′ be generated by P1, P2 and P3. It is a sublattice of Λ of
a finite index n = [Λ : Λ′]. In Λ we have 〈Pi, Pi〉 = 4i for i = 1, 2, 3 and
〈Pi, Pj〉 = 0 for i 6= j. Hence, the following equality holds for the discrimi-
nants of Λ and Λ′ with the pairing 〈·, ·〉:

6 · 43 = ∆(Λ′) = n2∆(Λ).

Therefore, n divides 8. We want to show that n = 1. Consider the 2-descent
homomorphism

ψ : E3(K)/2E3(K) ↪→ K∗/(K∗)2 ×K∗/(K∗)2.

For (x, y) in E3(K) \ E3(K)[2], it is defined by

ψ(x, y) = (x− e1, x− e2),

where e1 = 0 and e2 = 4u2.
Let H denote the group generated by P1, P2, P3, T1, T2, and let G denote

E3(K). The index n equals [G : H]. There exist R1, R2, R3 ∈ G such thatG is
generated by R1, R2, R3, T1, T2 and H is generated by aR1, bR2, cR3, T1, T2,
where n = abc and a | b | c.

For n = 8, it follows that (a, b, c) ∈ {(1, 1, 8), (1, 2, 4), (2, 2, 2)}.
For n = 4, we have (a, b, c) ∈ {(1, 1, 4), (1, 2, 2)} and for n = 2 there is

only one tuple (a, b, c) = (1, 1, 2).
Consider the modulo 2 map φ : G → G/2G and η = ψ ◦ φ. Then

η(G) is isomorphic to (Z/2Z)4. If n = 8, then η(H) ∼= (Z/2Z)i, where
1 ≤ i ≤ 3. If n = 4, then η(H) ∼= (Z/2Z)i, where 2 ≤ i ≤ 3. If n = 2, then
η(H) ∼= (Z/2Z)3. Hence, to show that H = G it is sufficient to prove that
η(H) ∼= (Z/2Z)4. We easily compute

η(P1) =
(
t(t2+5), (t2+5)t(−5+(−2+2

√
2)t− t2)(−5+(2+ 2

√
2)t− t2)

)
,

η(P2) = (1, t4 − 4t3 + 6t2 − 20t+ 25),

η(P3) =
(
(t2 − 2t+ 5)(t2 + 2t+ 5), 1

)
,

η(T2) =
(
t(t2−2t+5)(t2+2t+5)(t2+5), t(t4+4t3+6t2+20t+25)(t2+5)

)
,

and prove that |η(H)| = 16, which proves the theorem.

Corollary 6.3. The group E3(Q(t)) is isomorphic to Z2⊕Z/2Z⊕Z/2Z.
The free part is generated by P2, P3. The torsion part is generated by T1,
2T2 = (0, 0).



178 B. Naskręcki

Proof. First we prove that the rank of the group E3(Q(t)) equals 2. From
Corollary 5.4 we know that rankE3(Q(t)) ≤ 3. Since the points P2 and P3

are linearly independent it is enough to show that rankE3(Q(t)) < 3.
Suppose to the contrary that the rank of H = E3(Q(t)) equals 3. Then

H is a finite index subgroup of the group G = E3(Q(t)) generated by
P1, P2, P3, T1 and T2. Consider the 3-dimensional Q-vector space GQ =
G⊗Z Q. There is a natural Galois representation

ρ : Gal(Q/Q)→ Aut(GQ).

For σ ∈ Gal(Q/Q) and P ∈ G we define σ(P ⊗ 1) = σ(P ) ⊗ 1, where σ(P )
denotes the element in G such that σ acts on the coefficients of rational
functions in the coordinates of P . If σ(

√
−1) = −

√
−1 and σ(

√
2) =

√
2,

then σ(P1 ⊗ 1) = −(P1 ⊗ 1). In the basis {P1 ⊗ 1, P2 ⊗ 1, P3 ⊗ 1} of GQ, the
matrix of the automorphism ρ(σ) is −1 0 0

0 1 0

0 0 1

 .

Hence, the representation ρ is nontrivial. However, GQ = HQ, since we as-
sumed that H is of finite index in G. The representation ρ acts trivially
on HQ, which leads to a contradiction. Hence, H is not of finite index in G,
which implies that rankH = 2.

If the Mordell–Weil lattice E3(Q(t))/E3(Q(t))tors were not generated by
P2 and P3, then the lattice generated by those points would be of finite index
greater than 1 in the full Mordell–Weil lattice. Then the lattice generated
by P1, P2 and P3 would be of index greater than 1 in the full Mordell–Weil
lattice E3(Q(t))/E3(Q(t))tors, which contradicts Lemma 6.2.

To conclude the proof, we compute the torsion part. Lemma 6.1 shows
that the torsion defined over Q(t) is generated by T1 = (4u2, 0) and (0, 0)
= 2T2. It is the full torsion subgroup of E3(Q(t)).

Proof of Theorem 1.4. From Corollary 5.4 it follows that rankE3(Q(t))
= 3. Lemmas 6.1 and 6.2 give explicit generators over Q(t). Finally, Corol-
lary 6.3 shows that the rank over Q(t) is 2 and it gives explicit generators.

Proof of Theorem 1.1. We apply the specialization theorem (cf. [16, The-
orem 11.4]) to the family

(6.1) y2 = x(x− (u2 − 1)2)(x− 4u2)

with a rational parameter t and u = 2t
5+t2

. The curve is nonsingular for any
t 6= 0. Let p/q = t denote a rational number where p and q 6= 0 are integers.
Let

P

Q
= u =

2pq

p2 + 5q2
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where P and Q 6= 0 are integers. We claim that the triple (a, b, c) =
(P 2 −Q2, 2PQ,P 2 +Q2) is an element of S.

Suppose to the contrary that a = 0 or b = 0. If a = 0, then P 2 = Q2,
hence u = ±1 and (5 + t2) = ±2t, which does not have solutions t ∈ Q, a
contradiction. If b = 0, then P = 0 and p = 0, so t = 0, which is not possible,
because the curve is nonsingular.

The triple (a, b, c) determines an associated elliptic curve

y2 = x(x− a2)(x− b2)
which has the following two points:

Q1 =

(
1

2
(a+ b− c)2, 1

2
(a+ b)(a+ b− c)2

)
,

Q2 =

(
1

2
a(a− c), 1

2
ab

1

k2
(p4 − 25q4)

)
,

where k = GCD(2pq, p2 + 5q2). The points Q1 and Q2 are obtained from

P2 = (2(u− 1)2, 2(−1 + u)2(−1 + 2u+ u2)),

P3 =

(
1− u2, (−5 + t2)u(−1 + u2)

5 + t2

)
by the map (x, y) 7→ (x(a− c)2/4, y(c− a)3/8). The specialization theorem
shows that Q1 and Q2 are linearly independent for almost all t. By Proposi-
tion 2.1 for all but finitely many elements of S/∼, the rank of the group of
Q-rational points on the curve E(a,b,c), (a, b, c) ∈ S/∼ is at least two. Hence
for infinitely many (a, b, c) ∈ S the group E(a,b,c)(Q) has rank at least two.

Remark 6.4. Observe that the point

(c2, abc) = −2
(
1
2(a+ b− c)2, 12(a+ b)(a+ b− c)2

)
is on the curve

y2 = x(x− a2)(x− b2).
The point

(
1
2(a+ b− c)2, 12(a+ b)(a+ b− c)2

)
corresponds to the point(

2(t− 1)2, 2(t− 1)2(−1 + 2t+ t2)
)

via the inverse of the map (x, y) 7→
(
x(a− c)2/4, y(c− a)3/8

)
. The point(

2(t− 1)2, 2(t− 1)2(−1 + 2t+ t2)
)

is a generator of the free part of the Mordell–Weil group over Q(t) on the
curve

y2 = x(x− (t2 − 1)2)(x− 4t2).

We prove this fact in the next lemma.
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Lemma 6.5. The group E2(Q(t)) is isomorphic to Z2 ⊕ Z/2Z ⊕ Z/4Z.
The free part is generated by

P1 =
(
2(1 +

√
2)(−1 + t)2t, 2

√
−1(1 +

√
2)(−1 + (

√
2− t)2)(−1 + t)2t

)
,

P2 =
(
2(t− 1)2, 2(−1 + t)2(−1 + 2t+ t2)

)
.

The torsion part is generated by

T1 = (−4t2, 0),
T2 =

(
2(−t+ t3), 2

√
−1(t2 − 1)t(−1− 2t+ t2)

)
.

The group E2(Q(t)) is generated by P2, T1 and 2T2 = (0, 0).

Proof. The torsion subgroup is computed as in the proof of Lemma 6.1.
We put K = Q(t). Let (E2(K)/E2(K)tors, 〈·, ·〉E2) be the Mordell–Weil
lattice with height pairing 〈·, ·〉E2 . We easily compute 〈P1, P1〉E2 = 1/2,
〈P2, P2〉E2 = 1 and 〈P1, P2〉E2 = 0.

In general, for each P,Q ∈ E2(K)/E2(K)tors the value of 〈P,Q〉E2 lies
in 1

4Z, which follows from the type of singular fibers (see Table 2).
Consider the lattice Λ = (E2(K)/E2(K)tors with the pairing 〈·, ·〉 =

4〈·, ·〉E2 . Let Λ′ be generated by P1 and P2. It is a sublattice of Λ of a finite
index n = [Λ : Λ′]. For the lattice Λ we have 〈P1, P1〉 = 2, 〈P2, P2〉 = 4 and
〈P1, P2〉 = 0. Hence, the following equality holds for the discriminants of the
lattices Λ and Λ′ with respect to the pairing 〈·, ·〉:

8 = ∆(Λ′) = n2∆(Λ).

Hence, n divides 2. We want to show that n = 1. Suppose to the contrary
that n = 2. There exists a point R ∈ E2(K) of infinite order such that

2R = aP1 + bP2 + T

for some a, b ∈ {0, 1} and T ∈ E2(K)tors. So

4〈R,R〉 = 〈2R, 2R〉 = 2a2 + 4b2 = 2(a2 + 2b2).

This implies 2 | (a2+2b2). For a, b ∈ {0, 1} there are pairs (a, b) = (0, 0) and
(a, b) = (0, 1). For (a, b) = (0, 0) we obtain the equation

2R = T

for a K-rational torsion point T . This implies that R is of finite order, hence
a contradiction. For the pair (a, b) = (0, 1) we obtain the equation

2R = P2 + T

with aK-rational torsion point T . We consider only the cases T = O, T = T1,
T = T2 and T = T1+T2, since one can add a point from 2E2(K)tors to both
sides.

Consider the 2-descent homomorphism

ψ : E2(K)/2E2(K) ↪→ K∗/(K∗)2 ×K∗/(K∗)2.
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For nontorsion points (x, y) in E2(K) it is defined by ψ(x, y) = (x−e1, x−e2),
where e1 = 0 and e2 = 4t2. We check using MAGMA that ψ(P2+T ) 6= (1, 1)
for T ∈ {O, T1, T2, T1 + T2}. This proves that the assumption n = 2 leads to
a contradiction. Hence Λ = Λ′, proving that the rank of E2(K) is two.

Now we prove that the group E2(Q(t)) is generated by P2, T1 and 2T2.
For the torsion part, observe that E2(Q(t))tors ⊂ E2(Q(t))tors. The group
E2(Q(t))tors is generated by T1 and T2. Since T2 is not Q(t)-rational, it
follows that the group E2(Q(t))tors is generated by T1 and 2T2 = (0, 0). We
know that rankE2(Q(t)) = 2. Hence, the rank of E2(Q(t)) is at most 2.

Assume it equals 2. Then there exists a point R defined over Q(t) such
that R = aP1+ bP2+T for some integers a 6= 0 and b and a torsion point T .
Since 4T = O, we have

(6.2) 4R = 4aP1 + 4bP2.

Recall that

P1 =
(
2(1 +

√
2)(−1 + t)2t, 2

√
−1(1 +

√
2)(−1 + (

√
2− t)2)(−1 + t)2t

)
.

We choose an automorphism σ ∈ Gal(Q/Q) which acts on the coefficients
of rational functions in the coordinates of P1 by the formula σ(

√
−1) =

−
√
−1, σ(

√
2) =

√
2. The action of σ commutes with the addition morphism

on the curve E2 which is defined over Q(t). Applying σ to both sides of (6.2)
we get 8aP1 = O, because σ(P1) = −P1 and σ(P2) = P2. This gives a
contradiction since P1 is a nontorsion point.

If the Mordell–Weil lattice E2(Q(t))/E2(Q(t))tors were not generated by
P2, then the lattice generated by this point would be of finite index greater
than 1 in the full Mordell–Weil lattice. Then the lattice generated by P1

and P2 would be of index greater than 1 in the full Mordell–Weil lattice
E2(Q(t))/E2(Q(t))tors, which contradicts what has been proven already.

Proof of Theorem 1.3. This follows from Lemma 6.5 and the fact that
the curves

y2 = x(x− 1)

(
x−

(
2t

t2 − 1

)2)
,

y2 = x(x− (t2 − 1)2)(x− 4t2)

are isomorphic over Q(t).

Remark 6.6. It is natural to ask what is the rank of the Mordell–Weil
group of the curve

y2 = x(x− αa2)(x− βb2),
where αa2+βb2+γc2 = 0 for some α, β, γ ∈ Z. In particular, one would like
to know what is the upper bound of the rank in such a big family. We hope
to return to this question in the future.
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