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1. Introduction. A theorem of Laurent [2] tells us that polynomial-
exponential equations of a fairly general type have only finitely many solu-
tions in integers. It would be desirable to have a version of this theorem with
bounds on the number of solutions, which do not depend on the coefficients
of the equation. This has been achieved for purely exponential equations [3],
and for equations in one variable [4]. In the present paper we will indicate
such bounds for certain solutions of the equation of the title.

More precisely, we will deal with equations

(1.1) E(x) = P (x)

in x = (x1, . . . , xn) ∈ Zn, where P is a polynomial and E is exponential of
the type

(1.2) E(x) = E1(x1) + . . .+En(xn) + c,

where c is a complex number, and

(1.3) El(x) = al1α
x
l1 + . . .+ al,klα

x
l,kl

(l = 1, . . . , n)

with kl > 0 and ali ∈ C, αli ∈ C×, where no αli is a root of unity (1 ≤ l ≤ n,
1 ≤ i ≤ kl). A solution of (1.1) will be called degenerate if

(1.4λ)
∑

l∈λ
El(xl) = 0

for some nonempty subset λ of {1, . . . , n}. As will be pointed out in Section 2,
it is an easy consequence of Laurent’s theorem that there are only finitely
many nondegenerate solutions.
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The notation A� B will mean that A ≤ c◦B with an effective constant
c◦ depending only on

(1.5) N :=
n∑

l=1

kl and d := total degree of P.

Observe that n ≤ N .

Theorem. Suppose P has rational coefficients. Then all but � 1 solu-
tions of (1.1) are degenerate.

On the other hand it is easy to give examples of equations with infinitely
many degenerate solutions.

A number α is a radical of β if αu = β for some u ∈ N. When P has
rational coefficients, the equation (1.1) yields the relation

(1.6) E(x) ∈ Q.
In Theorem 1 of [5] it was shown that if no αli is a radical of an algebraic
number of degree ≤ N , then all but � 1 solutions of (1.6) are degenerate,
so that our present Theorem holds in this case. But observe that we now
have the weaker hypothesis that no αli is a root of unity. The proof of our
Theorem will depend on [5], and on some assertions in [3], [4].

Example. Let α, β in C× be multiplicatively independent, and consider
the equation

(1.7) α2x1 − α · α3x2 + βx3 − β5x4 = x2 + x3 − x1 − x4.

The left hand side is as E(x) in (1.2), (1.3), with c = 0, n = 4, and each
kl = 1. When λ is a nonempty subset of {1, 2, 3, 4}, let S(λ) be the set of
solutions which have (1.4λ), but not (1.4λ′) for any nonempty set λ′ $ λ.
By the Theorem, all but � 1 solutions of (1.7) are in S(λ) for some λ.
When λ = {1, 2}, so that (1.4λ) becomes α2x1 − α · α3x2 = 0, we obtain
2x1 = 1+3x2, therefore x1 = 3y+2, x2 = 2y+1 with y ∈ Z. After insertion
into (1.7) we have

(1.8) βx3 − β5x4 = x3 − x4 − y − 1.

The Theorem does not apply to this last equation since the variable y does
not occur in the exponential function on the left hand side. As is easily seen,
the only solutions are with βx3 − β5x4 = 0, unless β is an algebraic integer.
When β ∈ Z we obtain a 2-parameter family of solutions parametrized
by x3, x4. On the other hand suppose β is not a radical of a rational or
a quadratic. Then all but � 1 solutions of (1.8) have βx3 − β5x4 = 0 by
Theorem 1 of [5], so that x3 = 5x4 and 4x4−y−1 = 0, giving a 1-parameter
family of solutions parametrized by x4. As will be shown in Section 3, this
conclusion holds under the weaker assumption that β is not a radical of
a rational, or a quadratic of norm 1. The assumption cannot be entirely
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dispensed with. For instance, if β is a quadratic unit of norm −1 (so that it
is a radical of a unit of norm 1), the conjugate β ′ of β equals −1/β, and

β−5x4 − β5x4 = −β′5x4 − β5x4 ∈ Z
when x4 is odd. We then have the family of solutions with x3 = −5x4,
x4 = 2t+ 1 where t ∈ Z.

Similar considerations apply when λ = {3, 4}. For all other nonempty
sets λ we claim that |S(λ)| � 1. For instance, take λ = {1, 2, 3}. Accord-
ing to [1] (see also the formulations in Section 2 of [5]), the solutions in
S(λ) fall into � 1 classes, and for solutions in a given class the triples
(α2x1 ,−α ·α3x2 , βx3) are proportional to a given triple, i.e., will have α2x1 =
γ(−α · α3x2) = γ′βx3 for some γ, γ′. But these relations for fixed γ, γ′ have
(by the multiplicative independence of α, β) at most one solution in in-
tegers x1, x2, x3. Or take λ = {1, 3}, which gives α2x1 + βx3 = 0, hence
x1 = x3 = 0 by the multiplicative independence of α, β, and we obtain
−α · α3x2 − β5x4 = x2 − x4. By our Theorem, both sides vanish for all but
� 1 solutions, and then x2 = x4 = 0.

2. Laurent’s theorem. Let polynomials Pi(x) = Pi(x1, . . . , xn) and
exponential functions αx

i = αx1
i1 . . . α

xn
in (1 ≤ i ≤ q) with nonzero αij be

given. The symbol P will denote a partition of {1, . . . , q}, also interpreted
as a partition of the set of functions Pi(x)αx

i (i = 1, . . . , q). The notation
Λ ∈ P will mean that Λ is a subset determined by P. Further G(P) signifies
the group of points x ∈ Zn having αx

i = αx
j for every pair i, j of numbers

lying in the same set Λ ∈ P.

Theorem 2.1 (M. Laurent [2]). Let S(P) consist of solutions x ∈ Zn of
the system of equations

(2.1P)
∑

i∈Λ
Pi(x)αx

i = 0 (Λ ∈ P),

which are not solutions of (2.1P ′) for any proper refinement P ′ of P. Then
S(P) is finite if G(P) = {0}.

We will derive the (qualitative) result that (1.1) has only finitely many
nondegenerate solutions. This equation may be written as

(2.2)
∑

l,i

aliα
xl
li − P (x)αx

0 = 0

with α0 = (1, . . . , 1). It is of polynomial-exponential type with q = N + 1
summands. Each solution lies in a set S(P) (not necessarily uniquely deter-
mined) where P is a partition of the set of summands. It will be enough to
show that for any P, either S(P) is finite, or its elements are degenerate.
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Let P be given. Write 0 ·∼ 0, and for 1 ≤ l ≤ n write l ·∼ 0 (and also
0 ·∼ l) if both −P (x)αx

0 and aliα
xl
li lie in Λ for some Λ ∈ P and some i,

1 ≤ i ≤ kl. When 1 ≤ l,m ≤ n, write l ·∼ m if both aliα
xl
li and amjα

xm
mj lie

in Λ for some Λ ∈ P and some i, j with 1 ≤ i ≤ kl, 1 ≤ j ≤ km. On the
other hand, for 0 ≤ l,m ≤ n, write l ∼ m if there are l1, . . . , lν with l1 = l,
lν = m and lt

·∼ lt+1 (1 ≤ t < ν). Then ∼ is an equivalence relation on the
set {0, 1, . . . , n}.

Case A: There is just one equivalence class. We claim that G(P) = {0},
which by Laurent’s theorem implies the finiteness of S(P). We have l ·∼ 0
for some l, 1 ≤ l ≤ n. Then x ∈ G(P) has αxlli = αx

0 = 1 for some i, therefore
xl = 0 since αli is not a root of unity. Say m ·∼ l with 1 ≤ m ≤ n. Then
αxmmj = αxlli = 1 for some i, j, hence xm = 0. Continuing in this way we see
that 0 = xl = xm = . . . , so that indeed G(P) = {0}.

Case B: There is more than one equivalence class. Let λ = {l1, . . . , lν}
be an equivalence class not containing 0. All the aliα

xl
li with l ∈ λ, 1 ≤ i ≤ kl

belong to sets Λ ∈ P which do not contain −P (x) = −P (x)αx
0 or any

amjα
xm
mj with m /∈ λ. Let these sets be Λ1, . . . , Λs. For x ∈ S(P), the sum

of the aliα
xl
li with 1 ≤ i ≤ kl and l belonging to some Λt, is zero. The union

of Λ1, . . . , Λs is the union of the aliα
xl
li with 1 ≤ i ≤ kl and l ∈ λ. Therefore

(1.4λ) holds, and x is degenerate.

3. Rational values of βx − βy. Suppose β is not a radical of a ratio-
nal, or of a quadratic of norm 1. To prove a certain assertion made in the
Introduction it will be enough to show that the set of integer pairs (x, y)
with x 6= y and βx − βy rational has cardinality � 1.

In view of Theorem 1 of [5] we may assume β to be algebraic. Say β is of
degree D, with conjugates β(1) = β, β(2), . . . , β(D). Suppose at first that for
some σ, 1 < σ ≤ D, the numbers β, β(σ) are multiplicatively independent.
The rationality of βx − βy implies the equation

(3.1) βx − βy − β(σ)x + β(σ)y = 0.

When P is a partition of the set of the four summands on the left hand
side, define S(P) as in the preceding section. If Λ0 = {βx,−βy} is a set
of P, then βx − βy = 0, hence x = y. We will show that for any partition P
not containing Λ0, |S(P)| � 1. When P is no proper partition, so that for
(x, y) ∈ S(P) no proper subsum of (3.1) vanishes, then by [1], the solutions in
S(P) fall into� 1 classes, with solutions in a given class having βx = γ1β

y =
γ2β

(σ)x = γ3β
(σ)y with fixed γ1, γ2, γ3. By the multiplicative independence

of β, β(σ), there can be at most one such pair (x, y). On the other hand, if P
consists of Λ1 = {βx,−β(σ)x} and Λ2 = {−βy, β(σ)y}, then again x = y = 0
for (x, y) ∈ S(P); and the same holds if Λ3 = {βx, β(σ)y} ∈ P.
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We are left with the case when β, β(σ) are multiplicatively dependent for
each σ. Say for some σ we have βu = β(σ)v with (u, v) 6= (0, 0). Extend σ to
an element of the Galois group of the normal closure N of Q(β). We obtain

βu
2

= (βu)(σ)v = β(σ2)v2
, then βu

3
= β(σ3)v3

, . . . , βu
E

= β(σE)vE = βv
E

,
where E = degN . Since β is not a root of unity this gives uE = vE, therefore
u = ±v. Introducing the equivalence relation ≈ on C× with % ≈ σ if %/σ
is a root of unity, we may conclude that for each σ, either β ≈ β(σ) or
β ≈ 1/β(σ).

Suppose at first that β ≈ β(σ) for each σ. Then βu = β(2)u = . . . = β(D)u

for some u ∈ N, so that βu is a rational, and β among its radicals. Otherwise,
if β 6≈ β(σ), hence β ≈ 1/β(σ) for some σ, it is easily seen that this holds for
exactly half of the embeddings σ. So D is even, and after suitable numbering,
there is a u ∈ N with

βu = β(2)u = . . . = β(D/2)u = 1/β((D/2)+1)u = . . . = 1/β(D)u.

Therefore βu is quadratic with conjugate 1/βu, so that its norm is 1. And
β is among its radicals.

4. An auxiliary lemma. We now begin with the proof of our Theorem.
When α = (α1, . . . , αn) ∈ (C×)n, define αx as in Section 2. We will deal
with functions

(4.1) F (x) =
m∑

i=1

Pi(x)αx
i

with polynomials Pi and distinct elements α1, . . . ,αm of (C×)n. Say

Pi(x) =
ei∑

j=1

cijMij(x) (i = 1, . . . ,m)

where Mi1, . . . ,Mi,ei are distinct monomials, and ci1, . . . , ci,ei are nonzero.
We will write F ∗ ≺ F if F ∗ is a function like F , with the same α1, . . . ,αm
and the same monomials Mij , but arbitrary coefficients c∗ij (1 ≤ i ≤ m,
1 ≤ j ≤ ei), some of which may be zero.

For β = (β1, . . . , βq) ∈ Qq\{0}, where Q is the algebraic closure of Q,
write h(β) for its absolute logarithmic height, as defined, e.g., in [3, §2].
Our former notation h(β) then becomes h(β, 1). When βi = (βi1, . . . , βi,qi)
(i = 1, . . . , s), set h(β1, . . . ,βs) = h(β11, . . . , β1,q1 , . . . , βs1, . . . , βs,qs). The
following is similar to Lemma 3.3 in [3].

Lemma 4.1. Suppose F (x) is as above, with the coefficients cij , and the
components of each αi in Q×. Set ci = (ci1, . . . , ci,ei) (i = 1, . . . ,m) and q =
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e1+. . .+em, and let d(F ) be the maximal total degree of the monomials Mij .
Let h◦ be a positive real. Then solutions x ∈ Zn of

(4.2) F (x) = 0

with x1 . . . xn 6= 0,

(4.3) h(αx
1c1, . . . ,α

x
mcm) ≥ h◦|x|

and maximum norm |x| ≥ x◦(h◦, q, d(F )) lie in ≤ c(q) classes, and solutions
in a given class C satisfy

F ∗C (x) = 0

where F ∗C ≺ F , but F ∗C is not a constant multiple of F .

Proof. The equation (4.2) may be written as

(c11M11(x) + . . .+ c1,e1M1,e1(x))αx
1 + . . .

+ (cm1Mm1(x) + . . .+ cm,emMm,em(x))αx
m = 0.

Introduce vectors X,Y with q components:

X = (c11α
x
1 , . . . , c1,e1α

x
1 , . . . , cm1α

x
m, . . . , cm,emα

x
m),

Y = (M11(x), . . . ,M1,e1(x), . . . ,Mm1(x), . . . ,Mm,em(x)).

Set Z = X ∗Y := (X1Y1, . . . ,XqYq). Then (4.2) becomes

(4.4) Z1 + . . .+ Zq = 0.

X lies in the multiplicative group Γ ⊂ (C×)q of rank ≤ n + 1 gener-
ated by the vectors (αx

1 , . . . ,α
x
1 , . . . ,α

x
m, . . . ,α

x
m) with x ∈ Zn, and by

(c11, . . . , c1,e1 , . . . , cm1, . . . , cm,em). Now (4.3) becomes

h(X) ≥ h◦|x|.
On the other hand, Y ∈ Qq, and since the xi are nonzero, in fact Y ∈ (Q×)q

with
h(Y) ≤ d(F ) log |x|+ log q.

Therefore

(4.5) h(Y) ≤ (1/4q2)h(X)

provided |x| is sufficiently large, say |x| ≥ x◦(h◦, q, d(F )). By the Corollary
of Lemma 3.1 in [3], solutions x of (4.4) with (4.5) have Z = Z(x) in the
union of at most c(q) proper subspaces of the (q−1)-dimensional space given
by (4.4). In such a subspace u1Z1 + . . .+uqZq = 0 where (u1, . . . , uq) is not
proportional to (1, . . . , 1). A subspace corresponds to some F ∗ ≺ F not
proportional to F , and any x with Z(x) in the subspace has F ∗(x) = 0.
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5. A proposition which implies our Theorem. We will consider
functions Gr(x) in x ∈ Zn given by

Gr(x) =
n∑

l=1

(grl1α
xl
l1 + . . .+ grlkα

xl
lk) +Qr(x) (r = 1, . . . , p)

with polynomials Qr, where all the data, i.e., the grli, αli and the coefficients
of the Qr, are algebraic. We will suppose that each αli 6= 0, and that

(5.1) h(αl1) ≥ h̄ > 0 (l = 1, . . . , n)

for some constant h̄. The coefficients grli are not necessarily nonzero, but
write N for the number of those which are, and d for the maximal total
degree of Q1, . . . , Qp.

Proposition 5.1. Suppose there is a partition of {1, . . . , n} into non-
empty sets S1, . . . , Sp such that

(5.2) grl1 6= 0 for l ∈ Sr (r = 1, . . . , p).

Then the solutions x ∈ Zn of the system of equations

(5.3) Gr(x) = 0 (r = 1, . . . , p)

lie in the union of at most c1(h̄, N, d) hyperplanes of the type xl = const,
and c2(N, d) classes, with elements of a given class having

grmjα
xm
mj = γgsliα

xl
li 6= 0

for some pairs (m, j) 6= (l, i), some r, s, and some constant γ.

Note that the coefficients of the polynomials Qr are not required to be
rational. The proof of the proposition is postponed to the next section. Here
we will deduce our Theorem from the case p = 1, the general case of the
proposition being needed only for its proof.

In view of Theorem 1 of [5] we may assume the αli (1 ≤ l ≤ n, 1 ≤ i ≤ kl)
in the definition (1.2), (1.3) of E(x) to be algebraic. It is not hard to see
that we also may suppose the ali to be algebraic: this may be done by a
specialization argument, or as follows.

Let A = (a11, . . . , a1,k1 , . . . , an1, . . . , an,kn) ∈ CN be the “coefficient vec-
tor” of E. We signify this by writing E(x) = E(A; x). We may write

A = A1 + ζ2A2 + . . .+ ζrAr

where each Ai is in QN , and 1, ζ2, . . . , ζr are linearly independent over Q.
Let ξ be algebraic of degree r over the number field generated by the entries
of A1, . . . ,Ar, and set

Ã = A1 + ξA2 + . . .+ ξr−1Ar.
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Since P has coefficients in Q ⊂ Q, the equation (1.1), i.e., E(A; x) = P (x),
is equivalent to the system E(A1; x) =P (x), E(A2; x) = . . .=E(Ar; x) = 0,
which in turn is equivalent to E(Ã; x) = P (x). Similarly, (1.4λ), i.e.,∑
l∈λEl(A;xl) = 0, is equivalent to

∑
l∈λEl(Ã;xl) = 0. Therefore it will

suffice to prove the Theorem for E(Ã; x). We may indeed assume the coef-
ficients ali to be algebraic.

For a function of the type (1.2), (1.3), write n = n(E), and N = N(E)
with N given by (1.5), and set d(P ) for the total degree of a polynomial P .
For n ≤ N let Rd(N,n) be the maximal number of nondegenerate solutions
of equation (1.1), over E,P as in the Theorem, with n(E) ≤ n, N(E) ≤ N ,
d(P ) ≤ d, and with algebraic data. The Theorem will follow if we can show
that Rd(1, 1) ≤ 1, Rd(N, 1) � Rd(N − 1, 1) when N > 1, and Rd(N,n) �
Rd(N − 1, n) +Rd(N,n− 1) when n > 1.

A function E given by (1.2), (1.3) will be called proper if each αli is
algebraic, we have al1 6= 1, and absolute logarithmic heights

h(αl1) ≥ Dob(N) (l = 1, . . . , n)

where Dob(N) = 1/(4N(log+N)3) with log+N = max(1, logN). By Theo-
rem 2 of [5], there are maps 1T, . . . , tT with t ≤ t0(N), say jT : Zmj → Zn
with 0 ≤ mj ≤ n, such that every nondegenerate solution x of (1.6), i.e., of
E(x) ∈ Q, is of the form

(5.4) x = jTy

for some j and some y ∈ Zmj . Furthermore, for each j with mj > 0 the
function jẼ(y) := E(jTy) is again of the general type (1.2), (1.3), and is
proper.

Observe that for j with mj = 0 there is just one x coming from (5.4),
and these together lead to at most t0(N) � 1 solutions. We are therefore
reduced to studying equations

jẼ(y) = P (jTy)

where mj > 0. The maps jT described in [5] are linear (not necessarily
homogeneous) with integer coefficients, so that P (jTy) again has rational
coefficients. They further have the property that when x = jTy is a non-
degenerate solution of E(x) ∈ Q, then y is a nondegenerate solution of

jẼ(y) ∈ Q. We thus may restrict ourselves to proper functions E(x).
We now apply the proposition with h̄ = Dob(N), p = 1, G1(x) =

E(x) − P (x). Some of the solutions of (1.1), i.e., of G1(x) = 0, lie in the
union of � 1 hyperplanes xl = const. When n = 1, these simply give � 1
solutions, and when n > 1, then El(xl) may be absorbed into the constant
in (1.2), so that we get � Rd(N,n − 1) nondegenerate solutions. The re-
maining solutions of (1.1) lie in � 1 classes, with elements of a given class
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having

(5.5) amjα
xm
mj = γaliα

xl
li

for some (l, i) 6= (m, j) and some γ. There clearly can be no such class unless
N > 1.

When m = l, the summands aliα
xl
li and aljα

xl
lj in (1.3) can be combined

to (1 + γ)aliα
xl
li , so that kl can be reduced, or we even have El(xl) = 0, so

that x is degenerate. Thus the number of nondegenerate solutions in our
class is at most Rd(N − 1, n). Or, when n > 1, we may also have m 6= l

in (5.5). For x,x′ in the same class, (5.5) yields αxm−x
′
m

mj = α
xl−x′l
li , and since

αmj , αli are not roots of unity, this either determines xl, xm uniquely, or
xl = uz+x′l, xm = wz+x′m with fixed nonzero u,w, and z ∈ Z. Substitution
into E(x) − P (x) gives a function in at most n − 1 variables, so that the
number of nondegenerate solutions in our class is ≤ Rd(N,n− 1).

6. Proof of Proposition 5.1. Order the monomials in x as M1 = 1,
M2,M3, . . . such that the total degrees do not decrease. When Q is a nonzero
polynomial, write %(Q) for the maximum number % such that M% occurs in
Q with nonzero coefficient. Call Q normalized if this coefficient is 1. Set
%(Q) = 0 when Q = 0.

We will do downward induction from p = n to n− 1, n− 2, . . . , 1. Given
a function

G(x) =
n∑

l=1

(gl1α
xl
l1 + . . .+ glkα

xl
lk) +Q(x)

with the αli 6= 0 and Q a polynomial, write N(G) for the number of nonzero
coefficients gli. Now set

N =
p∑

r=1

N(Gr), % =
p∑

r=1

%(Qr), µ = N + %.

Given p, Proposition 5.1 will be proved by induction on µ. Observe that
n ≤ N ≤ µ.

Case A: Some Qr = 0, say Q1 = 0. We will then deal with the equation
G1(x) = 0 of purely exponential type. For a partition P of the set of nonzero
summands of G1 (this set is nonempty by the hypothesis), we have S(P) = ∅
if P contains a singleton, i.e., a one-element set. We thus may suppose that
for some set Λ ∈ P, two summands g1liα

xl
li and g1mjα

xm
mj with (l, i) 6= (m, j)

and nonzero g1li, g1mj belong to Λ. Invoking [1] we see that solutions in S(Λ)
fall into � 1 classes, and g1mjα

xm
mj = γg1liα

xl
li with fixed γ for solutions x

in a given class.

Case B: Each Qr 6= 0. After multiplying the Gr’s (r = 1, . . . , p) by
suitable constants we may assume each Qr to be normalized.
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Suppose l ∈ Sr, so that (5.2) holds. Since h(αl1) ≥ h̄ by (5.1), there is,
e.g., by Lemma 6 of [5], an integer ul such that

h(grl1α
xl−ul
l1 ) ≥ 1

4
h(αl1)|xl| ≥

1
4
h̄|xl|

for xl ∈ Z. Therefore h(grl1α
xl
l1 ) ≥ 1

4 h̄|xl + ul| = h◦|xl + ul| with

h◦ =
1
4
h̄.

Setting ĝrli = grliα
−ul
li , x̂l = xl + ul we have grliα

xl
li = ĝrliα

x̂l
li (i = 1, . . . , k)

and
h(ĝrl1α

x̂l
l1 ) ≥ h◦|x̂l|

for any xl ∈ Z. We may express the functions G1, . . . , Gp in terms of x̂l
instead of xl. We carry this out for each l ∈ Sr, and then for each r,
1 ≤ r ≤ p. These substitutions will not affect the numbers N(Gr), %(Qr),
hence not N, % or µ. Each Qr will still be normalized. Also, the truth of the
desired conclusion of the proposition will not be affected. We therefore may
suppose after suitable substitutions that

(6.1) h(grl1α
xl
l1 ) ≥ h◦|xl| (1 ≤ r ≤ p, l ∈ Sr).

When dealing with systems of equations (5.3) with given p and µ which
satisfy (6.1), and with normalized nonzero polynomials Qr, we will do in-
duction on σ =

∑p
r=1 σ(Qr), where σ(Q) denotes the number of nonzero

coefficients of a polynomial Q. We thus will have another layer of induction.
Without loss of generality we may restrict our attention to solutions x

of (5.3) with
|x| = |x1|.

But 1 ∈ Sr for some r, and 1 ∈ S1 without loss of generality. Now (6.1)
yields h(g111α

x1
11) ≥ h◦|x1| = h◦|x|, which is h(g111α

x1
11 , 1) ≥ h◦|x| in other

notation. In view of this, and since Q1, being normalized, has some coef-
ficient 1, the vector whose components are the g1liα

xl
li and the coefficients

of Q1, has height ≥ h◦|x|. Thus (4.3) holds, and Lemma 4.1 applies. Some
solutions of G1(x) = 0 may lie on a hyperplane xl = 0 for some l. Next,
there may be solutions with |x| < x◦(h◦, q, d(Q1)). In the present situa-
tion q = N(G1) + σ(Q1) is bounded in terms of N, d, n, where n ≤ N , so
that such solutions certainly lie in not more than c3(h̄, N, d) hyperplanes
x1 = const. In view of Lemma 4.1, the remaining solutions fall into at most
c(q) ≤ c4(N, d) classes.

Solutions in a given class C have G∗C(x) = 0, hence

G1(x) = G∗C(x) = 0
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where G∗C ≺ G1, but is not proportional to G1. Say

G∗C =
n∑

l=1

(g∗l1α
xl
l1 + . . .+ g∗lkα

xl
lk ) +Q∗(x).

(An analogous notation will be used for functions G∗∗, G◦, G′, G′′ introduced
below.) We will need the matrix M with the |S1| columns

(
g1l1

g∗l1

)
(l ∈ S1).

Subcase B1: M has rank 1. Then in the pencil of G1, G
∗
C there is a

nonzero G∗∗ with g∗∗l1 = 0 for each l ∈ S1. Suppose first that %(Q∗∗) = %(Q1),
so that M% with % = %(Q1) occurs in Q∗∗ with a coefficient θ 6= 0. Then
G◦ = G1 − θ−1G∗∗ has

(6.2) g◦l1 = g1l1 6= 0 (l ∈ S1)

and %(Q◦) < %(Q1). We now replace G1, G2, . . . , Gp by G◦, G2, . . . , Gp, thus
replacing % by a smaller number. Then also µ is diminished. Since (5.2) still
holds with g◦l1 in place of g1l1, induction on µ may be applied. Now sup-
pose that %(Q∗∗) < %(Q1). Then after subtracting a suitable multiple of
G∗∗ from G1, we obtain a function G◦ which again has (6.2), where M%

with % = %(Q1) appears in Q◦ with coefficient 1, but where there are fewer
summands, i.e., N(G◦) < N(G1) or σ(Q◦) < σ(Q1). Again we replace
G1, G2, . . . , Gp by G◦, G2, . . . , Gp. When N(G◦) < N(G1), then N and
hence µ is diminished, and again induction on µ applies. When N(G◦) =
N(G1), then µ remains unchanged. But Q◦ is normalized, and (6.1) is true
with g◦l1 in place of g1l1. Since σ(Q◦) < σ(Q1), induction on σ finishes the
argument.

Subcase B2: M has rank 2. (This can only happen when |S1| ≥ 2, so
that p < n.) In this case there is a G∗∗ in the pencil of G1, G

∗
C with g∗∗111 = 0,

but g∗∗1l1 6= 0 for some l ∈ S1. Set

S′ = {l ∈ S1 with g∗∗1l1 = 0},
S′′ = S1\S′1 = {l ∈ S1 with g∗∗1l1 6= 0}.

Then S1 = S′ ∪ S′′ is a partition into two nonempty sets. Setting G′ = G1,
G′′ = G∗∗ we have

g′l1 6= 0 for l ∈ S′, g′′l1 6= 0 for l ∈ S′′.
Now x is a common zero of the system

G′(x) = G′′(x) = G2(x) = . . . = Gp(x) = 0.

Since S′ ∪ S′′ ∪ S2 ∪ . . . ∪ Sp is a partition of {1, . . . , n}, we may invoke the
case p+ 1 of the proposition.
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