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1. Introduction. In the present paper we give explicit upper bounds
for the number of equivalence classes of binary forms of given degree and
discriminant, and for the number of equivalence classes of irreducible binary
forms with given invariant order.

Two binary forms F, G € Z[X,Y] are called equivalent if there is a matrix
(“5) € GLy(Z) such that G(X,Y) = F(aX +bY,cX +dY'). Denote by D(F)
the discriminant of a binary form F', and by Of the invariant order of an
irreducible binary form F. We recall the definition of the invariant order of
F which is less familiar. Write

FX,)Y)=a X" +a X" Y +.. . +aY"

and let p be a zero of F(X,1). Then O is defined to be the Z-module
with basis 1, agfr, agh% + a10r, agls + a10% + asbp, . .., apfy ' +a105 > +
...+ a,_o0p; this is indeed an order, i.e., closed under multiplication. It is
well known that two equivalent binary forms have the same discriminant.
Further, two equivalent irreducible binary forms have the same invariant
order. The discriminant D(OF) of OF is equal to D(F') (see [8], [9] for a
verification of these facts). Consequently, if K = Q(f), then D(F) = ¢? Dy,
where Dy is the discriminant of K and ¢ = [Ok : O] is the index of Op
in the ring of integers Ok of K.
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By classical results of Lagrange, Gauss (r = 2) and Hermite (r = 3), the
binary forms F' € Z[X,Y] of degree r < 3 with a given discriminant D # 0
lie in finitely many equivalence classes, and these classes can be effectively
determined. This finiteness theorem was generalized for the case r > 4 by
Birch and Merriman [2] in an ineffective form, and later by Evertse and
Gyéry [5] in an effective form. Moreover, the theorem remains true without
fixing the degree r; see [7]. An immediate consequence is that if O is a given
order of some number field, then the irreducible binary forms F' € Z[X,Y]
with Op = O lie in finitely many equivalence classes. From a result of Delone
and Faddeev [3, Chap. II, §15] it follows that for each cubic order O there is
precisely one equivalence class of irreducible binary cubic forms F' € Z[X, Y]
such that O = O. For degree larger than 3 this is no longer true: Simon [9]
gave examples of number fields K of degree 4 and of arbitrarily large degree
whose ring of integers Ok cannot be represented as O for any irreducible
binary form F'.

In the present paper, we prove the following results:

1) Let O be an order whose quotient field has degree r > 4 over Q. Then
the irreducible binary forms F € Z[X,Y] with Op 2 O lie in at most 224
equivalence classes.

2) Let K be an algebraic number field of degree » > 3 and let ¢ be a
positive integer. Then for every € > 0 the set of irreducible binary forms
F € Z[X,Y] such that K = Q(fF) for some zero fr of F(X,1) and such
that D(F) = 2Dy is contained in the union of at most a(r,e)c?/7(r=D+e
equivalence classes; here a(r,¢) depends only on r and €. We show that in
this upper bound the exponent of ¢ cannot be replaced by a quantity smaller
than 2/r(r —1).

More generally, we prove analogues of 1) and 2) for binary forms having
their coefficients in the ring of S-integers of a number field. Further, we
prove a generalization of 2) for reducible binary forms. Our precise results
are stated in Section 2 (Theorems 2.1-2.3). Our approach is similar to that
of Birch and Merriman [2], with the necessary modifications. In our proofs
we use among other things an upper bound by Beukers and Schlickewei
[1, Theorem 1] for the numbers of solutions of the equation z +y = 1 in
unknowns x,y from a multiplicative group of finite rank.

2. Statements of the results

Terminology. Before stating our results we introduce the necessary ter-
minology. Let F(X,Y) = apX” + a1 X" 'Y + ...+ a,Y" be a binary form.
Writing F' as .

F(X,Y) =A]J(aiX = BY)
i=1
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we may express the discriminant of F' as

(2.1) DF) =22 [ (uBj—;B8)*

1<i<j<r
This is independent of the choice of A and of the «a;, ;. It is well known that
D(F) is a homogeneous polynomial of degree 2r — 2 in Z[ay, ..., a,]. For a
matrix U = (2%) we define Fi;(X,Y) := F(aX +bY,cX +dY). Then (2.1)
gives

(2.2) D(Fy) = (det U)"" =YV D(F).

Now let R be an integral domain with quotient field of characteristic 0.

Two binary forms F,G € R[X,Y] are called R-equivalent, notation F' L G,
if G = Fy for some matrix U € GLa(R), i.e., with detU € R*. (If R = Z
we simply speak about equivalence.) It is then clear from (2.2) that for any
two binary forms F, G € R[X,Y] we have

(2.3) GEF = D(G)=eD(F) for some ¢ € R".

An important invariant of an irreducible binary form F' € R[X,Y] is its
invariant ring or invariant order Op g (see Simon [9]). By an R-order of
degree r (or just an order of degree r if R = Z) we mean an integral domain
O such that O is an overring of R, the domain O is finitely generated as an
R-module, and the quotient field of O has degree r over the quotient field
of R.

The order Op g (or just Op if R = Z) is defined as follows. Let F' =
aoX"+a1 X" 1Y +...4+a,Y" be a binary form in R[X, Y] which is irreducible
over the quotient field of R. Let 0 be a zero of F/(X,1). Then Op g is defined
to be the R-module with basis

(2.4) w1 =1, wo =agbp, wg = aoﬁ% + a10p, ...,
Wy = aOO}_l + a10}_2 +...+ ar_QOF.

We recall some facts proved by Simon [9] about Of g. First Op g is an
R-order of degree r. Second, if G is another binary form in R[X,Y] then

(2.5) rfag = Orr = Ogr (as R-algebras).

Third

(2.6) D(wy,...,w,) = D(F).

Here D(wy,...,w,) denotes the discriminant of wy,...,w,, that is, the de-

terminant det(Tr(w;w;)i<ij<r), where Tr denotes the trace map from the
quotient field of Op g to that of R.
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Our results will be established for binary forms having their coefficients
in the ring of S-integers of a number field. Therefore we recall some notions
about such rings.

Let k be a number field, and {|-|, : v € My} be a maximal set of pairwise
inequivalent absolute values of k. We will refer to My as the set of places
of k. Let S be a finite subset of My containing all infinite places of k (i.e.,
the places v such that |- |, is archimedean). Then the ring of S-integers and
its unit group, the group of S-units, are defined by

Os={zek:|z[, <lforvgS} Oig={zxek:|z|,=1forv¢gS},

respectively.

Two ideals a, b of Og are said to belong to the same ideal class of Og if
there are non-zero A\, u € Og such that Aa = pub. Denote by A, (Og) the num-
ber of ideal classes 2 of Og such that ™ is the class of principal ideals of Og.
For a finite extension K of k, let g/, g denote the relative S-discriminant,
i.e., the ideal of Og generated by all discriminants Dy (w1, .. .,w,), where
w1, ...,w, runs through all k-bases of K with wy,...,w, integral over Og.
The absolute norm of an ideal a of Og is defined by Ng(a) := #Og/a.

Given an irreducible binary form F' € Og[X,Y] we write Opg for its
invariant order Or .

New results. Let k, Og be as above. From results of Birch and Merriman
from 1972 [2] (ineffective) and Evertse and Gyéry from 1991 [5] (effective)
it follows that for given r > 2 and D € Og with D # 0, the binary forms
F € Og[X,Y] with degree r and with D(F') € DO% lie in finitely many
Og-equivalence classes. Together with (2.6) this implies that for any given
Og-order O, the binary forms F € Og[X,Y] which are irreducible over k
and for which Org = O lie in finitely many Og-equivalence classes. From
a result of Evertse and Gy6ry [4, Thm. 11] it can be deduced that for a
given Og-order O, the monic binary forms F € Og[X,Y] (i.e., such that
F(1,0) = 1) with Opg = O lie in at most ¢(r)® Og-equivalence classes,
where ¢(r) depends only on r and where s = #S. Our first result extends
this to non-monic binary forms.

THEOREM 2.1. Let S C My be a finite set of cardinality s, containing all
infinite places. Let O be an Og-order of degree r > 3. Then there are only

finitely many Og-equivalence classes of binary forms F € Og[X,Y] such
that F is irreducible in k[X,Y] and

(2.7) Ops =0 (as Og-algebras).
The number of these classes is bounded above by
{ 924rs if r is odd,

2.8 .
(28) 224 o (Og) if r is even.
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In Section 9 we show that the factor ho(Og) is necessary if r is even.
In the next corollary we state the consequence for Og = Z. Recall that
in this case k = Q and #S5 = 1.

COROLLARY 2.1. Let O be an order of degree v > 3. Then the number of
equivalence classes of binary forms F € Z[X,Y] such that F is irreducible
in Q[X,Y] and Op = O is at most 227"

We now state our second result. For an ideal a of Og, denote by wg(a)
the number of distinct prime ideals p of Og with p|a (or the number of
v ¢ S such that |z|, < 1 for every x € a). Further, for an ideal a of Og and
for o € N, denote by 7,(a) the number of tuples of ideals (91,...,04) of Og
such that their product [];; 9; divides a. In the theorems below, the ideal
of Og generated by a is denoted by [a].

Given a finite extension K of k, we denote by F(Og, K) the set of binary
forms F' such that F' € Og[X,Y], F is irreducible in k[X,Y], and there
is O such that F(0p,1) = 0 and K = k(fr). By Lemma 4.1, for every
F € F(Og, K) there is an ideal ¢ of Og such that

(2.9) [D(F)] = ¢ - v i

THEOREM 2.2. Let S be as in Theorem 2.1, and let K be an extension
of k of degree r > 3. Then for every non-zero ideal ¢ of Og, there are at
most finitely many Og-equivalence classes of binary forms F € F(Og, K)
with (2.9). The number of these classes is at most

(210)  22Cs@ln @) (> Ns@) - Os)
or(r=1)/2|c
where
h(r,Ogs) =1 ifrisodd, h(r,Og)=ha(Og) ifr is even.
Here the sum is taken over all ideals ® of Og such that 0""~1/2 divides c.

We give again the consequence for Og = Z. Given a non-zero integer a,
denote by w(a) the number of distinct primes dividing a, and for a € N
denote by 74(a) the number of tuples of positive integers (dy, ..., d,) such
that []7, d; divides a.

COROLLARY 2.2. Let K be a number field of degree r > 3, and let ¢ be
a positive integer. Then the irreducible binary forms F € Z[X,Y], for which
Q(0F) = K for some zero O of F(X,1), and for which

D(F) = *Dg

7"3 w(c
924r°(1+ ())'Tr(rfl)/2(62)< Z d)
dr(v‘fl)/Q‘c

lie in at most

equivalence classes.
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Theorem 2.2 will be deduced from Theorem 2.1 as follows. Let S’ consist
of the places in S and those places v € S such that |z|, < 1 for every
z € ¢. Then if ' € F(Os, K) satisfies (2.9), then D(F) - Ogr = 0y s and
so O = Og. Now Theorem 2.1 yields an upper bound for the number
of Ogr-equivalence classes containing the binary forms F' € F(Og, K) with
(2.9) and from the arguments in Section 4 one obtains an upper bound for
the number of Og-equivalence classes containing the forms lying in a single
Ogr-equivalence class.

We state a generalization of Theorem 2.2 for reducible forms. Let Ky,
Ki,...,K; be (not necessarily distinct) finite extensions of k. Denote by
F(Os, Ko, ..., K;) the set of binary forms F with the following proper-
ties: there are binary forms Fy,..., F; with F = HE:O F;, such that F; €
Os[X,Y], F; isirreducible in k[ X, Y], and there is a 6, such that F;(6r,) =0
and k(fp) = K; (i = 0,...,t). By Lemma 4.1, for every binary form
F € F(Og, Ky, ..., K;) there is an ideal ¢ in Og such that

(211) [D(F)] = c2aKo/k,5'"'bKt/Jk,S'

THEOREM 2.3. Let S be as in Theorems 2.1 and 2.2, and let Ky, K1, ...
..., Ky be finite extensions of k. Put r; == [K; : k] (i = 0,...,t) and
r:=19+ ...+ r. Assume that rg > 3. Then for every non-zero ideal ¢ of

Og there are at most finitely many Og-equivalence classes of binary forms
F € F(Og, Ko, ..., K;) with (2.11). The number of these classes is at most

(212)  2Cres@n @)Y Ns@) - hiro, Os)
Dr(r—l)/2|c
where
h(ro,Os) =1 ifrg is odd, h(rg,Og) = ha(Og) ifro is even.
The consequence of Theorem 2.3 for Og = 7Z is as follows.

COROLLARY 2.3. Let Ky,...,K; be number fields. Put r; := [K; : Q]
(i=0,...,t) andr:=ro+ ...+ ry. Assume that ro > 3. Let ¢ be a positive
integer. Then the binary forms F for which there are irreducible binary forms
Fo,...,F; € Z[X,Y] with F = [[\_, F; such that K; = Q(0r,) for some zero
0r, of Fi(X,1), and for which

D(F) = ¢’Dg, ... Dg,,

7‘3 w(c
224 (I+e(e) . Tr(r—l)/2(62)< E d)
dr(r—l)/Q‘C

lie in at most

equivalence classes.

Unfortunately, our method of proof of Theorem 2.3 requires some unnat-
ural technical conditions on the binary forms F' under consideration, namely
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that they factor into binary forms F; with coefficients in Og and that Fy has
degree ro > 3. If Og is a principal ideal domain (for instance when k = Q),
then the first condition is no restriction. For in that case, if a binary form
F € Og[X,Y] is reducible over k its irreducible factors can always be cho-
sen from Og[X,Y]. But the latter is not true if Og is not a principal ideal
domain.

Allowing these technical conditions, we give a relatively simple proof of
Theorem 2.3 based on Theorem 2.2 and on a result on resultant equations
(see Proposition 8.1) which may be of some independent interest. It may be
possible to remove the technical conditions from Theorem 2.3 at the price
of more complications.

Theorem 2.3 implies that the number of Og-equivalence classes of binary
forms F € F(Og, Ko, ..., K;) with (2.11) is at most

(2.13) a(k, S, 7o, ..., 1) Ng(c)2/rr—D+e

for every € > 0, where a depends only on the parameters between the
parentheses. In Section 9 we will show that the bound (2.13) is almost best
possible in terms of Ng(¢) in the following sense: for each tuple (Ky, ..., K})
of finite extensions of k, there is a sequence of ideals ¢ of Og with Ng(c) —
oo, such that the number of Og-equivalence classes of binary forms F' €
F(Os, Ko, ..., K) with (2.11) is at least 6N3(C)2/’"("_1), where (3 is a posi-
tive constant independent of c¢.

3. Preliminaries. In our proofs it will be necessary to keep track not
only of binary forms but also of their zeros. To facilitate this, we introduce
so-called augmented forms, which are tuples consisting of a binary form and
of some of its zeros.

Given a field K, we define P!(K) := K U{oo}. Every matrix A = (¢Y) €
GL2(K) induces a projective transformation

a+b
c€+d

(with (a&+b)/(c€+d) = o0 if ¢ # 0 and £ = —d/c¢; (aco+b)/(coo+d) = a/c
if ¢ # 0 and oo if ¢ = 0). Thus, two matrices A, B € GLy(K) induce the
same projective transformation if and only if B = AA for some A € K*.

Now let k be a number field which is fixed henceforth. Let K be a finite
extension of k. An augmented K-form is a pair F* = (F,0F) consisting
of a binary form F' which is irreducible in k[X, Y], and 6 € K such that
F(0r,1) = 0 and k(fr) = K. We agree that k(co) = k and that for every
c € k*, (¢Y,00) is an augmented k-form.

Let Koy, ..., K; be a sequence of finite extensions of k. An augmented
(Ko, ..., K)-form is a tuple F* = (F,0p F,...,0; r) with the property that

(A):PY(K) - PY(K): ¢
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there are binary forms Fy,..., F; such that F = ngo F;, and (F;,0;F)
is an augmented K;-form for ¢ = 0,...,t. We define the discriminant and
degree of F* by D(F*) := D(F'), deg F* := deg F', respectively. Notice that
deg F* = 3t [K; : K.

For an augmented (Ko,...,K;)-form F* = (F,0yF,...,0; r) and for
A € GLy(k), A € k* we define

(3.1) AF i= (AFa, (A) 0o, ..., (A) 10 p).
Clearly, AF is again an augmented (Ko, ..., K;)-form. Notice that if G* =
AF7 then F* = )\_1Gi“4,1; further if G* = A\F}, H* = uG% for some A, B €
GLo(k), A, 1 € k* then H* = AuF% .

Let R be a subring of k. Two augmented (K, ..., K;)-forms F* G* are
called R-equivalent, notation F™* Z G*, if G* = F}; for some U € GLa(R),

and weakly R-equivalent, notation F™* g G*, if G* = AFy; for some U €
GLy(R) and A € R*.

Let
b b
MES(R):{(a ) ta,b,c,d € R, det <a > #0}_
C d c d

R
Then for two augmented (Ky,..., K;)-forms F* G* we write F* < G* if
G* = F for some A € M3*(R).
In the lemma below we have collected some simple facts.

LEMMA 3.1. Let r:=Y'_ [K; : k| > 3 and let R be a subring of k.

(i) Let F* be an augmented (Ko, . .., K¢)-form, U € GLa(k) and A € k*.
Then AF}j; = F* if and only if U = o(}9) with 0 € k* and ¢" = A1

(ii) Let F*,G* be two augmented (Ko, ..., Ky)-forms and suppose that
G* = Aoky, for some Uy € GLa(k), N\o € k*. Then for any other U €
GLa(k), A € k* we have G* = AFy; if and only if U = oUy with o € k* and
0" = Xo/A.

R

(iii) Let F*,G*, H* be augmented (Ko, ..., K¢)-forms such that F* < G*,

R R
G* < H*. Then F* < H*.

(iv) Let F*,G* be two augmented (Ko, ..., K¢)-forms. Then

R R R
F*<G"\G"<F" & F*"~G".

Proof. (i) Let F* = (F, 0y F,...,04F). For i =0,...,t, put r; := [K; : K]
and denote by 01(71;, . ,91(7}3) the conjugates of 6, p over k (if 6, p = oo,
then K; =k, v, = 1 and (91(1} = o0). By assumption, <U>_19¢7F = 0, r for
1 =0,...,¢ and therefore, <U>_19(J} = 91(]} fori=0,...,t,7 =1,...,7.

2‘7
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Thus, (U) has Y'_,[K; : k] = r > 3 fixpoints. It follows that (U) is the
identity on P!, hence U = o(}9) with ¢ € k*. Now since A\Fyy = F, we
have F(X,Y) = AF(0X, oY) = \o"F(X,Y), hence o" = A~!. Conversely, if
U= g((l] (1)) with " = A™!, then clearly, AFf; = F*.

(ii) Let G* = AFy;. Then (/\0)\’1)}750U_1 = F*. Apply (i).

iii) Obvious.

(iv) <= is clear. Assume F™* —5 G*, G* —5 F*. Then there are A, B
M%®(R) such that G* = Fj, F* = G. Thus F* = F}5. Hence by (i),
AB = o(}9) with 0" =1.Now p€ Rand A~ = o' B = ¢" "' B € M5*(R)
So A € GLy(R) and F* £ G*. =

Let again S be a finite subset of Mj containing all infinite places. For
v & S (ie.v € Mg\ S) define the local ring O, = {z € k : |z|, < 1}.
We need a few probably well known local-to-global results, relating (weak)
O,-equivalence of augmented forms for v € S to Og-equivalence. We have
inserted the proofs for lack of a good reference.

LEMMA 3.2. Let F*,G* be two augmented (Ko, ..., K;)-forms such that
F*, G* are Oy-equivalent for every v € S. Then F*, G* are Og-equivalent.

Proof. By assumption, for every v ¢ S there is U, € GL2(O,) such that
G* = F; . By Lemma 3.1(ii), for v ¢ S we have U, = g,Up where Uy is one
of the matrices U, (v € S), and g, € k*, ¢, = 1. Then clearly, G* = Fy},
and Uy € GL2(O,) for v € S, so Uy € GL2(Og). Lemma 3.2 follows. =

The following result is more involved.

LEMMA 3.3. Let C* be a collection of augmented (Ko, . . ., K¢)-forms such
that any two F* G* € C* are weakly O,-equivalent for every v & S. Let
s := #S. Then C* is contained in the union of at most r° Og-equivalence
classes if v is odd, and in the union of at most r°*ho(QOg) Og-equivalence
classes if r is even.

Before proving Lemma 3.3 we make some preparations.

If R is a domain with quotient field K, then by a fractional R-ideal, we
mean a subset a # {0} of K such that \a is an ideal of R for some \ € K*.
For v € S, denote by p, the prime ideal of Og corresponding to v, i.e.,
py ={z € Og : |z|, < 1}, and by ord, the discrete valuation corresponding
to v. Thus, [z] = [],¢g pgrd”(x) for z € k*.

Let F*,G* € C*. Thus, for every v ¢ S there are U, € GL2(O,), A\, € O}
such that G* = A\, Fy; . Choose any U € GLa(k), A € k* such that G* = \Fy;.
Then by Lemma 3.1(ii), for each v ¢ S there is a g, € k* such that

(3.2) Uy, =0,U, Xy =0,"A.
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Define the Og-fractional ideal

(3.3) a(F*,G*) : Hpord“("“
vgS

This is well defined, since for all but finitely many v ¢ S we have A\ € O},
whence o, € O}, whence ord,(g,) = 0. Let A(F*, G*) denote the ideal class
of a(F*,G*), that is, {p - a(F*,G*) : p e k*}.

The fractional ideal a(F™*, G*) depends on the particular choice of U,,, A,
(v & 95), U\, but its ideal class 2A(F™,G*) does not. Indeed, for v & 5,
choose Uy € GL2(0y), X, € Oy such that G* = X Fy;, and then choose
U' € GLy(k) and X' € k* such that G* = N'F,. By Lemma 3.1(ii) there are
o), € k* such that U] = 0, U" and X, = ¢ "" )\ for v ¢ S. This gives rise to a
fractional ideal o’ (F*,G*) =[], 45 pﬁrd“("v) Again by Lemma 3.1(ii), there
is u € k* such that U’ = pU and N = p~"\. This implies for v € S that
U! = 0\, po, Uy, hence gv,ugv o1 € Oz, and so ord, (o)) = ord,(0,) — ord, (p).
Therefore, o' (F*, G*) = p~ta(F*, G*)

LEMMA 3.4. (i) Let F*, G* € C*. Then A(F*,G*)8°d(2) is the principal
ideal class.
(ii) Let F*,G* € C* and suppose that A(F*,G*) is the principal ideal
class. Then F*, G* are weakly Og-equivalent.
(iii) Let F*,G*,H* € C*. Then A(F*, H*) = A(F*,G*) - A(G*, H").
Proof. (i) According to (3.2), for v ¢ S we have
ord, (0%) = ord,(det U,(det U) ™) = ord,((det U)™1),
ordy, (") = ord, (AN, 1) = ord, (),

and so according to (3.3), a(F*,G*)? = [detU]™! and a(F*,G*)" = [}],
where [a] denotes the Og-fractional ideal generated by a. This implies (i).

(ii) Let a(F™,G*) be given by (3.2), (3.3). Then by our assumption,
a(F*,G*) = [o] with o € k*. This implies po,! € O for v & S. Put V :=
oU, = o7"U. Then G* = pFy;. Further, by (3.2), for v ¢ S we have
Uy, = 0v0 'V, Ay = (000~ 1) "1, which implies V € GLy(0O,) and pu € O,
Hence V' € GL2(Og) and p € OF. Our assertion (ii) follows.

(iii) Straightforward computation. m

Proof of Lemma 3.3. Fix F* € C*. We subdivide C* into classes such that
two augmented forms G7,G5 € C* are in the same class if and only if the
corresponding ideal classes 2A(F*,G7), A(F™*,G3) coincide. Let FY, ..., Fy
be a full system of representatives for these classes. Notice that by Lemma
3.4(i), we have h < 1if r is odd, and h < ha(Og) if r is even.

Fix i € {1,...,h} and take any G* from the class represented by F}*.
According to Lemma 3.4(iii), 2A(F;*, G*) is the principal ideal class. So by
Lemma 3.4(ii), there are U € GL2(Og) and € € OF such that G* = ¢(F}*)y.
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The group O% is the direct product of s = #S5 cyclic groups, with gener-
ators €1,...,¢€s, say. So we may write ¢ = e}'...e¥n" with wy,...,w, €
{0,...,r — 1} and n € OF. Consequently, G* = &}"* ... ¥ (F}),u.

It follows that C* decomposes into at most r*h Og-equivalence classes,
each represented by e} ...esF* for certain wq,...,ws € {0,...,r — 1},
i€ {l,...,h}. Lemma 3.3 follows. m

4. From k-equivalence classes to Og-equivalence classes. We keep
the notation introduced in §§2-3. Let Kj,...,K; be a sequence of finite
extensions of k. Let C* be a set of augmented (Kj, ..., K;)-forms which are
all k-equivalent to one another, and such that every F* = (F, 6y F,...,0;F)
€ C* satisfies F' € Og[X,Y] and (2.11). We will show that C* is contained in
finitely many Og-equivalence classes and estimate from above the number of
these classes. We first localize at a place v ¢ .S, and estimate from above the
number of O,-equivalence classes containing C*. Then we use Lemma 3.2.

Let v € Mg be a finite place. Denote by O, the local ring of v and by p,
the maximal ideal of O,, i.e.,

Op={zek:|z|, <1}, p,={xek:|z|, <1}

Put Nv := #(0,/py).

Given a finite extension L of k, we denote by Or,, the integral closure of
O, in L. The ring O, is a principal ideal domain with finitely many prime
ideals. Further, it is a free O,-module. The v-discriminant ideal of L/k is
given by the ideal of O,,

(4.1) 0k = Drjxlan, ... o) - Oy,

where oy, ..., a, is any O,-module basis of Or,,. This does not depend on
the choice of aq, ..., a,.

We will often denote the fractional Oy ,-ideal generated by a1,...,an
by [a1,...,an]; from the context it will always be clear in which field L we
are working. Given a polynomial f € L[X1,...,X,,], we denote by [f] the
fractional Oy ,-ideal generated by the coefficients of f. Then according to
Gauss’s Lemma,

(4.2) [fgl =[fllg] for f,g € L[Xy,..., Xm].

Below we need some properties of resultants. The resultant of two binary
forms F'=a[[[_ (X — a;Y), G =b][}_,(X — 3;Y) is given by

(4.3) R(F,G) = a’b" [[ [ J (e = 85)-

i=1j=1

The resultant R(F,G) is a polynomial in the coefficients of F' and G with
rational integral coefficients. It is homogeneous of degree s in the coeflicients
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of F' and homogeneous of degree r in the coefficients of G. For binary forms
Fy, ..., F; we have

t

(4.4) pr) = ([IptF)- TI RE.F)

i=0 0<i<j<t
Now let Ky, ..., K; be a sequence of finite extensions of k. Denote the
normal closure over k of the compositum Ky ... K; by L. Put r; := [K; : k]

(i=0,...,t)and 7 :=rg+ ...+ 1. For i = 0,...,t let £ — £09) (j =
1,...,7;) denote the k-isomorphic embeddings of K; into L.
We prove some properties of augmented (Ky, ..., K;)-forms.

LeEMMA 4.1. Let F* = (F,00.F,...,0.F) be an augmented (Ko, ..., K)-
form.

(i) Let v € My be a finite place and suppose F € O,[X,Y]|. Then there
is an ideal ¢, of O, such that
D(F) . Ov = C%aKo/k’v . .DKt/kw.
(ii) Suppose that F' € Og[X,Y]. Then there is an ideal ¢ of Og such that

D(F) : OS = C2DK0/]1<,S .. 'DKt/k,S'

Proof. (ii) follows by applying (i) for every v ¢ S. We prove (i). Since
O, is a principal ideal domain we may write F' = FoFy ... F;, where F* =
(Fj, 0;,r) is an augmented K;-form and F; € Oy[X,Y] for ¢ = 0,...,¢t. In
view of (4.4) and since R(Fj, F;) € O, for all 4, j, it suffices to show that
D(F;) -0, = C%,iom/k,u for some ideal ¢, ; of O,.

Write Fi(X,Y) = aoX" + a1 X" 7Y + ... 4+ @,,Y", and put wy = 1,
wo = CLDHLF, w3 = a093F+a10i,F, cey Wy, = aoegf};l—}—alegiEQ—}—, . .+ari_29i7p.
Let {a1,...,0p,} be an O,-basis of Ok, ,. Then since wi,...,w,, € Ok,
we have w; = Z?:l &ijo with &; € O,. Invoking (2.6) we obtain

D(Fl) : OU = DKi/lk(wlv ce ,wri) . OU
= det(&;)* D, (0, - - -y ar,) - Oy = det (&) 0, e o
Now Lemma 4.1 follows. =

Let again F* = (F,00.F,...,0;r) be an augmented (Ky, ..., K;)-form.
Henceforth we fix a finite place v € My and assume that F' € O,[X,Y]. For
i =0,...,t, choose a; r, B; r such that

Qi F .
air, Bir € Ok, v, “— =0;p,  |oip Birp)=[1] if 65 # oo,
(4.5) Bi,r

ar €0y, Bir=0 ifb;p = o0;
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this is possible since Ok , is a principal ideal domain. We may write

(4.6) = 5FH H BPX — oY) withep € Oy, ep #0.

1=0j=1

Indeed, a priori we know only that er € k*. But by Gauss’s Lemma we have

(4.7) er HH a{'?] = [er),

1=0j=1

and thus ep € O, follows.
To pass from double to single indices we define a map

(4.8) ¢:1,...,7m—(0,1),...,(0,79),...
S D), (L), (1), (8 1),

meaning that ¢ maps 1,...,7 to (0,1),...,(t,7¢), respectively. We define
the ideals of Op, ,:

(4.9) akl(F*) — [ Zilgl ﬁz(;zgz) Z;ZE«ZZ)lelm ]

for k,1 =1,...,r, k <, where ¢(k) = (i1,71), ©(l) = (i2,j2). Notice that
the ideals 0y (F™*) are independent of the choice of o; p, i F in (4.5). By
(4.6), (2.1), we have

(4.10) 1T ou(F)* 2 [D(F)].
1<k<I<r
Further, if G* is an augmented (Ko, ..., K;)-form which is O,-equivalent to
F* then
(4.11) V0 (F*) =q(G*) for1<k<l<r

The latter can be checked easily by taking U € GL2(0O,) such that G* = I}
and putting (ﬁ G) = U_I(Z:ﬁ), 0;c = (U) 10, p for i = 0,...,t. Then
(4.5), (4.6), (4. 9) hold with G, G* in place of F, F’* everywhere and we obtain
0, (G*) = (det U_l) g1 (F*) = 0py (F™) since det U-le O;.

LEMMA 4.2. There are ideals 0y of O, independent of F™* such that

(4.12) Dkl(F*) Coy forl<k<l<r,
(4.13) IT % Coromu - Ok
1<k<i<r

Proof. Take i € {0,...,t} and choose an O,-basis {i1,...,a;r,} of
Ok, - Then there is a polynomial I,/ € Oy[X1,. .., X;,] (the index form
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of K;/k with respect to e 1,...,a;,,) such that

[ (3ol 3 elin)

1<j1<ge<ri m=1
=D . . 2
= Ki/k(%,l, cees az,m)IKi/]k(le cens Xy
Define the ideal of Oy ,:

(4.14) iy g = [l 7 — ol Lol o)),

Then by Gauss’s Lemma

(4.15) I b5 S Dklain, - ir)] =k, ke
1<j1<j2<r;

Moreover £(01) — g(b2) ¢ b; j, ;. for any § € Ok, . Hence for the numbers
a;., B, F chosen in (4.9) we have

(4.16) B — o B) b s (1< 1< ga <)
Let ¢ be the map from (4.8). Define dy; by
R L S N
[1] if (k) = (i1, 41), p(1) = (i2, j2) with iy # io.
Then (4.12), (4.13) follow at once from (4.16), (4.17), (4.10). =
Let ¢, = ¢,(F*) be the ideal from Lemma 4.1(i). Define g,(F*) € Z by
= 0", Thus, [D(F)] = 00 T 0, i

LEMMA 4.3. Let o be a non-negative integer. Then as the tuple F* =
(F,00,F,...,0.F) Tuns through the collection of augmented (Ko,..., K;)-
forms with

(4.18) F e O,[X,Y],
(4.19) 00 (F*) < o,
the tuple (05 (F*) : 1 <k <1 <) runs through a set of cardinality at most
20+ ir(r—1
(4.20) ( QIF sr(r ))
sr(r—1)

depending only on Ky, ..., K;, v, o.

Proof. We define an action of the Galois group Gal(L/k) on the set of
subscripts {1, ..., r} as follows. Denote by A the set of all r-tuples (y1,...,vr)
with the property that there are {§y € Ky, &1 € K1, ...,& € K; such that

(71’ T ,’)/T) = (56071)7 ctt 75(()0’T0)7 ey 7f(t71)) PR ’€§t7Tt))-
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Then there is a homomorphism 7 +— 7* from Gal(L/k) to the permutation
group of {1,...,r}, such that

(4.21) (W) = Yreey  for (v, m) €A k=1,

Notice that if (k) = (,7), then o(7*(k)) = (4,;') for some j' € {1,...,7;}
where ¢ is the map given by (4.8).
For each k,l € {1,...,r}, with k < I, we define the subfield Ly; of L by

(4.22) Gal(L/Ly) = {r € Gal(L/k) : 7*({k,1}) = {k,1}}

(i.e. 7"(k) = k,7"(l) = I, or 7*(k) = [,7"(l) = k). We partition the set
of pairs {(k,l) : k,l € {1,...,r}, k < I} into orbits C1,...,C), in such a
way that (ki1,l1), (k2,l2) belong to the same orbit if and only if {ko,lo} =
7*({k1,01}) for some 7 € Gal(L/k). For each m = 1,...,n we choose a
representative (K, ly) of Cy,. Then if (k,1) runs through C,,, the field Ly,
runs through all conjugates over k of Ly, ;, , and so

Iy
(4.23) #Cpm = [Lg,1, k] form=1,... n.

Now let F* = (F,0y F,...,0 ) be an augmented (Ko, ..., K;)-form sat-
isfying (4.18), (4.19). Define the ideals

Clkl(F*) = akl<F*)QD]:l2 (1 <k<l< 7“).

By Lemma 4.2 we have ay(F*) C Or,, and by (4.9), (4.14), (4.17), the
ideal ay;(F™) is generated by elements from the field Ly;. It is clear that the
ideals ag;(F™) determine 95 (F™) (1 < k <1 <r) uniquely.

For brevity put

Ly, = Lkmlm7 am(F*) = akmlm(F*)ﬂLm (m: 1,...,71);

thus a,,(F™) is an ideal of Oy, ,. The ideals a;(F™),...,a,(F™*) determine
0 (F*) (1 < k < I < r) uniquely. Indeed, they determine the ideals
et (F*) (m = 1,...,n) of O, since the latter are generated by ele-
ments from L,,; and then by taking conjugates over k one obtains all ideals
ap(F*) (1 < k < 1 < r), which, as mentioned before, determine 0y (F™)
I1<k<l<r).

Form =1,...,nlet Pn1, ..., Pmg,, be the prime ideals of Oy, ,,. Thus,

Clm(F*) — ;mel(F*) » .;B%?gm(F*)

ml m
where w1 (F*), ..., Wmng,, (F*) are non-negative integers since a,,(F*) is an
ideal of Oy, . Now the tuple of integers

w(F*) == (W p(F*) m=1,...,n, k=1,...,0m)

determines uniquely the ideals a,,(F*) (m = 1,...,n), hence the ideals

0 (F*) (1 < k <1 <r). Therefore it suffices to show that for w(F™*) there

2@—}—%7"(7"—1)
%r(r—l)

are at most ( ) possibilities.
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Now on the one hand we have by (4.10), (4.13), Lemma 4.1(i), and
assumption (4.19),

IT o) 2 DF) @i 0k en) ' - Orw = &4 - Ory 2932 - OLy,
1<k<I<r

while on the other hand,

I auE) =11 II euF HNL Ji(am(F")) - OLy

1<k<i<r m=L(k,1)eCr,
n am
= H H NLm/k(gpmh)wmh(F ) ’ OLv”
m=1h=1
n
— H prmhwmh OL’U
m=1 h=1

n gm *
C pyomet Zhsr vmn () OLw,

where f,, is the residue class degree of 3,,,;, over p,. Therefore,

n  gm

(4.24) DD wn(F) < 20

m=1h=1

Now g, < [Li, : k] < #Cp, for m = 1,...,n in view of (4.23). Hence the
number of summands on the left-hand side is at most

S #e Z#{(k:,l):1§k<l§r}:%r(r—1).
m=1

By elementary combinatorics, the number of tuples of non-negative integers
w(F*) with (4.24) is at most

)

As observed above, this implies Lemma 4.3. =

Let C* be a k-equivalence class of augmented (K, ..., K;)-forms. Given
an ideal ¢, of O, and a tuple of ideals {0y : 1 < k <1 < r} of Op,, let
C*(¢y, {r1}) denote the collection of augmented (Ky, ..., K¢)-forms F* =

F,00F,...,0;F) such that

(

(4.25) F*eC*;

(4.26) F e O[X,Y];

(4.27) [D(F)] = 050 i - - k¢, e,

(4.28) W(F*) =0 fork,lef{l,....r}, 1<k<I<r
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LEMMA 4.4. Suppose r := ZEZO[KZ' : k] > 3. Let ¢, be an ideal of O,
and {0y : 1 < k <1 <r} a collection of ideals from Op, such that the set
C*(¢cy,{0r1}) is not contained in a single O,-equivalence class. Then

(4.29) ¢ Cprr Y2 vy Cp,Or,  for1<kE<I<r,

v

and for every F* € C*(cy, {0 }) there is an H* with

o,
(4.30) H* 2 F*,  H* eC*(p;"" Y%, {p7 o).

Proof. If H* = (H,00,H,...,0:m) is an augmented form with H €
Oy[X, Y], then 0y (H*) (1 < k <1 <) are all ideals of Oy, ,,, and by Lemma
4.1(i), there is an ideal ¢, C O, such that [D(H)] = ¢20g ky - - - Ok, jin- SO
if we show that there exists an H* with (4.30), then (4.29) follows automat-
ically.

Let F* € C*(¢y,{0ki}). There is a G* € C*(cy, {0x;}) which is not O,-
equivalent to F*. This means that there is a matrix A € GLa(k) with A ¢
GL2(O,) such that G* = F}. Since O, is a principal ideal domain, there are
matrices Uy, Uy € GLa(O,) such that

a 0
A=U U-
1(0 5) :

with

1) a 0
4.31 ,0ek*, —e0,, GLy(Oy).
asy a ’ (0 0) ¢ crao)

Put F* := Ff, G* = G*U,l. Then

2

(4.32) G*=F}_ o\
(55)

Further, F* 2 F*, G* 2 G*, so by (4.11), (2.3),
(4.33) F*,G* € C*(cy, {om}).

Clearly, in view of Lemma 3.1(iv), it follows that there is an H* with (4.30)
once we have proved that there is an H* with

Oy ~
(4.34) H* 2 F*,  H*eC*(p;"0 V2, {p; om}).
By (4.33), (4.27), (4.32), (2.2), we have

[D(F)] = & [ [ox i = [D(G)] = [ad) " VD(F)),
1=0

and together with (4.31) this implies
(4.35) ade Oy, 60, 0¢0;.
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Write F* = (F,0 6, ). Then by (4.32) we have

o, Fr oY F
~ ~ 5 5
G*=|F -0, ..., —0, = ]).
Py o ee)
Similarly to (4.5), choose «, F,B € Ok, » such that alF/ﬂ ”; and

[, 75 B, 5] = [1] if 0, 5 # o0, andal~€(’) B =010, 5 = = o0 Likewise,
choose é‘i,é’@',é € (QKN such that 0741.75/617 =00, F/a and [, G,ﬁsz] [1]
if 92.’13 2 00, and o, € Oy, ﬁi,é =0 if Hi,ﬁ = 00. Then fori=0,...,t there
is a A\; € K such that

(4.36) (ai,é’ﬁi,é) =\ (60% 7y QL z,ﬁ) fori=0,...,t

Take two pairs (i1, j1), (i2,j2) from {(i,5) : i =0,...,t,j = 1,...,r}.
Let k,1 € {1,...,r} be such that p(k) = (i1,71),¢(l) = (i2, j2), where ¢ is
the map from (4.8). Then by (4.33), (4.36), (4.35) and again (4.33),

O = [a(ilgl)ﬂ(bp) _ a(i27j2)5(i1:~j1)]

i1,G g, G i2,G i1, G

(i1,51) y (12,52) (i1.51) pli2.52) (i2:52) fp(i1.51)
= [\ Ai ad(a, VB — o )]

1 2 i1, F i, F 19, B A F

_ [)\2(11,J1)H/\§;2,J2)]akl
and so [Agil’jl)][)\gf’h)] = [1]. This holds for any two distinct pairs (i1, j1),
(i2,72) from {(i,5) : 4 =0,...,t, j =1,...,r;}. Taking any pair (7,j) from
this set and then any two other pairs (i1, j1), (i2,j2) (which is possible since
by assumption 9 + ...+ 7, = r > 3), we obtain

e = I IR
( [)‘Eihh)][)‘z(; 732)]

so [)\Ei’j)] = [1] for ¢ = 0,...,t, j = 1,...,r;. Together with (4.36), this
implies
[ba; B, ] = [1]  fori=0,....t
By (4.35) we have § € p,, hence da, iF € p,Or,p for i = 0,...,t. This
implies that 5a 7 is divisible by each prime ideal of O Lws therefore [a ;. F]
[1] for i =0, . t Since by (4.35), [a] = [67!] 2 p, ! we have Bir €POLu
forz'zO,...,t. So

(4.37) 5(5) €pOry fori=0,... .t j=1,...r.
We now construct an H* with (4.34). Choose IT with p, = [II] and take

o — ﬁzﬂgl 0) = (F(”ol )+ 100 7 110, 7).
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Clearly,
« Ov =4
(4.38) o = Fr.
Similarly to (4.6) we may write
— e H H (87X —al DY) withe € O,.
1=0j5=1

Now (4.37) implies that

H:= F(H L) = 5FHH TBIX — oY) € 01X, Y],

i=0j=1
Since also H € k[X,Y], we have
(4.39) H € 0,[X,Y].

Moreover, by (2.2), (4.33),
(4.40)  [D(H)] = [II"""DD(F)] = (P;T(Pl)/%v)%f{o/kv 0K, k-

Further, we have 110, = = ~/U*1ﬁ“; and [o; 7, 11~ 15 7 = [1] for i =
0,...,t. The latter is true since o, ﬁ,ﬂ_l 7 € Orp and [ PP z‘,ﬁ“] = [1].
So by definition (4.9) and by (4. 33) we have for 1 <k <[l <r,

¥) — [olitd0) p—1g022) _ \ (i2,02) ;p—1 g(i1,d1)
(4.41) 0 (H") = [ail,ﬁ I ﬁi%ﬁ @ s I 6“7 ]

= [IT) "o (F*) = p, "om,
where @(k) = (i1, j1), p(1) = (i2,j2).
Now by collecting (4.38)—(4.41) and the obvious fact that H* is k-

equivalent to F™* we infer that indeed H* satisfies (4.34). This completes
the proof of Lemma 4.4. u

LEMMA 4.5. Suppose r := Zfzo[Ki c k] > 3. Let ¢, {0 : 1 < k < 1
< r} be as in Lemma 4.4. Suppose that C*(cy, {0k}) # 0. Then there is an
augmented (Ko, ..., K;)-form F§ = (Fy,00 Ry, - --,01F,) such that

(4.42) Fy € O,[X,Y]
and
Oy
(4.43) Fy < F*  for every F* € C*(¢y, {0x1}).

Proof. We claim that there is a non-negative integer ¢ such that
(4.44)  prT e, 1], pto 1) (L<k<I<7)
(445)  C*(p, " ey, {p, To}) # 0,

(4.46)  C*(py, "V ey, (b ow})

is contained in a single O,-equivalence class.



382 A. Bérczes et al.

Indeed, if there is no such integer ¢, then by inductively applying Lemma
4.1 it follows that there are arbitrarily large integers ¢ with (4.44), (4.45).
But there cannot be arbitrarily large i with (4.44).

Let 7o be the smallest integer 7 with (4.44), (4.45), (4.46). Pick

Fy = (Fb,00.5, - - 0r.m,) € C*(p, "0 2, {p,004}).
Then Fy[X,Y] € O,[X,Y]. By Lemma 4.4, for every F* € C*(¢y, {0r1})
there is a sequence

* ’U O’U ’U *O’U *
Fy <F,,<..<F <F

with F* € C*(po rir=1) Z/ch,{pv D)) for i = 1,... 0. By (4.46) We have

Fy =~ R F and then by (iv) and (iii) of Lemma 3.1, Fy < Fr, F§ < F*.
This proves Lemma 4.5. =

LEMMA 4.6. Supposer := ZEZO[Ki k] > 3. Let ¢y, be an ideal of O,. Let
0v be the non-negative integer given by ¢, = py". Let C* be a k-equivalence
class of augmented (Ky,..., K)-forms. Denote by C*(¢c,) the collection of
augmented (Ko, ..., K¢)-forms F* = (F,0 p,...,0:F) in C* satisfying

(4.47) F e O,[X,Y],
(448) [D(F)] == chKO/kﬂ, R DKt/kﬂJ'
Then C*(c,) is the union of at most
[200/r(r—1)]
20, + 37(r — 1)) :
4.49 2 No)
(4.49) < tr(r—1) ( iz:% (Nv) )

O, -equivalence classes.

Proof. By Lemma 4.3, we can express the set C*(c,) as a union of at most

1
(2Q”l+(5r(z)_l)) sets C*(cy, {0k }) where 9y (1 < k <1 <) are ideals of O, ,,.
27" T—

So it suffices to show that for given ideals ¢, of O, and ?; (1 <k <1 <)
of Or,,, the set C*(cy, {0k }) is the union of not more than

200 /7(r—1)]
(4.50) (Nv)'
i=0
O,-equivalence classes.
According to Lemma 4.5, there is a fixed augmented (Ky, ..., K;)-form

Fy = (Fo,00F,...,0:F) with Fy € O,[X,Y] such that F (—9<v F* for every
F* € C*(¢y, {0k }). That is, for every F* € C*(cy,{0k}) there is a matrix
A € M3*(0O,) such that F'* = (F{j)a. By Lemma 4.1, there is an ideal ¢,g of
O, such that [D(Fp)] = c%obKo/k,v o 0f, k- Let oyo € Z>o be defined by
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cwo = po*°. Then by (4.48), (2.2),
[D(F)] = ngvaKo/k,v 0K ko
r(r— r(r—1),20y
= [det A" V[D(F)] = [det A" Vpu 00k e - Vi, o

Hence
2(0v — 0v0)

r(r—1)
Choose II with p, = [II]. The ideals of O, are of the shape p}’ (m > 0) and
#0O,/p)" has cardinality (Nv)™. From these facts it can be deduced that
every matrix A € M5°(0,) with (4.51) can be expressed as

(4.51) [det A] = py  with wu=

o=t 0
A= AUU with U € GLQ(Ov), Aij = ( z)

By I

where i € {0,1,...,u} and where 1, ... . Bi(Nvyi 1s a full system of repre-
sentatives for the residue classes of O, modulo p¢.

Now if F* € C*(cy,{0k}) then F* = (F§)a for some A € M5*(O,)
with (4.51), hence F* = (F§)a,v % (Fg)a,, for some i € {0,...,u}, j €
{1,...,(Nv)"}. This implies that C*(c,, {0x}) is contained in the union of

u 4 2(0v—0v0)/r(r—1) 4 [200/r(r—1)] 4
Y= Y ()< (Vo)
1=0 =0 1=0

O,-equivalence classes. This proves Lemma 4.6. u

We now arrive at the main result of this section. We formulate it both
for augmented forms and for ordinary binary forms.

PROPOSITION 4.7. Let ¢ be an ideal of Og. Let r:= >\ [K; : k] > 3.

(i) Let C*(c) be a k-equivalence class of augmented (Ko, ..., K¢)-forms
such that any two elements of C*(¢) are k-equivalent and such that every
F*=(F,00F,...,0.r) € C*(c) satisfies

(4.52) F e Og[X,Y],

(453) D(F) . OS = c2oKo/k,S"'oKt/k,S'

Then C*(c) is contained in the union of at most

(4.54) e (Y Ns@)
DT(’I‘—l)/2|c

Og-equivalence classes.
(ii) Let C(c) be a subset of F(Og, Ky, ..., K;) such that any two binary
forms in C(c) are k-equivalent and such that every F' € C(c) satisfies (4.53).
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Then C(c) is contained in the union of finitely many Og-equivalence classes,
the number of which is bounded above by (4.54).

Proof. (i) For v ¢ S, let p,, be the prime ideal of Og corresponding to v,
ie, py={z € Og: |z|y < 1}. Then ¢ = [],4qpt" With 0, € Z>o. According
to Lemma 4.6, for each v ¢ S the collection C*(¢) is contained in the union
of at most

2 . l _ 1 [QQU/T(T_]')} )
Av — ( Ov + 2T(T )) Z (Nv)l

%r(r -1) P
(200 /r(r—1)]
200 + 2r(r — 1)> ,
= (NSpv)Z
( %r(r -1) Z.z;

O,-equivalence classes. Lemma 3.2 implies that if A, is an O,-equivalence
class of augmented (K, ..., K;)-forms for v ¢ S, then ﬂvgs Ay, is an Og-
equivalence class. This implies that C*(¢) is contained in the union of at

most
I14.= Tr(r—l)/Z(cz)( > NS@))

vgS or(r=1)/2[¢

Og-equivalence classes. This proves (i).

(ii) Fix Fy € C(c). Extend Fj to an augmented (Ky, ..., K;)-form Fj =
(Fo,00,F, - - -+ 0tF,). For every F' € C(c), choose A € GLy(K) such that F =
(Fv)a and define F* := (Fj)a. Clearly, the augmented forms constructed
in this manner are k-equivalent to one another. Now by applying (i) to the
collection C*(¢) := {F* : F € C(c)}, our assertion (ii) follows at once. =

5. Orders. Below, k is a number field, and K is a finite extension of
k of degree r > 3. We denote by & — &0 (¢ = 1,...,7) the k-isomorphic
embeddings of K into some normal closure L of K over k. As before, S
is a finite subset of My containing all infinite places. Denote by Oy, g the
integral closure of Og in L. Given ay,...,a,, we denote by [ai,...,ap)
the fractional Op, g-ideal generated by ai,...,am. For f € L[X,..., X))
denote by [f] the fractional Of, g-ideal generated by the coefficients of f.
Given fractional Oy, g-ideals a, b we write ¢ for ab~! where b~! is the inverse
fractional Oy, s-ideal of b. For a finitely generated Og-module M C K with
M # (0) define

(5.1) 0j(M) =D -l i ge M) (1<i,j<r i#))

to be the fractional Oy, g-ideal generated by all elements @) — ¢0) (1<
i, <r, i%#j) with £ € M, and

(5.2) D(M) = [Dgp(wi, ... ,wr) s wi,...,wp € M]
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to be the fractional Oy, s-ideal generated by all discriminants of all r-tuples
Wi, .- We € M.

Let F* = (F,0F) be an augmented K-form. Suppose that F' € R[X,Y]
where R is some subring of k. Then the invariant order O+ g of F™* is defined
to be the R-submodule of K with basis wy, . ..,w, given by (2.4). By Simon
9], Op= R is indeed an R-order with quotient field K,

(5.3) rle = Or+r = Og*Rr

for any two augmented K-forms F* G* (which is slightly stronger than
(2.5)), and Dg (w1, .. .,wr) = D(F™). If R = Og we write O« s for Op+g
and if R = O, (local ring) we write Op«, for Op«pg. Thus if R = Og we
have

(5.4) D(Op+g) = D(F*) - Og.

LEMMA 5.1. Let F* = (F,0p) be an augmented K-form with F €
Os[X,Y]. Then
o0 o

(5.5) 2,;(Op=s) = [F] m

(].SZ,]ST‘,Y,#]),

and
(5.6) II 2(0rs)* = [F]" 002D (Op-5).
1<i<j<r
Proof. We first prove (5.5). Let i,5 € {1,...,r}, i # j. Write F =
aoX" + a1 X" 7YY + ... 4+ a,Y". Then F = ag [[}_; (X — Gg)Y), and so by

Gauss’s Lemma,

r

(5.7) [F] = [ao] [T 11,05
k=1
Write
(5.8) [T (X —68Y) = BoX" "2+ BiX" %Y + ...+ B, sY" 2.
k=1
k#i,j

Then By = 1, and by Gauss’s Lemma and (5.7),
T

(5.9)  [Bo,Bu,...,Bra] = [[[1.6%] = [Fllac)*[1, 6% 7 (1, 0] L.
k=1

Let {w1,...,w,} be the basis of Op«g given by (2.4). We first show that
(5.10) wl®) — W) = agBm_z(Hg) - Gg)) form=2,...,r.

m
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Write by := a/ag for k =0,...,r. Then
[T(X - 6%Y) = bo X" + b X" 1Y + ... 4 b,Y"
k=1

and

agtwm = Zb 0% =1 form=2,...,r
Assertion (5.10) is clear for m = 2. Let m > 3. We have (on putting B_ =
B_1 =0)
by = By — Be_1 (0% +09) + B_00W6%  for k=0,...,r,

and so

m—2
aO ( z)_w Zbk 0(1 m—k—1 (eg))m—k—l)
k=0

{Bi — Bi1 (6% + 69)) + By_,6009)1 . (01 ym k=1 — (p0)ym—h-1y

emoa =00 — 0 oy = (00)2 — (02 — (61 + 02 (0 — 6Y) =0,
and, if m > 4,
o = (O )" = O ) = (0 + 0D (O = )

+ 00 (035 — (0 )3 =0

for kK = 0,...,m — 4. This implies (5.10). By combining (5.10), (5.9) we
obtain
0,(Opes) = Wi — W, .. W — W]
= [ao] - [Bo, B, .., By_o] - [0 — 6]
= [F] —[99 ~ 07 )].
[1.63)[1,67]

which is (5.5).
Now from (5.4), (2.1), (5.7), (5.5) we infer

D(Op-5)0Ls = [D(F)] = [ =2 T (0% — o2
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T 0% — o) \?
= 7] H < i j)])

1<icir \LOP[L, 6]
—_ [F (r=1)(r-2) H Dz] OF* ’
1<i<y<r
which is (5.6). =

LEMMA 5.2. Let F* = (F,0f), G* = (G, 0q) be two augmented K -forms
such that

(5.11) F,G € Og[X,Y];
(5.12) Op«s = Ogxs;
(5.13) F* G* are weakly k-equivalent.

Then F*, G* are weakly O,-equivalent for every v &€ S.

Proof. Take v ¢ S. By (5.13) there are A € GLa(k), A € k* such that
G* = AF}. Since O, is a principal ideal domain, there are matrices Uy, Us €

GL2(0,) such that A = U1(§9)Uz with a,d € k*. Let F* := Fy;, G* :=
G*U,l. Then
2

(5.14) e a2 ar

hence it suffices to show that f*, G* ‘are weakly O,-equivalent. Write F* =
(F,05), G* = (G,05). Then G* = )\FE% ) which means that

~ ~ d
(5.15) G(X,Y)=MF(aX,dY), 9@ = p 9}3.

Write F(X,Y) = agX"+a1 X"~ 'Y +...4a,Y". Then O.  is an O,-module
with basis

1—2
i )
wlzl, W; = E a,j&%] (’LZQ,...,T’).
j=0

By (5.15), G(X,Y) = Aapa” X"+ Aara” LdX 1Y +.. .+ Aa,d"Y" and Og.
is an O,-module with basis

i i—j—1
- /d J o
wi=1, W= Z Aaja" I d’ (5 913) =Xa" " d Ty (i=2,...,7).

By (5.14), (5.12), (5.3) we have O, = Og, . Therefore, the matrix relating
{w],...,wl} to {wi,...,wr} is in GLy(O,). That is,

X"l eOr, XN TPPeOF ..., XadT € O,
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which implies d = au with u € OF. Further, A\a” = v 'Aa""'d € O;.
Inserting this into (5.15) we obtain

G(X,Y) = F(aX,auY) = A" F(X,uY), 0z =ufgz,

which implies that F *,é* are weakly O,-equivalent. This proves Lemma
52. m

We now arrive at our final result:

PROPOSITION 5.3. Let C* be a collection of augmented K-forms such
that

(5.16) F e Og[X,Y] for every F* = (F,0p) € C*;
(5.17) Op+s = Ogxs  for every pair F*,G* € C*;
(5.18) the elements of C* are weakly k-equivalent to one another.

Then if r is odd, C* is contained in the union of at most r® Og-equivalence
classes, while if r is even, C* is contained in the union of at most r°ha(Og)
Og-equivalence classes.

Proof. Combine Lemmata 5.2 and 3.3.

6. Proof of Theorem 2.1. Let k, S be as in Section 2; thus #5 = s.
Let O be an Og-order of degree r > 3 and denote by K its quotient field.
Let F' € Og[X,Y] be a binary form which is irreducible in k[X, Y] and such
that Op g = O (as Og-algebras). Then there is a 0 such that F(0r,1) =0,
K =k(0r) and such that wy,...,w, given by (2.4) form an Og-basis of O.
Thus, F* := (F,0Fp) is an augmented K-form with Op-g = O. Now it is
obvious that in order to prove Theorem 2.1 it suffices to prove the following:

PROPOSITION 6.1. Let #S = s, and let K be a finite extension of k of
degree v > 3. Let O C K be an Og-order with quotient field K. Then the
set of augmented K-forms F* = (F,0F) with
(6.1) F e Og[X,Y],

(6.2) Opx =0

is contained in the union of finitely many Og-equivalence classes, whose
number is bounded above by

(6.3) 924r’s if v is odd; 224r38h2((95) if T is even.

For the moment we assume r > 4. The case r = 3 will be treated
separately. Our main tool is a result of Beukers and Schlickewei on equations
in two variables with unknowns from a multiplicative group of finite rank.
Let £2 be a field of characteristic 0. We endow (£2*)? with coordinatewise
multiplication (1, y1) * (z2,y2) = (122, y1%2); thus (£2*)? becomes a group
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with unit element (1,1). For (z,y) € (£2*)%, m € Z we write (z,y)™ =
(@™, y™).
LEMMA 6.2. Let (x1,91),- -, (Zn,Yn) € (£2%)2. Let
I={(z,y) € (2)?:3ImeN,z,...,2, € Z
with (z,y)™ = (x1,y1)™ * ... % (Tp, yn)™" }.
Then the equation
(6.4) r+y=1 in(x,y)erl

n+1)

has at most 28( solutions.

Proof. See [1, Theorem 1]. =

Let O, K be as above. Choose a normal closure L of K over k and denote
again by & — €@ (i =1,...,r) the k-isomorphic embeddings of K into L.
We recall that the cross ratio of aq, ag, ag,ay € P(L) is given by
(a1 — az)(a3 — ay)

(1 — ag)(ag — ay)

(with the usual modifications if one of aq,..., a4 is co or if ai,..., a4 are
not all distinct). As is well known, cross ratios are invariant under projective
transformations.

For an augmented K-form F* = (F,0p) with (6.1), (6.2) we define the

tuple of all cross ratios of 61(171), ey H;r),

(6.6) A(F*) = ({6%,69:6% 00} .1 < j k1 <r;i,j k1 distinct).

(6.5) {aq, a9 a3, a4} :=

LEMMA 6.3. If F* runs through the collection of augmented K-forms
with (6.1), (6.2), then A(F™) runs through a collection of cardinality at most

(6.7) g =r)s,

Proof. Let F* = (F,0Fr) be an augmented K-form with (6.1), (6.2). Let
i,7,k,l € {1,...,r} be distinct. We have
(6.8) (09,6900 00y + (6% 00: 0 6} = 1.
Write (6.8) as x +y = 1. We want to apply Lemma 6.2 to (6.8) and to
this end we have to find a suitable group I' independent of F'* such that
(x,y) el

Fix 6y with k(6g) = K. For each two-element subset {i,j} of {1,...,r}
define the field

KU = k(0§ + 05, 05765).

Thus, if P(X,Y) € k[X,Y] is a symmetric polynomial, then P(¢®) ¢0)) ¢
K143} for every ¢ € K. Further, [K{%7} : k] < (}). Let t({i,j}) denote the

rank of O;{{M},S’ i.e., the unit group of the integral closure of Og in K14},
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Then t({i,j}) is equal to the number of places of K{%7} lying above the
places in S, minus 1. That is,

(6.9) t({i,j}) < [K1} ks —1 < <;>s ~1.
There are 5?’3}, cee t{g{]l}J}) € (’)K{”}S such that every element of (’)K{”}S
can be expressed uniquely as
t({i.j})
(6.10) ¢ H (eliatyw

where ¢ € K197} is a root of unity and w,, € Z for m =1,...,t({i,j}).

Let h be the least common multiple of the following integers: the class
number of K, the class number of K17} for each two-element subset {i,j}
of {1,..., 7}, and the number of roots of unity in K {*} for each two-element
subset {i,j} of {1,...,7}.

We raise the identity (5.5) to the power 2h to obtain something useful.
Leti,j € {1,...,7}, 4 # j. First we have an identity of fractional O g-ideals

(6.11) [1,0r]*" = [ap] with ap € K*

since 2h is a multiple of the class number of K. Further, (9%) - Hg))Qh €
K3}, The ideal (0;;0F+s)? is generated by elements (€0 — ¢0))2 (¢ ¢
Op+s) which belong to K17}, By (5.6) the Og-ideal [F] generated by the
coefficients of F' depends only on O+ g, hence by (6.2) on O. Therefore we
have an identity of fractional O i) g-ideals

(6.12) ([F] "0 (Op+ )" = [B;]  with B;; € (FU3)*,

where (3;; depends only on O. So in particular, 3;; is independent of F™.
Lastly, o\ ol € K13}, Now (5.5), (6. 11) (6 12) yield an identity of frac-
tional (’)K{”}S ideals [9(1) Hg)]% = [a aF 5@]] that is, (9%) — Hg))% =

a aF ﬁwnzy with n;; € O7 We can express n;; as in (6.10). By raising

K} s-
again to the power h, we can cancel the root of unity, and obtain
. , t{igh)
(6.13) (0 — ) = (@Dl g)" [ (e with wy, € Z.
m=1

Taking any distinct ¢, j, k,1 € {1,...,r}, and writing again (6.8) as z+y = 1,
it follows that

0 = (05000 00 080, 0



Binary forms of given degree and given discriminant 391

k l 7 ! ) k h2
k 0Dy’ i k ) l
) 9(1) 0( )) (9( ) (9( ))(9(]) 0( ))

z]/Bkl ﬂzlﬁﬂc)
<ﬂzkﬂ]l ﬂzkﬂ]l (7]17772)

where (71,72) is a product of powers of

(1) (1 <m < i({i,5)); (WD 1) (1< m < t({k 1))
(Lelthy (1 <m <t({i,1)); (Led™) (1 <m < t({4,k)));

(lM etk (L <m <t({ik)); (el (1 <m <t({51).

It is important to notice that the terms a%),ag),ag),ag are cancelled.

Thus, in view of (6.9), (z, y)Qh2 is a product of powers of

L+ t({d,5}) + t({k, 1}) + t({3, 1}) + t({5, k}) + ¢({3, k) + t({5, 1})

<o((5)e) =l

terms which are independent of F™.
Now applying Lemma 6.2 to (6.8) yields that (z,y), and so in particular

T = {0 @) 9(] ). H(k),(?%)}, belongs to a set independent of F* of cardinality
at most

(6.14) 98{6(3)s—5+1} — 948(3)s-32,

We claim that the tuple A(F™*) of all cross ratios is determined uniquely
by the subtuple

A 1) 22). 4(3) U

(6.15) Ay = ({60, 02:0% oDy 1=4,... r).
Indeed, let (T') be the unique projective transformation of P!, mapping
09}1),9}2),«9?) to 1, 00,0, respectively. Since (T") does not alter cross ratios,
forl=4,...,r th¢ imgge of «9%) under (T) is {0%1), 0%2); 01(5), Og)}. But then
it follows that {9;), OF), G(k) 9(1 } is equal to the cross ratio of the ith, jth,
kth, Ith point among 1,00, 0, {9<1 0200 00y, {0 0250 00y,

So by (6.14) the total number of possibilities for A(F*), and hence that
for A(F™) is at most

2(48(;)3732)(7“73) < 224(7“3—1"2)5.
This proves Lemma 6.3. =

LEMMA 6.4. Let F* = (F,0F), G* = (G, 0q) be two augmented K -forms
of degree r > 3 with (6.1), (6.2).

(i) If r = 3 then F*,G* are weakly k-equivalent.
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(ii) If r > 4 and moreover,
(6.16) A(F*) = A(GY),
then F*, G* are weakly k-equivalent.

Proof. If r > 4 then by (6. 16) (69,696 oy — (99 4 g D.9W g0y
for each distinct i,7,k,0 € {1,...,r}. This 1mphes that there is a unique
projective transformation (T) : IP’l(L) — PY(L) with <T>(9g)) = 98) for
it =1,...,r. If r = 3 then we simply use the fact that there is a unique
projective transformation (7') : P! — P! defined over L with <T>(0§?)) = 98)
fort=1,2,3.

In other words, both for » = 3 and for r > 4 there is a unique matrix
T =(2%) € GLy(L) (up to a scalar factor) such that

)y ab +b
(6.17) %);% fori=1,....r
00; +d

We choose the first non-zero element among a, b, ¢, d equal to 1 so that T
is uniquely determined. Then for every 7 € Gal(L/k), the matrix 7(T) =

(:(((3 T(( ))) also satisfies (6.17) since 7 permutes both sequences H%), e ,Qg)
and 98),...,08:) in the same manner. Hence 7(7) = T for every 7 €
Gal(L/k) which implies T" € GLy(k).

Write

F=ar [[(X-00Y), G=ac]](X-62Y)
i=1

=1
with ap, ag € k*. Thus,

_aGH< ()+by)

+d

r ) -1
_ aGaEI{ T[]0l + d)} F(dX — bY, —cX + aY)
i=1

,
, -1
= agagl{ H(ceﬁﬁ + d)} (ad — be) " Fp—1(X,Y) = AFp-1(X,Y)
i=1

with A € k*, T' € GLa(k), and ¢ = (T)(0r). This implies that F*, G* are
weakly k-equivalent. m

Proof of Proposition 6.1. Let r > 3. Put h(r,Og) := 1 if r is odd, and
h(r,Og) := ha(Og) if r is even. By Lemmata 6.3 and 6.4, the collection of
augmented K-forms F* = (F,0p) with (6.1), (6.2) is contained in the union
of at most 224" =15 weak k-equivalence classes. Together with Proposition
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5.3 this implies that the collection of augmented K-forms with (6.1), (6.2)
is contained in the union of at most

224(r37r2)srsh(r7 OS) < 224T35h(7’, OS)

Og-equivalence classes. This proves Proposition 6.1. =

7. Proof of Theorem 2.2. We keep the notation from Section 2. Thus
k is a number field and S is a finite subset of My of cardinality s containing
all infinite places. Let K be an extension of k of degree r > 3. Let ¢ # (0)
be an ideal of Og and let S’ = SU{v & S : |z|, < 1 for every z € ¢}. Notice
that if ' € F(Og, K) satisfies (2.9), then

D(F)-Og =g i -

So by (2.6), the Ogr-order associated with F'is Op g = Ok s (the integral
closure of Og/ in K). On applying Theorem 2.1 with S’ in place of S and
with O = Ok, s we infer that the set of binary forms F' € F(Og, K) with
(2.9) is contained in finitely many Og-equivalence classes, whose number is
at most

224r3#S’ — 224r3(s+w5(c)) if r is odd,

(7.1) . 3
224 #5 1,y (Og)) < 224 (s+ws(Npy (Og)  if 1 is even,

where we have used #5’ = s + wg(c) and the obvious inequality hao(Og/) <
h2(Og).

In particular, the binary forms F' € F(Og, K) with (2.9) lie in finitely
many k-equivalence classes, whose number is bounded above by (7.1). By
multiplying this quantity with the upper bound (4.54) from Proposition
(4.7)(ii) we obtain an upper bound for the number of Og-equivalence classes
of binary forms under consideration, which is precisely the upper bound from
Theorem 2.2. This completes our proof. m

8. Proof of Theorem 2.3. To prove Theorem 2.3, we need a further
proposition on resultant equations which can be regarded as a quantitative
version of Lemma 1 of Evertse and Gyéry [6].

For the moment, let Ky, K1 be two (not necessarily distinct) extensions
of k of degrees rg,r1, respectively, such that ro > 3. Let L be a normal
closure over k of the compositum of K, K. Below, we denote by [a1, ..., an]
the fractional Oy, g-ideal generated by ai,...,an, and by [f] the fractional
Op, s-ideal generated by the coefficients of a given polynomial f.

Using the notation of Theorems 2.2 and 2.3, fix a binary form Fy €
F(Og, Kp), and consider the binary forms F; € F(Og, K1).
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ProproSITION 8.1. Up to multiplication by S-units, there are at most
22410115 binary forms Fy € F(Og, K1) which satisfy
(8.1) R(Fy, F1) € Og.

Proof. Take Fy € F(Og, K1) with (8.1). By assumption, for i = 0,1 we
have F; € Og[X,Y], F; is irreducible over k, and there is a 6; satisfying
F(6;,1) =0 and k(#;) = K;. We can write

ri
FX,Y)=a [[(x-6MY) (i=01),
k=1
where a; € k*, and where 01(1), .. .,01(”) are the conjugates of 6; in L, for
i = 0,1. By Gauss’s Lemma we have
ri
k .
(8.2) 12 (7] = [a] [0.67) =01,
k=1
Using (8.1) and expression (4.3) for the resultant, we get
To T1 To T1 k) H(l)]

7’ 7’ k
(1] = [R(Fo, F1)] = [ao]" [aa]® [T TT166” — 60”1 < T] H 5
k=11=1 e [1037), 0]

In combination with the obvious inclusions [Gék) - 9% )] C 1, 9(() )] 1, HY)] this
gives
8.3) [0 — 0V = 1,601,0] fork=1,....r0,1=1,....m.
Meanwhile, we have also shown that the inclusions in (8.2) are equalities,
i.e.,

- k .
(8.4) (B =[] [T1.61=0] G=0,1).

k=1

We proceed as in the proof of Lemma 6.3. Define the fields K :=

]1&((9(()1),91) = Kél)Kl (i =1,...,70). Denote by h the least common mul-
tiple of the class numbers of Ko, K1, Ki1,..., K, 1 and of the numbers of

roots of unity of Ky, ..., K, 1. By our choice of h, there are oy € K such
that [1,00]" = ], and a; € K} such that [1,61]" = [a1]. Then by (8.3),

65 — 01" = [ lfeu]  for i =1,....70,
that is,
05 —61)" = a v,

where 7; € O?{n,S (i.e., the unit group of the integral closure of Og in Kj1).
Let €;1,...,¢€is; be a system of fundamental units of (’)}{ihs. Then 7; is a
product of a root of unity in K;; and of powers of ¢;1,...,€;5 and so, by



Binary forms of given degree and given discriminant 395

our choice of h,

i h2 )\h  h_w; Wis;
(0 = 00)"" = (af)alet .. cp
with wj,..., W;s; € Z.

Pick distinct subscripts ¢, j, k € {1,...,r9} and consider the identity
60 — 09 o —6, 00 -6 6l -0,

. . . - — = 1.
0y — o) 0~ 05 —0l 6 0
This can be written as x + y = 1, where
Sk Sq 55
2 . —ws
(@, )" = (a,b) * [ [ (erg» ) = [ [ (1, 29) "0 * [ [ (€50 £50)
q=1 q=1 q=1

with

o= ()" () =) ()
’ 0@ _g®) \o0) \g0_—gw ) \o0) )

Notice that

S; S [Kil :k}s—l Srorls— 1

and similarly for s; and s;. So, by Lemma 6.2 the number of possibilities
for (x,y) is at most

28(Si+«3j+3k+1)+8 < 2247"07"18.
This gives at most 2247071 possibilities for 6. But, by (8.4), the ideal [a1] is
uniquely determined once 6; is uniquely determined and moreover, a1 € k*.
So ay is uniquely determined up to a factor from OF. We infer that up to

multiplication by some factor from O%, for Fy there are at most 24ror1s
possibilities. m

Proof of Theorem 2.3. Let Ky, K1,...,K; be (not necessarily distinct)
extensions of k of degrees rg,71,...,rt, respectively, such that rqg > 3. Let
F € F(Og,Ky,...,K;) be a binary form with the property (2.11). There
are binary forms Fy, ..., F; with F = Fy... F; and with F; € F(Og, K;) for
i =0,...,t. So in particular, F; € Og[X,Y] for i = 0,...,t. Let S’ denote
the union of S and the places v ¢ S such that |z|, < 1 for every x € ¢. Then

D(F) . OS’ = aKo/k,S/ .. 'oKt/]k,S"
Now by expressing D(F) as in (4.4), and using R(F;, F;) € Og (0 < i <
j <t) and the inclusions
D(Fi)‘OS’gDKi/Jk,S/ (i=0,...,t)
(which follow from Lemma 4.1(ii)), we obtain
(8.5) D(Fp) - Osr =gy k575
(8.6) R(Fy, F;) € Oy (1=0,...,1t).
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We now apply Theorem 2.2 to (8.5) with S replaced by S’; we find that
Fj is contained in the union of at most

(8.7) 224T8(#S,)h(’/“0, OS’) < 224T8(8+w5(c))h(7“0, OS)

Ogr-equivalence classes. Here we have used the fact that #5' = s + wg(¢)
and h(rg, Og) < h(rg, Og).

Fix one of these Og/-equivalence classes, and pick from this class a rep-
resentative Fy € F(Og, Ko) with (8.5). Consider all tuples (Fi,...,F;) of
binary forms with F; € F(Og, K;) for i = 1,...,¢ and with (8.6). Proposi-
tion 8.1 shows that for given Fj there are, up to S’-unit factors, at most

224r0(r1+...+rt)(s+w5(c))

such tuples (F1,..., Fy).

Combining this with the upper bound (8.7) for the number of Og/-equiv-
alence classes of binary forms Fy € F(QOg, Ky) with (8.5), we infer that up
to Ogr-equivalence, and up to an Og/-unit factor, there are at most

(8.8) 224?”3(f>‘+ws(t))h<r,n07 SE 924ro(ri+...47¢) (s+ws(c))
_ 2247*0(7‘(2)4—7“1+...+rt)(s+ws(c))h(r0’ OS)

binary forms F' = Fy...F; € F(Og, Ky, ..., K;) with (2.11). That is, there
are binary forms Gi,...,Gp, € F(Og, Ky, ..., K;), with m bounded above
by the quantity in (8.8), such that every binary form F' € F(Og, Ky, ..., K})
with (2.11) is Ogr-equivalent to eG; for some ¢ € {1,...,m} and € € OF,.
But ¢ can be written in the form &} ..., 7", where s’ = #5" = s+wg(c),
€1,...,€y are generators of OF,, wy,...,wy € {0,...,r — 1} and n € OF,.
Since G; is Ogr-equivalent to " G; = (G}) (8 0), we deduce in fact that every
7

binary form F under consideration is Og/-equivalent to £} .. .5?5' G;, with
wy,...,wy €40,...,r—1} and with ¢ € {1,...,m}. Assuming as we may in
view of Theorem 2.2 that r; 4+ ...+ r > 1, it follows that the binary forms
F e F(Og, Ko, ..., K;) with (2.11) lie in at most

(7’ . 224r0(7"(2)+r1+...+rt))(s+ws(c))h(r0? OS)
< (7“ . 224(r—1)((r—1)2+1))(s-&-ws(c))h(,’nm OS)
and so in at most
(89) 224T3(S+w5(c))h(7’0, OS)

Ogr-equivalence classes.

By Proposition 4.7(ii), the binary forms F € F(Og, Ky,...,K;) with
(2.11) lie in finitely many Og-equivalence classes whose product is bounded
above by the product of (8.9) and of (4.54). Since this is precisely the bound
of Theorem 2.3, this completes our proof. m
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9. Lower bounds. We present some examples, showing that the results
mentioned in Section 2 are in certain respects close to best possible.

First let K be a finite extension of k of even degree r > 4. Let .S be a finite
subset of My such that S contains all infinite places. We show that there are
infinitely many Og-orders O with quotient field K such that the collection
of augmented K-forms F* = (F,0p) with F' € Og[X,Y] and Op+s = O
cannot be contained in fewer than he(Og) Og-equivalence classes. Since
each binary form F' € F(QOg, K) gives rise to at most r augmented K-forms
F* = (F,0F), it follows that the set of forms F' € F(Og, K) with Op s = O
cannot be contained in fewer than r~1hy(Og) Og-equivalence classes. This
shows that the factor ho(Og) in the upper bound of Theorem 2.1 is necessary.

Pick any augmented K-form F* = (F,0p) with F' € Og[X,Y]. Let a be
any ideal of Og such that a? is principal. The ideal a can be generated by
two elements, a = [a, 3], say. Let a? = [\]. Then there are &, € Og such
that £a? — nB% = \. Define

* . \—T/2 %
Fr=\7"/ F(a 5y
ng &
We first show that Fj = (Fq,0F,) with Fy € Og[X,Y], and Opr 5 =
Op=xs. Pick v ¢ S. Then there is p € O, such that in O, we have the
identity of ideals [a, 8] = [p]. We now get

Y, — X+=—-Y

Fa= A"2F(aX +8Y, 78X +€aY) :)\_T/Q,u’"F(% x+7 ,"5 5:‘ )
7

Since [?] = [A] in O, we have A™"/2u" € OF. Further,

«a 8 2 2
T §a” —np” A
et [ 5 az) et oY
Hence F}, F* are weakly O,-equivalent. This implies Fy € O,[X,Y] and,
in view of (5.3), Opry = Op«, where Ops,, Op«, are the localizations at
v of Opxg,Op=g. This holds for every v ¢ S. Hence F; € Og[X,Y] and
Orzs = Opxs.

We now show that if a, ag are two ideals of Og such that a?, a2 are prin-
cipal and a1, as do not belong to the same ideal class, then the augmented
K-forms Fy , F,, constructed above are not Og-equivalent. Thus, the collec-
tion of augmented K-forms F} such that a is an ideal of Og for which a? is
principal cannot be contained in fewer than ha(Og) Og-equivalence classes.

For i = 1,2 let a; = [ay, 3i] be an ideal of Og, suppose that a? = [\;]
is principal, and choose &;,7m; € Og such that {ia? — mﬂf =\ fori=1,2.
Define

Fi = A;”/QFE‘ o iy (=12
niBi &ioy
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Suppose that F;, = (Fy, )u for some U € GL2(Ogs). Then by Lemma 3.1(ii),
there is ¢ € k* such that

ag P\ _ (en S >U P Ouaslyrs2
(n2ﬂ2 {2042) Q<n1ﬁ1 51041 ’ o ( 179 ) .

Hence [g]” = (aja;!)", which implies a; = oaz. So ay, az lie in the same ideal
class. This proves our assertion.

Now let (Ky,...,K:) be a sequence of finite extensions of k such that
S olK; : k] =: r > 3. We show that there are infinitely many ideals ¢ of
Og such that the collection of binary forms F(Og, Ko, ..., K¢) with (2.11)
cannot be contained in fewer than C' x Ng(¢)?/"("=1) Og-equivalence classes,
where CNis some positive constant.

Fix F' € 7(Og, Ko, . .., K;) with D(F) # 0. Extend this to an augmented

(Ko, ..., Ki)-form F* = (F,0, 5,...,0, 7). Let a € Og, a # 0. For 8 € Og
define
Fj = F’(“(l)ﬁ) = (Fﬁ790,}7“5""’0t,}7“5) with  Fg = F(X + gY,aY).

Now if 81, B2 € Og are such that F 5‘1,]3 52 are Og-equivalent, then

Fiy o =
G2) G

for some matrix U € GL2(Og). According to Lemma 3.1(ii), this implies

<(1) 5;)1@ ﬂ;)eGLg((’)g)

and therefore, (81 — 32)/a € Og.

Consequently, the augmented (Ko, ..., K;)-forms ]55 (8 € Og) cannot
be contained in the union of fewer than #Og/[a] = Ns(a) Og-equivalence
classes.

Notice that Fs € F(Os,Ko,...,K;) for 3 € Og. By Lemma 4.1(ii),
there is an ideal ¢y of Og such that [D(ﬁ)] = C%DKo/k,S---DKt/k,S- Put
¢ := a”"""D/2¢y. Then by (2.2), ﬁg satisfies (2.11) with this c.

Since there are at most 7'*! different augmented forms F ;3 coming from
the same binary form Fvg, it follows that for each ideal ¢ as constructed
above, the set of binary forms F' € F(Og, Ky, ..., K;) with (2.11) cannot be
contained in the union of fewer than

T’_t_le(a) _ ,',,—t—].NS(CO)—2/T(T—1)NS(C>2/T(T‘—1) — O x NS(C>2/T(T‘—1)

Og-equivalence classes.
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