Diophantine equations $E(\mathbf{x})=P(\mathbf{x})$ with E exponential, P polynomial

by
Wolfgang M. Schmidt (Boulder, CO)

Dedicated to Robert Tijdeman on his sixtieth birthday

1. Introduction. A theorem of Laurent [2] tells us that polynomialexponential equations of a fairly general type have only finitely many solutions in integers. It would be desirable to have a version of this theorem with bounds on the number of solutions, which do not depend on the coefficients of the equation. This has been achieved for purely exponential equations [3], and for equations in one variable [4]. In the present paper we will indicate such bounds for certain solutions of the equation of the title.

More precisely, we will deal with equations

$$
\begin{equation*}
E(\mathbf{x})=P(\mathbf{x}) \tag{1.1}
\end{equation*}
$$

in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$, where P is a polynomial and E is exponential of the type

$$
\begin{equation*}
E(\mathbf{x})=E_{1}\left(x_{1}\right)+\ldots+E_{n}\left(x_{n}\right)+c \tag{1.2}
\end{equation*}
$$

where c is a complex number, and

$$
\begin{equation*}
E_{l}(x)=a_{l 1} \alpha_{l 1}^{x}+\ldots+a_{l, k_{l}} \alpha_{l, k_{l}}^{x} \quad(l=1, \ldots, n) \tag{1.3}
\end{equation*}
$$

with $k_{l}>0$ and $a_{l i} \in \mathbb{C}, \alpha_{l i} \in \mathbb{C}^{\times}$, where no $\alpha_{l i}$ is a root of unity $(1 \leq l \leq n$, $1 \leq i \leq k_{l}$). A solution of (1.1) will be called degenerate if

$$
\sum_{l \in \lambda} E_{l}\left(x_{l}\right)=0
$$

for some nonempty subset λ of $\{1, \ldots, n\}$. As will be pointed out in Section 2 , it is an easy consequence of Laurent's theorem that there are only finitely many nondegenerate solutions.

[^0]The notation $A \ll B$ will mean that $A \leq c_{\circ} B$ with an effective constant c_{\circ} depending only on

$$
\begin{equation*}
N:=\sum_{l=1}^{n} k_{l} \quad \text { and } \quad d:=\text { total degree of } P . \tag{1.5}
\end{equation*}
$$

Observe that $n \leq N$.
Theorem. Suppose P has rational coefficients. Then all but $\ll 1$ solutions of (1.1) are degenerate.

On the other hand it is easy to give examples of equations with infinitely many degenerate solutions.

A number α is a radical of β if $\alpha^{u}=\beta$ for some $u \in \mathbb{N}$. When P has rational coefficients, the equation (1.1) yields the relation

$$
\begin{equation*}
E(\mathbf{x}) \in \mathbb{Q} \tag{1.6}
\end{equation*}
$$

In Theorem 1 of [5] it was shown that if no $\alpha_{l i}$ is a radical of an algebraic number of degree $\leq N$, then all but $\ll 1$ solutions of (1.6) are degenerate, so that our present Theorem holds in this case. But observe that we now have the weaker hypothesis that no $\alpha_{l i}$ is a root of unity. The proof of our Theorem will depend on [5], and on some assertions in [3], [4].

Example. Let α, β in \mathbb{C}^{\times}be multiplicatively independent, and consider the equation

$$
\begin{equation*}
\alpha^{2 x_{1}}-\alpha \cdot \alpha^{3 x_{2}}+\beta^{x_{3}}-\beta^{5 x_{4}}=x_{2}+x_{3}-x_{1}-x_{4} . \tag{1.7}
\end{equation*}
$$

The left hand side is as $E(\mathbf{x})$ in (1.2), (1.3), with $c=0, n=4$, and each $k_{l}=1$. When λ is a nonempty subset of $\{1,2,3,4\}$, let $\mathcal{S}(\lambda)$ be the set of solutions which have (1.4), but not $\left(1.4 \lambda^{\prime}\right)$ for any nonempty set $\lambda^{\prime} \varsubsetneqq \lambda$. By the Theorem, all but $\ll 1$ solutions of (1.7) are in $\mathcal{S}(\lambda)$ for some λ. When $\lambda=\{1,2\}$, so that (1.4λ) becomes $\alpha^{2 x_{1}}-\alpha \cdot \alpha^{3 x_{2}}=0$, we obtain $2 x_{1}=1+3 x_{2}$, therefore $x_{1}=3 y+2, x_{2}=2 y+1$ with $y \in \mathbb{Z}$. After insertion into (1.7) we have

$$
\begin{equation*}
\beta^{x_{3}}-\beta^{5 x_{4}}=x_{3}-x_{4}-y-1 \tag{1.8}
\end{equation*}
$$

The Theorem does not apply to this last equation since the variable y does not occur in the exponential function on the left hand side. As is easily seen, the only solutions are with $\beta^{x_{3}}-\beta^{5 x_{4}}=0$, unless β is an algebraic integer. When $\beta \in \mathbb{Z}$ we obtain a 2-parameter family of solutions parametrized by x_{3}, x_{4}. On the other hand suppose β is not a radical of a rational or a quadratic. Then all but $\ll 1$ solutions of (1.8) have $\beta^{x_{3}}-\beta^{5 x_{4}}=0$ by Theorem 1 of [5], so that $x_{3}=5 x_{4}$ and $4 x_{4}-y-1=0$, giving a 1-parameter family of solutions parametrized by x_{4}. As will be shown in Section 3, this conclusion holds under the weaker assumption that β is not a radical of a rational, or a quadratic of norm 1. The assumption cannot be entirely
dispensed with. For instance, if β is a quadratic unit of norm -1 (so that it is a radical of a unit of norm 1), the conjugate β^{\prime} of β equals $-1 / \beta$, and

$$
\beta^{-5 x_{4}}-\beta^{5 x_{4}}=-\beta^{5 x_{4}}-\beta^{5 x_{4}} \in \mathbb{Z}
$$

when x_{4} is odd. We then have the family of solutions with $x_{3}=-5 x_{4}$, $x_{4}=2 t+1$ where $t \in \mathbb{Z}$.

Similar considerations apply when $\lambda=\{3,4\}$. For all other nonempty sets λ we claim that $|\mathcal{S}(\lambda)| \ll 1$. For instance, take $\lambda=\{1,2,3\}$. According to [1] (see also the formulations in Section 2 of [5]), the solutions in $\mathcal{S}(\lambda)$ fall into $\ll 1$ classes, and for solutions in a given class the triples $\left(\alpha^{2 x_{1}},-\alpha \cdot \alpha^{3 x_{2}}, \beta^{x_{3}}\right)$ are proportional to a given triple, i.e., will have $\alpha^{2 x_{1}}=$ $\gamma\left(-\alpha \cdot \alpha^{3 x_{2}}\right)=\gamma^{\prime} \beta^{x_{3}}$ for some γ, γ^{\prime}. But these relations for fixed γ, γ^{\prime} have (by the multiplicative independence of α, β) at most one solution in integers x_{1}, x_{2}, x_{3}. Or take $\lambda=\{1,3\}$, which gives $\alpha^{2 x_{1}}+\beta^{x_{3}}=0$, hence $x_{1}=x_{3}=0$ by the multiplicative independence of α, β, and we obtain $-\alpha \cdot \alpha^{3 x_{2}}-\beta^{5 x_{4}}=x_{2}-x_{4}$. By our Theorem, both sides vanish for all but $\ll 1$ solutions, and then $x_{2}=x_{4}=0$.
2. Laurent's theorem. Let polynomials $P_{i}(\mathbf{x})=P_{i}\left(x_{1}, \ldots, x_{n}\right)$ and exponential functions $\boldsymbol{\alpha}_{i}^{\mathbf{x}}=\alpha_{i 1}^{x_{1}} \ldots \alpha_{i n}^{x_{n}}(1 \leq i \leq q)$ with nonzero $\alpha_{i j}$ be given. The symbol \mathcal{P} will denote a partition of $\{1, \ldots, q\}$, also interpreted as a partition of the set of functions $P_{i}(\mathbf{x}) \boldsymbol{\alpha}_{i}^{\mathbf{x}}(i=1, \ldots, q)$. The notation $\Lambda \in \mathcal{P}$ will mean that Λ is a subset determined by \mathcal{P}. Further $G(\mathcal{P})$ signifies the group of points $\mathbf{x} \in \mathbb{Z}^{n}$ having $\boldsymbol{\alpha}_{i}^{\mathbf{x}}=\boldsymbol{\alpha}_{j}^{\mathbf{x}}$ for every pair i, j of numbers lying in the same set $\Lambda \in \mathcal{P}$.

Theorem 2.1 (M. Laurent [2]). Let $\mathcal{S}(\mathcal{P})$ consist of solutions $\mathbf{x} \in \mathbb{Z}^{n}$ of the system of equations

$$
\begin{equation*}
\sum_{i \in \Lambda} P_{i}(\mathbf{x}) \boldsymbol{\alpha}_{i}^{\mathbf{x}}=0 \quad(\Lambda \in \mathcal{P}) \tag{2.1P}
\end{equation*}
$$

which are not solutions of $\left(2.1 \mathcal{P}^{\prime}\right)$ for any proper refinement \mathcal{P}^{\prime} of \mathcal{P}. Then $\mathcal{S}(\mathcal{P})$ is finite if $G(\mathcal{P})=\{\mathbf{0}\}$.

We will derive the (qualitative) result that (1.1) has only finitely many nondegenerate solutions. This equation may be written as

$$
\begin{equation*}
\sum_{l, i} a_{l i} \alpha_{l i}^{x_{l}}-P(\mathbf{x}) \boldsymbol{\alpha}_{0}^{\mathbf{x}}=0 \tag{2.2}
\end{equation*}
$$

with $\boldsymbol{\alpha}_{0}=(1, \ldots, 1)$. It is of polynomial-exponential type with $q=N+1$ summands. Each solution lies in a set $\mathcal{S}(\mathcal{P})$ (not necessarily uniquely determined) where \mathcal{P} is a partition of the set of summands. It will be enough to show that for any \mathcal{P}, either $\mathcal{S}(\mathcal{P})$ is finite, or its elements are degenerate.

Let \mathcal{P} be given. Write $0 \dot{\sim} 0$, and for $1 \leq l \leq n$ write $l \dot{\sim} 0$ (and also $0 \dot{\sim} l)$ if both $-P(\mathbf{x}) \boldsymbol{\alpha}_{0}^{\mathbf{x}}$ and $a_{l i} \alpha_{l i}^{x_{l}}$ lie in Λ for some $\Lambda \in \mathcal{P}$ and some i, $1 \leq i \leq k_{l}$. When $1 \leq l, m \leq n$, write $l \dot{\sim} m$ if both $a_{l i} \alpha_{l i}^{x_{l}}$ and $a_{m j} \alpha_{m j}^{x_{m}}$ lie in Λ for some $\Lambda \in \mathcal{P}$ and some i, j with $1 \leq i \leq k_{l}, 1 \leq j \leq k_{m}$. On the other hand, for $0 \leq l, m \leq n$, write $l \sim m$ if there are l_{1}, \ldots, l_{ν} with $l_{1}=l$, $l_{\nu}=m$ and $l_{t} \dot{\sim} l_{t+1}(1 \leq t<\nu)$. Then \sim is an equivalence relation on the set $\{0,1, \ldots, n\}$.

Case A: There is just one equivalence class. We claim that $G(\mathcal{P})=\{\mathbf{0}\}$, which by Laurent's theorem implies the finiteness of $\mathcal{S}(\mathcal{P})$. We have $l \dot{\sim} 0$ for some $l, 1 \leq l \leq n$. Then $\mathbf{x} \in G(\mathcal{P})$ has $\alpha_{l i}^{x_{l}}=\boldsymbol{\alpha}_{0}^{\mathbf{x}}=1$ for some i, therefore $x_{l}=0$ since $\alpha_{l i}$ is not a root of unity. Say $m \dot{\sim} l$ with $1 \leq m \leq n$. Then $\alpha_{m j}^{x_{m}}=\alpha_{l i}^{x_{l}}=1$ for some i, j, hence $x_{m}=0$. Continuing in this way we see that $0=x_{l}=x_{m}=\ldots$, so that indeed $G(\mathcal{P})=\{\mathbf{0}\}$.

CASE B: There is more than one equivalence class. Let $\lambda=\left\{l_{1}, \ldots, l_{\nu}\right\}$ be an equivalence class not containing 0 . All the $a_{l i} \alpha_{l i}^{x_{l}}$ with $l \in \lambda, 1 \leq i \leq k_{l}$ belong to sets $\Lambda \in \mathcal{P}$ which do not contain $-P(\mathbf{x})=-P(\mathbf{x}) \boldsymbol{\alpha}_{0}^{\mathbf{x}}$ or any $a_{m j} \alpha_{m j}^{x_{m}}$ with $m \notin \lambda$. Let these sets be $\Lambda_{1}, \ldots, \Lambda_{s}$. For $\mathbf{x} \in \mathcal{S}(\mathcal{P})$, the sum of the $a_{l i} \alpha_{l i}^{x_{l}}$ with $1 \leq i \leq k_{l}$ and l belonging to some Λ_{t}, is zero. The union of $\Lambda_{1}, \ldots, \Lambda_{s}$ is the union of the $a_{l i} \alpha_{l i}^{x_{l}}$ with $1 \leq i \leq k_{l}$ and $l \in \lambda$. Therefore (1.4 λ) holds, and \mathbf{x} is degenerate.
3. Rational values of $\beta^{x}-\beta^{y}$. Suppose β is not a radical of a rational, or of a quadratic of norm 1. To prove a certain assertion made in the Introduction it will be enough to show that the set of integer pairs (x, y) with $x \neq y$ and $\beta^{x}-\beta^{y}$ rational has cardinality $\ll 1$.

In view of Theorem 1 of [5] we may assume β to be algebraic. Say β is of degree D, with conjugates $\beta^{(1)}=\beta, \beta^{(2)}, \ldots, \beta^{(D)}$. Suppose at first that for some $\sigma, 1<\sigma \leq D$, the numbers $\beta, \beta^{(\sigma)}$ are multiplicatively independent. The rationality of $\beta^{x}-\beta^{y}$ implies the equation

$$
\begin{equation*}
\beta^{x}-\beta^{y}-\beta^{(\sigma) x}+\beta^{(\sigma) y}=0 \tag{3.1}
\end{equation*}
$$

When \mathcal{P} is a partition of the set of the four summands on the left hand side, define $\mathcal{S}(\mathcal{P})$ as in the preceding section. If $\Lambda_{0}=\left\{\beta^{x},-\beta^{y}\right\}$ is a set of \mathcal{P}, then $\beta^{x}-\beta^{y}=0$, hence $x=y$. We will show that for any partition \mathcal{P} not containing $\Lambda_{0},|\mathcal{S}(\mathcal{P})| \ll 1$. When \mathcal{P} is no proper partition, so that for $(x, y) \in \mathcal{S}(\mathcal{P})$ no proper subsum of (3.1) vanishes, then by [1], the solutions in $\mathcal{S}(\mathcal{P})$ fall into $\ll 1$ classes, with solutions in a given class having $\beta^{x}=\gamma_{1} \beta^{y}=$ $\gamma_{2} \beta^{(\sigma) x}=\gamma_{3} \beta^{(\sigma) y}$ with fixed $\gamma_{1}, \gamma_{2}, \gamma_{3}$. By the multiplicative independence of $\beta, \beta^{(\sigma)}$, there can be at most one such pair (x, y). On the other hand, if \mathcal{P} consists of $\Lambda_{1}=\left\{\beta^{x},-\beta^{(\sigma) x}\right\}$ and $\Lambda_{2}=\left\{-\beta^{y}, \beta^{(\sigma) y}\right\}$, then again $x=y=0$ for $(x, y) \in \mathcal{S}(\mathcal{P})$; and the same holds if $\Lambda_{3}=\left\{\beta^{x}, \beta^{(\sigma) y}\right\} \in \mathcal{P}$.

We are left with the case when $\beta, \beta^{(\sigma)}$ are multiplicatively dependent for each σ. Say for some σ we have $\beta^{u}=\beta^{(\sigma) v}$ with $(u, v) \neq(0,0)$. Extend σ to an element of the Galois group of the normal closure N of $\mathbb{Q}(\beta)$. We obtain $\beta^{u^{2}}=\left(\beta^{u}\right)^{(\sigma) v}=\beta^{\left(\sigma^{2}\right) v^{2}}$, then $\beta^{u^{3}}=\beta^{\left(\sigma^{3}\right) v^{3}}, \ldots, \beta^{u^{E}}=\beta^{\left(\sigma^{E}\right) v^{E}}=\beta^{v^{E}}$, where $E=\operatorname{deg} N$. Since β is not a root of unity this gives $u^{E}=v^{E}$, therefore $u= \pm v$. Introducing the equivalence relation \approx on \mathbb{C}^{\times}with $\varrho \approx \sigma$ if ϱ / σ is a root of unity, we may conclude that for each σ, either $\beta \approx \beta^{(\sigma)}$ or $\beta \approx 1 / \beta^{(\sigma)}$.

Suppose at first that $\beta \approx \beta^{(\sigma)}$ for each σ. Then $\beta^{u}=\beta^{(2) u}=\ldots=\beta^{(D) u}$ for some $u \in \mathbb{N}$, so that β^{u} is a rational, and β among its radicals. Otherwise, if $\beta \not \approx \beta^{(\sigma)}$, hence $\beta \approx 1 / \beta^{(\sigma)}$ for some σ, it is easily seen that this holds for exactly half of the embeddings σ. So D is even, and after suitable numbering, there is a $u \in \mathbb{N}$ with

$$
\beta^{u}=\beta^{(2) u}=\ldots=\beta^{(D / 2) u}=1 / \beta^{((D / 2)+1) u}=\ldots=1 / \beta^{(D) u} .
$$

Therefore β^{u} is quadratic with conjugate $1 / \beta^{u}$, so that its norm is 1 . And β is among its radicals.
4. An auxiliary lemma. We now begin with the proof of our Theorem. When $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{C}^{\times}\right)^{n}$, define $\boldsymbol{\alpha}^{\mathbf{x}}$ as in Section 2 . We will deal with functions

$$
\begin{equation*}
F(\mathbf{x})=\sum_{i=1}^{m} P_{i}(\mathbf{x}) \boldsymbol{\alpha}_{i}^{\mathbf{x}} \tag{4.1}
\end{equation*}
$$

with polynomials P_{i} and distinct elements $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{m}$ of $\left(\mathbb{C}^{\times}\right)^{n}$. Say

$$
P_{i}(\mathbf{x})=\sum_{j=1}^{e_{i}} c_{i j} M_{i j}(\mathbf{x}) \quad(i=1, \ldots, m)
$$

where $M_{i 1}, \ldots, M_{i, e_{i}}$ are distinct monomials, and $c_{i 1}, \ldots, c_{i, e_{i}}$ are nonzero. We will write $F^{*} \prec F$ if F^{*} is a function like F, with the same $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{m}$ and the same monomials $M_{i j}$, but arbitrary coefficients $c_{i j}^{*}(1 \leq i \leq m$, $1 \leq j \leq e_{i}$), some of which may be zero.

For $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{q}\right) \in \overline{\mathbb{Q}}^{q} \backslash\{\mathbf{0}\}$, where $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q}, write $h(\boldsymbol{\beta})$ for its absolute logarithmic height, as defined, e.g., in [3, §2]. Our former notation $h(\beta)$ then becomes $h(\beta, 1)$. When $\boldsymbol{\beta}_{i}=\left(\beta_{i 1}, \ldots, \beta_{i, q_{i}}\right)$ $(i=1, \ldots, s)$, set $h\left(\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{s}\right)=h\left(\beta_{11}, \ldots, \beta_{1, q_{1}}, \ldots, \beta_{s 1}, \ldots, \beta_{s, q_{s}}\right)$. The following is similar to Lemma 3.3 in [3].

Lemma 4.1. Suppose $F(\mathbf{x})$ is as above, with the coefficients $c_{i j}$, and the components of each $\boldsymbol{\alpha}_{i}$ in $\overline{\mathbb{Q}}^{\times}$. Set $\mathbf{c}_{i}=\left(c_{i 1}, \ldots, c_{i, e_{i}}\right)(i=1, \ldots, m)$ and $q=$
$e_{1}+\ldots+e_{m}$, and let $d(F)$ be the maximal total degree of the monomials $M_{i j}$. Let h_{\circ} be a positive real. Then solutions $\mathbf{x} \in \mathbb{Z}^{n}$ of

$$
\begin{equation*}
F(\mathbf{x})=0 \tag{4.2}
\end{equation*}
$$

with $x_{1} \ldots x_{n} \neq 0$,

$$
\begin{equation*}
h\left(\boldsymbol{\alpha}_{1}^{\mathbf{x}} \mathbf{c}_{1}, \ldots, \boldsymbol{\alpha}_{m}^{\mathbf{x}} \mathbf{c}_{m}\right) \geq h_{\circ}|\mathbf{x}| \tag{4.3}
\end{equation*}
$$

and maximum norm $|\mathbf{x}| \geq x_{\circ}\left(h_{\circ}, q, d(F)\right)$ lie in $\leq c(q)$ classes, and solutions in a given class \mathcal{C} satisfy

$$
F_{\mathcal{C}}^{*}(\mathbf{x})=0
$$

where $F_{\mathcal{C}}^{*} \prec F$, but $F_{\mathcal{C}}^{*}$ is not a constant multiple of F.
Proof. The equation (4.2) may be written as

$$
\begin{aligned}
& \left(c_{11} M_{11}(\mathbf{x})+\ldots+c_{1, e_{1}} M_{1, e_{1}}(\mathbf{x})\right) \boldsymbol{\alpha}_{1}^{\mathbf{x}}+\ldots \\
& \quad+\left(c_{m 1} M_{m 1}(\mathbf{x})+\ldots+c_{m, e_{m}} M_{m, e_{m}}(\mathbf{x})\right) \boldsymbol{\alpha}_{m}^{\mathbf{x}}=0
\end{aligned}
$$

Introduce vectors \mathbf{X}, \mathbf{Y} with q components:

$$
\begin{aligned}
& \mathbf{X}=\left(c_{11} \boldsymbol{\alpha}_{1}^{\mathbf{x}}, \ldots, c_{1, e_{1}} \boldsymbol{\alpha}_{1}^{\mathbf{x}}, \ldots, c_{m 1} \boldsymbol{\alpha}_{m}^{\mathbf{x}}, \ldots, c_{m, e_{m}} \boldsymbol{\alpha}_{m}^{\mathbf{x}}\right) \\
& \mathbf{Y}=\left(M_{11}(\mathbf{x}), \ldots, M_{1, e_{1}}(\mathbf{x}), \ldots, M_{m 1}(\mathbf{x}), \ldots, M_{m, e_{m}}(\mathbf{x})\right)
\end{aligned}
$$

Set $\mathbf{Z}=\mathbf{X} * \mathbf{Y}:=\left(X_{1} Y_{1}, \ldots, X_{q} Y_{q}\right)$. Then (4.2) becomes

$$
\begin{equation*}
Z_{1}+\ldots+Z_{q}=0 \tag{4.4}
\end{equation*}
$$

\mathbf{X} lies in the multiplicative group $\Gamma \subset\left(\mathbb{C}^{\times}\right)^{q}$ of rank $\leq n+1$ generated by the vectors $\left(\boldsymbol{\alpha}_{1}^{\mathbf{x}}, \ldots, \boldsymbol{\alpha}_{1}^{\mathbf{x}}, \ldots, \boldsymbol{\alpha}_{m}^{\mathbf{x}}, \ldots, \boldsymbol{\alpha}_{m}^{\mathbf{x}}\right)$ with $\mathbf{x} \in \mathbb{Z}^{n}$, and by $\left(c_{11}, \ldots, c_{1, e_{1}}, \ldots, c_{m 1}, \ldots, c_{m, e_{m}}\right)$. Now (4.3) becomes

$$
h(\mathbf{X}) \geq h_{\circ}|\mathbf{x}| .
$$

On the other hand, $\mathbf{Y} \in \mathbb{Q}^{q}$, and since the x_{i} are nonzero, in fact $\mathbf{Y} \in\left(\mathbb{Q}^{\times}\right)^{q}$ with

$$
h(\mathbf{Y}) \leq d(F) \log |\mathbf{x}|+\log q
$$

Therefore

$$
\begin{equation*}
h(\mathbf{Y}) \leq\left(1 / 4 q^{2}\right) h(\mathbf{X}) \tag{4.5}
\end{equation*}
$$

provided $|\mathbf{x}|$ is sufficiently large, say $|\mathbf{x}| \geq x_{\circ}\left(h_{\circ}, q, d(F)\right)$. By the Corollary of Lemma 3.1 in [3], solutions \mathbf{x} of (4.4) with (4.5) have $\mathbf{Z}=\mathbf{Z}(\mathbf{x})$ in the union of at most $c(q)$ proper subspaces of the $(q-1)$-dimensional space given by (4.4). In such a subspace $u_{1} Z_{1}+\ldots+u_{q} Z_{q}=0$ where $\left(u_{1}, \ldots, u_{q}\right)$ is not proportional to $(1, \ldots, 1)$. A subspace corresponds to some $F^{*} \prec F$ not proportional to F, and any \mathbf{x} with $\mathbf{Z}(\mathbf{x})$ in the subspace has $F^{*}(\mathbf{x})=0$.
5. A proposition which implies our Theorem. We will consider functions $G_{r}(\mathbf{x})$ in $\mathbf{x} \in \mathbb{Z}^{n}$ given by

$$
G_{r}(\mathbf{x})=\sum_{l=1}^{n}\left(g_{r l 1} \alpha_{l 1}^{x_{l}}+\ldots+g_{r l k} \alpha_{l k}^{x_{l}}\right)+Q_{r}(\mathbf{x}) \quad(r=1, \ldots, p)
$$

with polynomials Q_{r}, where all the data, i.e., the $g_{r l i}, \alpha_{l i}$ and the coefficients of the Q_{r}, are algebraic. We will suppose that each $\alpha_{l i} \neq 0$, and that

$$
\begin{equation*}
h\left(\alpha_{l 1}\right) \geq \hbar>0 \quad(l=1, \ldots, n) \tag{5.1}
\end{equation*}
$$

for some constant \hbar. The coefficients $g_{r l i}$ are not necessarily nonzero, but write N for the number of those which are, and d for the maximal total degree of Q_{1}, \ldots, Q_{p}.

Proposition 5.1. Suppose there is a partition of $\{1, \ldots, n\}$ into nonempty sets S_{1}, \ldots, S_{p} such that

$$
\begin{equation*}
g_{r l} \neq 0 \quad \text { for } l \in S_{r}(r=1, \ldots, p) . \tag{5.2}
\end{equation*}
$$

Then the solutions $\mathbf{x} \in \mathbb{Z}^{n}$ of the system of equations

$$
\begin{equation*}
G_{r}(\mathbf{x})=0 \quad(r=1, \ldots, p) \tag{5.3}
\end{equation*}
$$

lie in the union of at most $c_{1}(\hbar, N, d)$ hyperplanes of the type $x_{l}=$ const, and $c_{2}(N, d)$ classes, with elements of a given class having

$$
g_{r m j} \alpha_{m j}^{x_{m}}=\gamma g_{s l i} \alpha_{l i}^{x_{l}} \neq 0
$$

for some pairs $(m, j) \neq(l, i)$, some r, s, and some constant γ.
Note that the coefficients of the polynomials Q_{r} are not required to be rational. The proof of the proposition is postponed to the next section. Here we will deduce our Theorem from the case $p=1$, the general case of the proposition being needed only for its proof.

In view of Theorem 1 of [5] we may assume the $\alpha_{l i}\left(1 \leq l \leq n, 1 \leq i \leq k_{l}\right)$ in the definition (1.2), (1.3) of $E(\mathbf{x})$ to be algebraic. It is not hard to see that we also may suppose the $a_{l i}$ to be algebraic: this may be done by a specialization argument, or as follows.

Let $\mathbf{A}=\left(a_{11}, \ldots, a_{1, k_{1}}, \ldots, a_{n 1}, \ldots, a_{n, k_{n}}\right) \in \mathbb{C}^{N}$ be the "coefficient vector" of E. We signify this by writing $E(\mathbf{x})=E(\mathbf{A} ; \mathbf{x})$. We may write

$$
\mathbf{A}=\mathbf{A}_{1}+\zeta_{2} \mathbf{A}_{2}+\ldots+\zeta_{r} \mathbf{A}_{r}
$$

where each \mathbf{A}_{i} is in $\overline{\mathbb{Q}}^{N}$, and $1, \zeta_{2}, \ldots, \zeta_{r}$ are linearly independent over $\overline{\mathbb{Q}}$. Let ξ be algebraic of degree r over the number field generated by the entries of $\mathbf{A}_{1}, \ldots, \mathbf{A}_{r}$, and set

$$
\widetilde{\mathbf{A}}=\mathbf{A}_{1}+\xi \mathbf{A}_{2}+\ldots+\xi^{r-1} \mathbf{A}_{r} .
$$

Since P has coefficients in $\mathbb{Q} \subset \overline{\mathbb{Q}}$, the equation (1.1), i.e., $E(\mathbf{A} ; \mathbf{x})=P(\mathbf{x})$, is equivalent to the system $E\left(\mathbf{A}_{1} ; \mathbf{x}\right)=P(\mathbf{x}), E\left(\mathbf{A}_{2} ; \mathbf{x}\right)=\ldots=E\left(\mathbf{A}_{r} ; \mathbf{x}\right)=0$, which in turn is equivalent to $E(\widetilde{\mathbf{A}} ; \mathbf{x})=P(\mathbf{x})$. Similarly, (1.4入), i.e., $\sum_{l \in \lambda} E_{l}\left(\mathbf{A} ; x_{l}\right)=0$, is equivalent to $\sum_{l \in \lambda} E_{l}\left(\widetilde{\mathbf{A}} ; x_{l}\right)=0$. Therefore it will suffice to prove the Theorem for $E(\widetilde{\mathbf{A}} ; \mathbf{x})$. We may indeed assume the coefficients $a_{l i}$ to be algebraic.

For a function of the type (1.2), (1.3), write $n=n(E)$, and $N=N(E)$ with N given by (1.5), and set $d(P)$ for the total degree of a polynomial P. For $n \leq N$ let $R_{d}(N, n)$ be the maximal number of nondegenerate solutions of equation (1.1), over E, P as in the Theorem, with $n(E) \leq n, N(E) \leq N$, $d(P) \leq d$, and with algebraic data. The Theorem will follow if we can show that $R_{d}(1,1) \leq 1, R_{d}(N, 1) \ll R_{d}(N-1,1)$ when $N>1$, and $R_{d}(N, n) \ll$ $R_{d}(N-1, n)+R_{d}(N, n-1)$ when $n>1$.

A function E given by (1.2), (1.3) will be called proper if each $\alpha_{l i}$ is algebraic, we have $a_{l 1} \neq 1$, and absolute logarithmic heights

$$
h\left(\alpha_{l 1}\right) \geq \operatorname{Dob}(N) \quad(l=1, \ldots, n)
$$

where $\operatorname{Dob}(N)=1 /\left(4 N\left(\log ^{+} N\right)^{3}\right)$ with $\log ^{+} N=\max (1, \log N)$. By Theorem 2 of [5], there are maps ${ }_{1} T, \ldots,{ }_{t} T$ with $t \leq t_{0}(N)$, say ${ }_{j} T: \mathbb{Z}^{m_{j}} \rightarrow \mathbb{Z}^{n}$ with $0 \leq m_{j} \leq n$, such that every nondegenerate solution \mathbf{x} of (1.6), i.e., of $E(\mathbf{x}) \in \mathbb{Q}$, is of the form

$$
\begin{equation*}
\mathbf{x}={ }_{j} T \mathbf{y} \tag{5.4}
\end{equation*}
$$

for some j and some $\mathbf{y} \in \mathbb{Z}^{m_{j}}$. Furthermore, for each j with $m_{j}>0$ the function ${ }_{j} \widetilde{E}(\mathbf{y}):=E\left({ }_{j} T \mathbf{y}\right)$ is again of the general type (1.2), (1.3), and is proper.

Observe that for j with $m_{j}=0$ there is just one \mathbf{x} coming from (5.4), and these together lead to at most $t_{0}(N) \ll 1$ solutions. We are therefore reduced to studying equations

$$
{ }_{j} \widetilde{E}(\mathbf{y})=P\left({ }_{j} T \mathbf{y}\right)
$$

where $m_{j}>0$. The maps ${ }_{j} T$ described in [5] are linear (not necessarily homogeneous) with integer coefficients, so that $P\left({ }_{j} T \mathbf{y}\right)$ again has rational coefficients. They further have the property that when $\mathbf{x}={ }_{j} T \mathbf{y}$ is a nondegenerate solution of $E(\mathbf{x}) \in \mathbb{Q}$, then \mathbf{y} is a nondegenerate solution of ${ }_{j} \widetilde{E}(\mathbf{y}) \in \mathbb{Q}$. We thus may restrict ourselves to proper functions $E(\mathbf{x})$.

We now apply the proposition with $\hbar=\operatorname{Dob}(N), p=1, \mathbb{G}_{1}(\mathbf{x})=$ $E(\mathbf{x})-P(\mathbf{x})$. Some of the solutions of (1.1), i.e., of $\mathbb{G}_{1}(\mathbf{x})=0$, lie in the union of $\ll 1$ hyperplanes $x_{l}=$ const. When $n=1$, these simply give $\ll 1$ solutions, and when $n>1$, then $E_{l}\left(x_{l}\right)$ may be absorbed into the constant in (1.2), so that we get $\ll R_{d}(N, n-1)$ nondegenerate solutions. The remaining solutions of (1.1) lie in $\ll 1$ classes, with elements of a given class
having

$$
\begin{equation*}
a_{m j} \alpha_{m j}^{x_{m}}=\gamma a_{l i} \alpha_{l i}^{x_{l}} \tag{5.5}
\end{equation*}
$$

for some $(l, i) \neq(m, j)$ and some γ. There clearly can be no such class unless $N>1$.

When $m=l$, the summands $a_{l i} \alpha_{l i}^{x_{l}}$ and $a_{l j} \alpha_{l j}^{x_{l}}$ in (1.3) can be combined to $(1+\gamma) a_{l i} \alpha_{l i}^{x_{l}}$, so that k_{l} can be reduced, or we even have $E_{l}\left(x_{l}\right)=0$, so that \mathbf{x} is degenerate. Thus the number of nondegenerate solutions in our class is at most $R_{d}(N-1, n)$. Or, when $n>1$, we may also have $m \neq l$ in (5.5). For $\mathbf{x}, \mathbf{x}^{\prime}$ in the same class, (5.5) yields $\alpha_{m j}^{x_{m}-x_{m}^{\prime}}=\alpha_{l i}^{x_{l}-x_{l}^{\prime}}$, and since $\alpha_{m j}, \alpha_{l i}$ are not roots of unity, this either determines x_{l}, x_{m} uniquely, or $x_{l}=u z+x_{l}^{\prime}, x_{m}=w z+x_{m}^{\prime}$ with fixed nonzero u, w, and $z \in \mathbb{Z}$. Substitution into $E(\mathbf{x})-P(\mathbf{x})$ gives a function in at most $n-1$ variables, so that the number of nondegenerate solutions in our class is $\leq R_{d}(N, n-1)$.
6. Proof of Proposition 5.1. Order the monomials in \mathbf{x} as $M_{1}=1$, M_{2}, M_{3}, \ldots such that the total degrees do not decrease. When Q is a nonzero polynomial, write $\varrho(Q)$ for the maximum number ϱ such that M_{ϱ} occurs in Q with nonzero coefficient. Call Q normalized if this coefficient is 1 . Set $\varrho(Q)=0$ when $Q=0$.

We will do downward induction from $p=n$ to $n-1, n-2, \ldots, 1$. Given a function

$$
G(\mathbf{x})=\sum_{l=1}^{n}\left(g_{l 1} \alpha_{l 1}^{x_{l}}+\ldots+g_{l k} \alpha_{l k}^{x_{l}}\right)+Q(\mathbf{x})
$$

with the $\alpha_{l i} \neq 0$ and Q a polynomial, write $N(G)$ for the number of nonzero coefficients $g_{l i}$. Now set

$$
N=\sum_{r=1}^{p} N\left(G_{r}\right), \quad \varrho=\sum_{r=1}^{p} \varrho\left(Q_{r}\right), \quad \mu=N+\varrho
$$

Given p, Proposition 5.1 will be proved by induction on μ. Observe that $n \leq N \leq \mu$.

Case A: Some $Q_{r}=0$, say $Q_{1}=0$. We will then deal with the equation $G_{1}(\mathbf{x})=0$ of purely exponential type. For a partition \mathcal{P} of the set of nonzero summands of G_{1} (this set is nonempty by the hypothesis), we have $\mathcal{S}(\mathcal{P})=\emptyset$ if \mathcal{P} contains a singleton, i.e., a one-element set. We thus may suppose that for some set $\Lambda \in \mathcal{P}$, two summands $g_{1 l i} \alpha_{l i}^{x_{l}}$ and $g_{1 m j} \alpha_{m j}^{x_{m}}$ with $(l, i) \neq(m, j)$ and nonzero $g_{1 l i}, g_{1 m j}$ belong to Λ. Invoking [1] we see that solutions in $\mathcal{S}(\Lambda)$ fall into $\ll 1$ classes, and $g_{1 m j} \alpha_{m j}^{x_{m}}=\gamma g_{1 l i} \alpha_{l i}^{x_{l}}$ with fixed γ for solutions \mathbf{x} in a given class.

Case B: Each $Q_{r} \neq 0$. After multiplying the G_{r} 's $(r=1, \ldots, p)$ by suitable constants we may assume each Q_{r} to be normalized.

Suppose $l \in S_{r}$, so that (5.2) holds. Since $h\left(\alpha_{l 1}\right) \geq \hbar$ by (5.1), there is, e.g., by Lemma 6 of [5], an integer u_{l} such that

$$
h\left(g_{r l 1} \alpha_{l 1}^{x_{l}-u_{l}}\right) \geq \frac{1}{4} h\left(\alpha_{l 1}\right)\left|x_{l}\right| \geq \frac{1}{4} \hbar\left|x_{l}\right|
$$

for $x_{l} \in \mathbb{Z}$. Therefore $h\left(g_{r l 1} x_{l 1}^{x_{l}}\right) \geq \frac{1}{4} \hbar\left|x_{l}+u_{l}\right|=h_{\circ}\left|x_{l}+u_{l}\right|$ with

$$
h_{\circ}=\frac{1}{4} \hbar .
$$

Setting $\widehat{g}_{r l i}=g_{r l i} \alpha_{l i}^{-u_{l}}, \widehat{x}_{l}=x_{l}+u_{l}$ we have $g_{r l i} \alpha_{l i}^{x_{l}}=\widehat{g}_{r l i} \hat{x}_{l i}^{\hat{x}_{l}}(i=1, \ldots, k)$ and

$$
h\left(\widehat{g}_{r l 1} \alpha_{l 1}^{\widehat{x}_{l}}\right) \geq h_{\circ}\left|\widehat{x}_{l}\right|
$$

for any $x_{l} \in \mathbb{Z}$. We may express the functions G_{1}, \ldots, G_{p} in terms of \widehat{x}_{l} instead of x_{l}. We carry this out for each $l \in S_{r}$, and then for each r, $1 \leq r \leq p$. These substitutions will not affect the numbers $N\left(G_{r}\right), \varrho\left(Q_{r}\right)$, hence not N, ϱ or μ. Each Q_{r} will still be normalized. Also, the truth of the desired conclusion of the proposition will not be affected. We therefore may suppose after suitable substitutions that

$$
\begin{equation*}
h\left(g_{r l 1} \alpha_{l 1}^{x_{l}}\right) \geq h_{\circ}\left|x_{l}\right| \quad\left(1 \leq r \leq p, l \in S_{r}\right) . \tag{6.1}
\end{equation*}
$$

When dealing with systems of equations (5.3) with given p and μ which satisfy (6.1), and with normalized nonzero polynomials Q_{r}, we will do induction on $\sigma=\sum_{r=1}^{p} \sigma\left(Q_{r}\right)$, where $\sigma(Q)$ denotes the number of nonzero coefficients of a polynomial Q. We thus will have another layer of induction.

Without loss of generality we may restrict our attention to solutions \mathbf{x} of (5.3) with

$$
|\mathbf{x}|=\left|x_{1}\right| .
$$

But $1 \in S_{r}$ for some r, and $1 \in S_{1}$ without loss of generality. Now (6.1) yields $h\left(g_{111} \alpha_{11}^{x_{1}}\right) \geq h_{\circ}\left|x_{1}\right|=h_{\circ}|\mathbf{x}|$, which is $h\left(g_{111} \alpha_{11}^{x_{1}}, 1\right) \geq h_{\circ}|\mathbf{x}|$ in other notation. In view of this, and since Q_{1}, being normalized, has some coefficient 1 , the vector whose components are the $g_{11 i} \alpha_{l i}^{x_{l}}$ and the coefficients of Q_{1}, has height $\geq h_{\circ}|\mathbf{x}|$. Thus (4.3) holds, and Lemma 4.1 applies. Some solutions of $G_{1}(\mathrm{x})=0$ may lie on a hyperplane $x_{l}=0$ for some l. Next, there may be solutions with $|\mathbf{x}|<x_{\circ}\left(h_{\circ}, q, d\left(Q_{1}\right)\right)$. In the present situation $q=N\left(G_{1}\right)+\sigma\left(Q_{1}\right)$ is bounded in terms of N, d, n, where $n \leq N$, so that such solutions certainly lie in not more than $c_{3}(\hbar, N, d)$ hyperplanes $x_{1}=$ const. In view of Lemma 4.1, the remaining solutions fall into at most $c(q) \leq c_{4}(N, d)$ classes.

Solutions in a given class \mathcal{C} have $G_{\mathcal{C}}^{*}(\mathbf{x})=0$, hence

$$
G_{1}(\mathbf{x})=G_{\mathcal{C}}^{*}(\mathbf{x})=0
$$

where $G_{\mathcal{C}}^{*} \prec G_{1}$, but is not proportional to G_{1}. Say

$$
G_{\mathcal{C}}^{*}=\sum_{l=1}^{n}\left(g_{l 1}^{*} \alpha_{l 1}^{x_{l}}+\ldots+g_{l k}^{*} \alpha_{l k}^{x_{l}}\right)+Q^{*}(\mathbf{x})
$$

(An analogous notation will be used for functions $G^{* *}, G^{\circ}, G^{\prime}, G^{\prime \prime}$ introduced below.) We will need the matrix \mathcal{M} with the $\left|S_{1}\right|$ columns

$$
\binom{g_{1 l 1}}{g_{l 1}^{*}} \quad\left(l \in S_{1}\right)
$$

Subcase B1: \mathcal{M} has rank 1. Then in the pencil of $G_{1}, G_{\mathcal{C}}^{*}$ there is a nonzero $G^{* *}$ with $g_{l 1}^{* *}=0$ for each $l \in S_{1}$. Suppose first that $\varrho\left(Q^{* *}\right)=\varrho\left(Q_{1}\right)$, so that M_{ϱ} with $\varrho=\varrho\left(Q_{1}\right)$ occurs in $Q^{* *}$ with a coefficient $\theta \neq 0$. Then $G^{\circ}=G_{1}-\theta^{-1} G^{* *}$ has

$$
\begin{equation*}
g_{l 1}^{\circ}=g_{1 l 1} \neq 0 \quad\left(l \in S_{1}\right) \tag{6.2}
\end{equation*}
$$

and $\varrho\left(Q^{\circ}\right)<\varrho\left(Q_{1}\right)$. We now replace $G_{1}, G_{2}, \ldots, G_{p}$ by $G^{\circ}, G_{2}, \ldots, G_{p}$, thus replacing ϱ by a smaller number. Then also μ is diminished. Since (5.2) still holds with $g_{l 1}^{\circ}$ in place of $g_{1 l 1}$, induction on μ may be applied. Now suppose that $\varrho\left(Q^{* *}\right)<\varrho\left(Q_{1}\right)$. Then after subtracting a suitable multiple of $G^{* *}$ from G_{1}, we obtain a function G° which again has (6.2), where M_{ϱ} with $\varrho=\varrho\left(Q_{1}\right)$ appears in Q° with coefficient 1, but where there are fewer summands, i.e., $N\left(G^{\circ}\right)<N\left(G_{1}\right)$ or $\sigma\left(Q^{\circ}\right)<\sigma\left(Q_{1}\right)$. Again we replace $G_{1}, G_{2}, \ldots, G_{p}$ by $G^{\circ}, G_{2}, \ldots, G_{p}$. When $N\left(G^{\circ}\right)<N\left(G_{1}\right)$, then N and hence μ is diminished, and again induction on μ applies. When $N\left(G^{\circ}\right)=$ $N\left(G_{1}\right)$, then μ remains unchanged. But Q° is normalized, and (6.1) is true with $g_{l 1}^{\circ}$ in place of $g_{1 l 1}$. Since $\sigma\left(Q^{\circ}\right)<\sigma\left(Q_{1}\right)$, induction on σ finishes the argument.

Subcase B2: \mathcal{M} has rank 2. (This can only happen when $\left|S_{1}\right| \geq 2$, so that $p<n$.) In this case there is a $G^{* *}$ in the pencil of $G_{1}, G_{\mathcal{C}}^{*}$ with $g_{111}^{* *}=0$, but $g_{1 l 1}^{* *} \neq 0$ for some $l \in S_{1}$. Set

$$
\begin{aligned}
S^{\prime} & =\left\{l \in S_{1} \text { with } g_{1 l 1}^{* *}=0\right\} \\
S^{\prime \prime} & =S_{1} \backslash S_{1}^{\prime}=\left\{l \in S_{1} \text { with } g_{1 l 1}^{* *} \neq 0\right\}
\end{aligned}
$$

Then $S_{1}=S^{\prime} \cup S^{\prime \prime}$ is a partition into two nonempty sets. Setting $G^{\prime}=G_{1}$, $G^{\prime \prime}=G^{* *}$ we have

$$
g_{l 1}^{\prime} \neq 0 \quad \text { for } l \in S^{\prime}, \quad g_{l 1}^{\prime \prime} \neq 0 \quad \text { for } l \in S^{\prime \prime}
$$

Now \mathbf{x} is a common zero of the system

$$
G^{\prime}(\mathbf{x})=G^{\prime \prime}(\mathbf{x})=G_{2}(\mathbf{x})=\ldots=G_{p}(\mathbf{x})=0
$$

Since $S^{\prime} \cup S^{\prime \prime} \cup S_{2} \cup \ldots \cup S_{p}$ is a partition of $\{1, \ldots, n\}$, we may invoke the case $p+1$ of the proposition.

References

[1] J.-H. Evertse, H. P. Schlickewei and W. M. Schmidt, Linear equations in variables which lie in a multiplicative group, Ann. of Math. 155 (2002), 807-836.
[2] M. Laurent, Équations exponentielles polynômes et suites récurrentes linéaires, Astérisque 147-148 (1987), 121-139, 343-344.
[3] H. P. Schlickewei, W. M. Schmidt and M. Waldschmidt, Zeros of linear recurrence sequences, Manuscripta Math. 98 (1999), 225-241.
[4] W. M. Schmidt, The zero multiplicity of linear recurrence sequences, Acta Math. 182 (1999), 245-282.
[5] -, Rationality of exponential functions at integer arguments, J. Number Theory, to appear.

Department of Mathematics
University of Colorado
Boulder, CO 80309-0395, U.S.A.
E-mail: schmidt@euclid.colorado.edu

[^0]: 2000 Mathematics Subject Classification: 11D61, 11D45.
 Supported in part by NSF DMS 0074531.

