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1. Introduction. In the present paper we give explicit upper bounds
for the number of equivalence classes of binary forms of given degree and
discriminant, and for the number of equivalence classes of irreducible binary
forms with given invariant order.

Two binary forms F,G ∈ Z[X,Y ] are called equivalent if there is a matrix(
a b
c d

)
∈ GL2(Z) such that G(X,Y ) = F (aX+bY, cX+dY ). Denote by D(F )

the discriminant of a binary form F , and by OF the invariant order of an
irreducible binary form F . We recall the definition of the invariant order of
F which is less familiar. Write

F (X,Y ) = a0X
r + a1X

r−1Y + . . .+ arY
r

and let θF be a zero of F (X, 1). Then OF is defined to be the Z-module
with basis 1, a0θF , a0θ

2
F + a1θF , a0θ

3
F + a1θ

2
F + a2θF , . . . , a0θ

r−1
F + a1θ

r−2
F +

. . .+ ar−2θF ; this is indeed an order, i.e., closed under multiplication. It is
well known that two equivalent binary forms have the same discriminant.
Further, two equivalent irreducible binary forms have the same invariant
order. The discriminant D(OF ) of OF is equal to D(F ) (see [8], [9] for a
verification of these facts). Consequently, if K = Q(θF ), then D(F ) = c2DK ,
where DK is the discriminant of K and c = [OK : OF ] is the index of OF
in the ring of integers OK of K.
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By classical results of Lagrange, Gauss (r = 2) and Hermite (r = 3), the
binary forms F ∈ Z[X,Y ] of degree r ≤ 3 with a given discriminant D 6= 0
lie in finitely many equivalence classes, and these classes can be effectively
determined. This finiteness theorem was generalized for the case r ≥ 4 by
Birch and Merriman [2] in an ineffective form, and later by Evertse and
Győry [5] in an effective form. Moreover, the theorem remains true without
fixing the degree r; see [7]. An immediate consequence is that if O is a given
order of some number field, then the irreducible binary forms F ∈ Z[X,Y ]
with OF = O lie in finitely many equivalence classes. From a result of Delone
and Faddeev [3, Chap. II, §15] it follows that for each cubic order O there is
precisely one equivalence class of irreducible binary cubic forms F ∈ Z[X,Y ]
such that OF = O. For degree larger than 3 this is no longer true: Simon [9]
gave examples of number fields K of degree 4 and of arbitrarily large degree
whose ring of integers OK cannot be represented as OF for any irreducible
binary form F .

In the present paper, we prove the following results:

1) Let O be an order whose quotient field has degree r ≥ 4 over Q. Then

the irreducible binary forms F ∈ Z[X,Y ] with OF ∼= O lie in at most 224r3

equivalence classes.
2) Let K be an algebraic number field of degree r ≥ 3 and let c be a

positive integer. Then for every ε > 0 the set of irreducible binary forms
F ∈ Z[X,Y ] such that K = Q(θF ) for some zero θF of F (X, 1) and such
that D(F ) = c2DK is contained in the union of at most α(r, ε)c2/r(r−1)+ε

equivalence classes; here α(r, ε) depends only on r and ε. We show that in
this upper bound the exponent of c cannot be replaced by a quantity smaller
than 2/r(r − 1).

More generally, we prove analogues of 1) and 2) for binary forms having
their coefficients in the ring of S-integers of a number field. Further, we
prove a generalization of 2) for reducible binary forms. Our precise results
are stated in Section 2 (Theorems 2.1–2.3). Our approach is similar to that
of Birch and Merriman [2], with the necessary modifications. In our proofs
we use among other things an upper bound by Beukers and Schlickewei
[1, Theorem 1] for the numbers of solutions of the equation x + y = 1 in
unknowns x, y from a multiplicative group of finite rank.

2. Statements of the results

Terminology. Before stating our results we introduce the necessary ter-
minology. Let F (X,Y ) = a0X

r + a1X
r−1Y + . . .+ arY

r be a binary form.
Writing F as

F (X,Y ) = λ
r∏

i=1

(αiX − βiY )
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we may express the discriminant of F as

(2.1) D(F ) = λ2r−2
∏

1≤i<j≤r
(αiβj − αjβi)2.

This is independent of the choice of λ and of the αi, βi. It is well known that
D(F ) is a homogeneous polynomial of degree 2r − 2 in Z[a0, . . . , ar]. For a
matrix U =

(
a b
c d

)
we define FU (X,Y ) := F (aX + bY, cX + dY ). Then (2.1)

gives

(2.2) D(FU ) = (detU)r(r−1)D(F ).

Now let R be an integral domain with quotient field of characteristic 0.

Two binary forms F,G ∈ R[X,Y ] are called R-equivalent, notation F
R∼ G,

if G = FU for some matrix U ∈ GL2(R), i.e., with detU ∈ R∗. (If R = Z
we simply speak about equivalence.) It is then clear from (2.2) that for any
two binary forms F,G ∈ R[X,Y ] we have

(2.3) G
R∼ F ⇒ D(G) = εD(F ) for some ε ∈ R∗.

An important invariant of an irreducible binary form F ∈ R[X,Y ] is its
invariant ring or invariant order OF,R (see Simon [9]). By an R-order of
degree r (or just an order of degree r if R = Z) we mean an integral domain
O such that O is an overring of R, the domain O is finitely generated as an
R-module, and the quotient field of O has degree r over the quotient field
of R.

The order OF,R (or just OF if R = Z) is defined as follows. Let F =
a0X

r+a1X
r−1Y +. . .+arY

r be a binary form in R[X,Y ] which is irreducible
over the quotient field of R. Let θF be a zero of F (X, 1). ThenOF,R is defined
to be the R-module with basis

(2.4) ω1 = 1, ω2 = a0θF , ω3 = a0θ
2
F + a1θF , . . . ,

ωr = a0θ
r−1
F + a1θ

r−2
F + . . .+ ar−2θF .

We recall some facts proved by Simon [9] about OF,R. First OF,R is an
R-order of degree r. Second, if G is another binary form in R[X,Y ] then

(2.5) F
R∼ G ⇒ OF,R ∼= OG,R (as R-algebras).

Third

(2.6) D(ω1, . . . , ωr) = D(F ).

Here D(ω1, . . . , ωr) denotes the discriminant of ω1, . . . , ωr, that is, the de-
terminant det(Tr(ωiωj)1≤i,j≤r), where Tr denotes the trace map from the
quotient field of OF,R to that of R.
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Our results will be established for binary forms having their coefficients
in the ring of S-integers of a number field. Therefore we recall some notions
about such rings.

Let k be a number field, and {|·|v : v ∈Mk} be a maximal set of pairwise
inequivalent absolute values of k. We will refer to Mk as the set of places
of k. Let S be a finite subset of Mk containing all infinite places of k (i.e.,
the places v such that | · |v is archimedean). Then the ring of S-integers and
its unit group, the group of S-units, are defined by

OS = {x ∈ k : |x|v ≤ 1 for v 6∈ S}, O∗S = {x ∈ k : |x|v = 1 for v 6∈ S},
respectively.

Two ideals a, b of OS are said to belong to the same ideal class of OS if
there are non-zero λ, µ ∈ OS such that λa = µb. Denote by hm(OS) the num-
ber of ideal classes A ofOS such that Am is the class of principal ideals ofOS.
For a finite extension K of k, let dK/k,S denote the relative S-discriminant,
i.e., the ideal of OS generated by all discriminants DK/k(ω1, . . . , ωr), where
ω1, . . . , ωr runs through all k-bases of K with ω1, . . . , ωr integral over OS.
The absolute norm of an ideal a of OS is defined by NS(a) := #OS/a.

Given an irreducible binary form F ∈ OS[X,Y ] we write OF,S for its
invariant order OF,OS .

New results. Let k, OS be as above. From results of Birch and Merriman
from 1972 [2] (ineffective) and Evertse and Győry from 1991 [5] (effective)
it follows that for given r ≥ 2 and D ∈ OS with D 6= 0, the binary forms
F ∈ OS[X,Y ] with degree r and with D(F ) ∈ DO∗S lie in finitely many
OS-equivalence classes. Together with (2.6) this implies that for any given
OS-order O, the binary forms F ∈ OS[X,Y ] which are irreducible over k
and for which OF,S = O lie in finitely many OS-equivalence classes. From
a result of Evertse and Győry [4, Thm. 11] it can be deduced that for a
given OS-order O, the monic binary forms F ∈ OS[X,Y ] (i.e., such that
F (1, 0) = 1) with OF,S = O lie in at most c(r)s OS-equivalence classes,
where c(r) depends only on r and where s = #S. Our first result extends
this to non-monic binary forms.

Theorem 2.1. Let S ⊂Mk be a finite set of cardinality s, containing all
infinite places. Let O be an OS-order of degree r ≥ 3. Then there are only
finitely many OS-equivalence classes of binary forms F ∈ OS [X,Y ] such
that F is irreducible in k[X,Y ] and

(2.7) OF,S ∼= O (as OS-algebras).

The number of these classes is bounded above by

(2.8)

{
224r3s if r is odd ,

224r3sh2(OS) if r is even.
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In Section 9 we show that the factor h2(OS) is necessary if r is even.
In the next corollary we state the consequence for OS = Z. Recall that

in this case k = Q and #S = 1.

Corollary 2.1. Let O be an order of degree r ≥ 3. Then the number of
equivalence classes of binary forms F ∈ Z[X,Y ] such that F is irreducible

in Q[X,Y ] and OF ∼= O is at most 224r3
.

We now state our second result. For an ideal a of OS , denote by ωS(a)
the number of distinct prime ideals p of OS with p | a (or the number of
v 6∈ S such that |x|v < 1 for every x ∈ a). Further, for an ideal a of OS and
for α ∈ N, denote by τα(a) the number of tuples of ideals (d1, . . . , dα) of OS
such that their product

∏α
i=1 di divides a. In the theorems below, the ideal

of OS generated by a is denoted by [a].
Given a finite extension K of k, we denote by F(OS,K) the set of binary

forms F such that F ∈ OS[X,Y ], F is irreducible in k[X,Y ], and there
is θF such that F (θF , 1) = 0 and K = k(θF ). By Lemma 4.1, for every
F ∈ F(OS,K) there is an ideal c of OS such that

(2.9) [D(F )] = c2 · dK/k,S .
Theorem 2.2. Let S be as in Theorem 2.1, and let K be an extension

of k of degree r ≥ 3. Then for every non-zero ideal c of OS , there are at
most finitely many OS-equivalence classes of binary forms F ∈ F(OS,K)
with (2.9). The number of these classes is at most

(2.10) 224r3(s+ωS(c)) · τr(r−1)/2(c2)
( ∑

dr(r−1)/2|c
NS(d)

)
· h(r,OS)

where

h(r,OS) = 1 if r is odd , h(r,OS) = h2(OS) if r is even.

Here the sum is taken over all ideals d of OS such that dr(r−1)/2 divides c.

We give again the consequence for OS = Z. Given a non-zero integer a,
denote by ω(a) the number of distinct primes dividing a, and for α ∈ N
denote by τα(a) the number of tuples of positive integers (d1, . . . , dα) such
that

∏α
i=1 di divides a.

Corollary 2.2. Let K be a number field of degree r ≥ 3, and let c be
a positive integer. Then the irreducible binary forms F ∈ Z[X,Y ], for which
Q(θF ) = K for some zero θF of F (X, 1), and for which

D(F ) = c2DK

lie in at most
224r3(1+ω(c)) · τr(r−1)/2(c2)

( ∑

dr(r−1)/2|c
d
)

equivalence classes.
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Theorem 2.2 will be deduced from Theorem 2.1 as follows. Let S ′ consist
of the places in S and those places v 6∈ S such that |x|v < 1 for every
x ∈ c. Then if F ∈ F(OS,K) satisfies (2.9), then D(F ) · OS′ = dK/k,S′ and
so OF,S′ = OS′ . Now Theorem 2.1 yields an upper bound for the number
of OS′-equivalence classes containing the binary forms F ∈ F(OS,K) with
(2.9) and from the arguments in Section 4 one obtains an upper bound for
the number of OS-equivalence classes containing the forms lying in a single
OS′-equivalence class.

We state a generalization of Theorem 2.2 for reducible forms. Let K0,
K1, . . . ,Kt be (not necessarily distinct) finite extensions of k. Denote by
F(OS,K0, . . . ,Kt) the set of binary forms F with the following proper-

ties: there are binary forms F0, . . . , Ft with F =
∏t
i=0 Fi, such that Fi ∈

OS[X,Y ], Fi is irreducible in k[X,Y ], and there is a θFi such that Fi(θFi) = 0
and k(θFi) = Ki (i = 0, . . . , t). By Lemma 4.1, for every binary form
F ∈ F(OS,K0, . . . ,Kt) there is an ideal c in OS such that

(2.11) [D(F )] = c2dK0/k,S . . . dKt/k,S.

Theorem 2.3. Let S be as in Theorems 2.1 and 2.2, and let K0,K1, . . .
. . . ,Kt be finite extensions of k. Put ri := [Ki : k] (i = 0, . . . , t) and
r := r0 + . . . + rt. Assume that r0 ≥ 3. Then for every non-zero ideal c of
OS there are at most finitely many OS-equivalence classes of binary forms
F ∈ F(OS,K0, . . . ,Kt) with (2.11). The number of these classes is at most

(2.12) 224r3(s+ωS(c)) · τr(r−1)/2(c2)
( ∑

dr(r−1)/2|c
NS(d)

)
· h(r0,OS)

where

h(r0,OS) = 1 if r0 is odd , h(r0,OS) = h2(OS) if r0 is even.

The consequence of Theorem 2.3 for OS = Z is as follows.

Corollary 2.3. Let K0, . . . ,Kt be number fields. Put ri := [Ki : Q]
(i = 0, . . . , t) and r := r0 + . . .+ rt. Assume that r0 ≥ 3. Let c be a positive
integer. Then the binary forms F for which there are irreducible binary forms
F0, . . . , Ft ∈ Z[X,Y ] with F =

∏t
i=0 Fi such that Ki = Q(θFi) for some zero

θFi of Fi(X, 1), and for which

D(F ) = c2DK0 . . .DKt ,

lie in at most
224r3(1+ω(c)) · τr(r−1)/2(c2)

( ∑

dr(r−1)/2|c
d
)

equivalence classes.

Unfortunately, our method of proof of Theorem 2.3 requires some unnat-
ural technical conditions on the binary forms F under consideration, namely
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that they factor into binary forms Fi with coefficients in OS and that F0 has
degree r0 ≥ 3. If OS is a principal ideal domain (for instance when k = Q),
then the first condition is no restriction. For in that case, if a binary form
F ∈ OS[X,Y ] is reducible over k its irreducible factors can always be cho-
sen from OS [X,Y ]. But the latter is not true if OS is not a principal ideal
domain.

Allowing these technical conditions, we give a relatively simple proof of
Theorem 2.3 based on Theorem 2.2 and on a result on resultant equations
(see Proposition 8.1) which may be of some independent interest. It may be
possible to remove the technical conditions from Theorem 2.3 at the price
of more complications.

Theorem 2.3 implies that the number of OS-equivalence classes of binary
forms F ∈ F(OS,K0, . . . ,Kt) with (2.11) is at most

(2.13) α(k, S, r0, . . . , rt, ε)NS(c)2/r(r−1)+ε

for every ε > 0, where α depends only on the parameters between the
parentheses. In Section 9 we will show that the bound (2.13) is almost best
possible in terms of NS(c) in the following sense: for each tuple (K0, . . . ,Kt)
of finite extensions of k, there is a sequence of ideals c of OS with NS(c)→
∞, such that the number of OS-equivalence classes of binary forms F ∈
F(OS,K0, . . . ,Kt) with (2.11) is at least βNS(c)2/r(r−1), where β is a posi-
tive constant independent of c.

3. Preliminaries. In our proofs it will be necessary to keep track not
only of binary forms but also of their zeros. To facilitate this, we introduce
so-called augmented forms, which are tuples consisting of a binary form and
of some of its zeros.

Given a field K, we define P1(K) := K∪{∞}. Every matrix A =
(
a b
c d

)
∈

GL2(K) induces a projective transformation

〈A〉 : P1(K)→ P1(K) : ξ 7→ aξ + b

cξ + d

(with (aξ+b)/(cξ+d) =∞ if c 6= 0 and ξ = −d/c; (a∞+b)/(c∞+d) = a/c
if c 6= 0 and ∞ if c = 0). Thus, two matrices A,B ∈ GL2(K) induce the
same projective transformation if and only if B = λA for some λ ∈ K∗.

Now let k be a number field which is fixed henceforth. Let K be a finite
extension of k. An augmented K-form is a pair F ∗ = (F, θF ) consisting
of a binary form F which is irreducible in k[X,Y ], and θF ∈ K such that
F (θF , 1) = 0 and k(θF ) = K. We agree that k(∞) = k and that for every
c ∈ k∗, (cY,∞) is an augmented k-form.

Let K0, . . . ,Kt be a sequence of finite extensions of k. An augmented
(K0, . . . ,Kt)-form is a tuple F ∗ = (F, θ0,F , . . . , θt,F ) with the property that
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there are binary forms F0, . . . , Ft such that F =
∏t
i=0 Fi, and (Fi, θi,F )

is an augmented Ki-form for i = 0, . . . , t. We define the discriminant and
degree of F ∗ by D(F ∗) := D(F ), degF ∗ := degF , respectively. Notice that
degF ∗ =

∑t
i=0[Ki : k].

For an augmented (K0, . . . ,Kt)-form F ∗ = (F, θ0,F , . . . , θt,F ) and for
A ∈ GL2(k), λ ∈ k∗ we define

(3.1) λF ∗A := (λFA, 〈A〉−1θ0,F , . . . , 〈A〉−1θt,F ).

Clearly, λF ∗A is again an augmented (K0, . . . ,Kt)-form. Notice that if G∗ =
λF ∗A then F ∗ = λ−1G∗A−1 ; further if G∗ = λF ∗A, H∗ = µG∗B for some A,B ∈
GL2(k), λ, µ ∈ k∗ then H∗ = λµF ∗AB.

Let R be a subring of k. Two augmented (K0, . . . ,Kt)-forms F ∗, G∗ are

called R-equivalent, notation F ∗ R∼ G∗, if G∗ = F ∗U for some U ∈ GL2(R),

and weakly R-equivalent, notation F ∗
R≈ G∗, if G∗ = λF ∗U for some U ∈

GL2(R) and λ ∈ R∗.
Let

Mns
2 (R) =

{(
a b

c d

)
: a, b, c, d ∈ R, det

(
a b

c d

)
6= 0

}
.

Then for two augmented (K0, . . . ,Kt)-forms F ∗, G∗ we write F ∗
R≺ G∗ if

G∗ = F ∗A for some A ∈Mns
2 (R).

In the lemma below we have collected some simple facts.

Lemma 3.1. Let r :=
∑t

i=0[Ki : k] ≥ 3 and let R be a subring of k.

(i) Let F ∗ be an augmented (K0, . . . ,Kt)-form, U ∈ GL2(k) and λ ∈ k∗.
Then λF ∗U = F ∗ if and only if U = %

(
1 0
0 1

)
with % ∈ k∗ and %r = λ−1.

(ii) Let F ∗, G∗ be two augmented (K0, . . . ,Kt)-forms and suppose that
G∗ = λ0F

∗
U0

for some U0 ∈ GL2(k), λ0 ∈ k∗. Then for any other U ∈
GL2(k), λ ∈ k∗ we have G∗ = λF ∗U if and only if U = %U0 with % ∈ k∗ and
%r = λ0/λ.

(iii) Let F ∗, G∗,H∗ be augmented (K0, . . . ,Kt)-forms such that F ∗
R≺ G∗,

G∗
R≺ H∗. Then F ∗

R≺ H∗.
(iv) Let F ∗, G∗ be two augmented (K0, . . . ,Kt)-forms. Then

F ∗
R≺ G∗, G∗ R≺ F ∗ ⇔ F ∗ R∼ G∗.

Proof. (i) Let F ∗ = (F, θ0,F , . . . , θt,F ). For i = 0, . . . , t, put ri := [Ki : k]

and denote by θ
(1)
i,F , . . . , θ

(ri)
i,F the conjugates of θi,F over k (if θi,F = ∞,

then Ki = k, ri = 1 and θ
(1)
i,F = ∞). By assumption, 〈U〉−1θi,F = θi,F for

i = 0, . . . , t and therefore, 〈U〉−1θ
(j)
i,F = θ

(j)
i,F for i = 0, . . . , t, j = 1, . . . , ri.
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Thus, 〈U〉 has
∑t

i=0[Ki : k] = r ≥ 3 fixpoints. It follows that 〈U〉 is the

identity on P1, hence U = %
(

1 0
0 1

)
with % ∈ k∗. Now since λFU = F , we

have F (X,Y ) = λF (%X, %Y ) = λ%rF (X,Y ), hence %r = λ−1. Conversely, if
U = %

(
1 0
0 1

)
with %r = λ−1, then clearly, λF ∗U = F ∗.

(ii) Let G∗ = λF ∗U . Then (λ0λ
−1)F ∗U0U−1 = F ∗. Apply (i).

(iii) Obvious.

(iv) ⇐ is clear. Assume F ∗
R≺ G∗, G∗

R≺ F ∗. Then there are A,B ∈
Mns

2 (R) such that G∗ = F ∗A, F ∗ = G∗B. Thus F ∗ = F ∗AB. Hence by (i),

AB = %
(

1 0
0 1

)
with %r = 1. Now % ∈ R and A−1 = %−1B = %r−1B ∈Mns

2 (R).

So A ∈ GL2(R) and F ∗ R∼ G∗.
Let again S be a finite subset of Mk containing all infinite places. For

v 6∈ S (i.e. v ∈ Mk \ S) define the local ring Ov = {x ∈ k : |x|v ≤ 1}.
We need a few probably well known local-to-global results, relating (weak)
Ov-equivalence of augmented forms for v 6∈ S to OS-equivalence. We have
inserted the proofs for lack of a good reference.

Lemma 3.2. Let F ∗, G∗ be two augmented (K0, . . . ,Kt)-forms such that
F ∗, G∗ are Ov-equivalent for every v 6∈ S. Then F ∗, G∗ are OS-equivalent.

Proof. By assumption, for every v 6∈ S there is Uv ∈ GL2(Ov) such that
G∗ = F ∗Uv . By Lemma 3.1(ii), for v 6∈ S we have Uv = %vU0 where U0 is one
of the matrices Uv (v 6∈ S), and %v ∈ k∗, %rv = 1. Then clearly, G∗ = F ∗U0

and U0 ∈ GL2(Ov) for v 6∈ S, so U0 ∈ GL2(OS). Lemma 3.2 follows.

The following result is more involved.

Lemma 3.3. Let C∗ be a collection of augmented (K0, . . . ,Kt)-forms such
that any two F ∗, G∗ ∈ C∗ are weakly Ov-equivalent for every v 6∈ S. Let
s := #S. Then C∗ is contained in the union of at most rs OS-equivalence
classes if r is odd , and in the union of at most rsh2(OS) OS-equivalence
classes if r is even.

Before proving Lemma 3.3 we make some preparations.
If R is a domain with quotient field K, then by a fractional R-ideal, we

mean a subset a 6= {0} of K such that λa is an ideal of R for some λ ∈ K∗.
For v 6∈ S, denote by pv the prime ideal of OS corresponding to v, i.e.,
pv = {x ∈ OS : |x|v < 1}, and by ordv the discrete valuation corresponding

to v. Thus, [x] =
∏
v 6∈S p

ordv(x)
v for x ∈ k∗.

Let F ∗, G∗ ∈ C∗. Thus, for every v 6∈ S there are Uv ∈ GL2(Ov), λv ∈ O∗v
such that G∗ = λvF

∗
Uv

. Choose any U ∈ GL2(k), λ ∈ k∗ such that G∗ = λF ∗U .
Then by Lemma 3.1(ii), for each v 6∈ S there is a %v ∈ k∗ such that

(3.2) Uv = %vU, λv = %−rv λ.
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Define the OS-fractional ideal

(3.3) a(F ∗, G∗) :=
∏

v 6∈S
pordv(%v)
v .

This is well defined, since for all but finitely many v 6∈ S we have λ ∈ O∗v,
whence %v ∈ O∗v, whence ordv(%v) = 0. Let A(F ∗, G∗) denote the ideal class
of a(F ∗, G∗), that is, {µ · a(F ∗, G∗) : µ ∈ k∗}.

The fractional ideal a(F ∗, G∗) depends on the particular choice of Uv, λv
(v 6∈ S), U, λ, but its ideal class A(F ∗, G∗) does not. Indeed, for v 6∈ S,
choose U ′v ∈ GL2(Ov), λ′v ∈ O∗v such that G∗ = λ′vF

∗
U ′v

and then choose

U ′ ∈ GL2(k) and λ′ ∈ k∗ such that G∗ = λ′F ∗U ′ . By Lemma 3.1(ii) there are

%′v ∈ k∗ such that U ′v = %′vU
′ and λ′v = %′v

−rλ′ for v 6∈ S. This gives rise to a

fractional ideal a′(F ∗, G∗) =
∏
v 6∈S p

ordv(%′v)
v . Again by Lemma 3.1(ii), there

is µ ∈ k∗ such that U ′ = µU and λ′ = µ−rλ. This implies for v 6∈ S that
U ′v = %′vµ%

−1
v Uv, hence %′vµ%

−1
v ∈ O∗v, and so ordv(%

′
v) = ordv(%v)− ordv(µ).

Therefore, a′(F ∗, G∗) = µ−1a(F ∗, G∗).

Lemma 3.4. (i) Let F ∗, G∗ ∈ C∗. Then A(F ∗, G∗)gcd(r,2) is the principal
ideal class.

(ii) Let F ∗, G∗ ∈ C∗ and suppose that A(F ∗, G∗) is the principal ideal
class. Then F ∗, G∗ are weakly OS-equivalent.

(iii) Let F ∗, G∗,H∗ ∈ C∗. Then A(F ∗,H∗) = A(F ∗, G∗) · A(G∗,H∗).

Proof. (i) According to (3.2), for v 6∈ S we have

ordv(%
2
v) = ordv(detUv(detU)−1) = ordv((detU)−1),

ordv(%
r
v) = ordv(λλ

−1
v ) = ordv(λ),

and so according to (3.3), a(F ∗, G∗)2 = [detU ]−1 and a(F ∗, G∗)r = [λ],
where [a] denotes the OS-fractional ideal generated by a. This implies (i).

(ii) Let a(F ∗, G∗) be given by (3.2), (3.3). Then by our assumption,
a(F ∗, G∗) = [%] with % ∈ k∗. This implies %%−1

v ∈ O∗v for v 6∈ S. Put V :=
%U , µ := %−rU . Then G∗ = µF ∗V . Further, by (3.2), for v 6∈ S we have
Uv = %v%

−1V , λv = (%v%
−1)−rµ, which implies V ∈ GL2(Ov) and µ ∈ O∗v.

Hence V ∈ GL2(OS) and µ ∈ O∗S. Our assertion (ii) follows.
(iii) Straightforward computation.

Proof of Lemma 3.3. Fix F ∗ ∈ C∗. We subdivide C∗ into classes such that
two augmented forms G∗1, G

∗
2 ∈ C∗ are in the same class if and only if the

corresponding ideal classes A(F ∗, G∗1), A(F ∗, G∗2) coincide. Let F ∗1 , . . . , F
∗
h

be a full system of representatives for these classes. Notice that by Lemma
3.4(i), we have h ≤ 1 if r is odd, and h ≤ h2(OS) if r is even.

Fix i ∈ {1, . . . , h} and take any G∗ from the class represented by F ∗i .
According to Lemma 3.4(iii), A(F ∗i , G

∗) is the principal ideal class. So by
Lemma 3.4(ii), there are U ∈ GL2(OS) and ε ∈ O∗S such that G∗ = ε(F ∗i )U .
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The group O∗S is the direct product of s = #S cyclic groups, with gener-
ators ε1, . . . , εs, say. So we may write ε = εw1

1 . . . εwss ηr with w1, . . . , wr ∈
{0, . . . , r − 1} and η ∈ O∗S. Consequently, G∗ = εw1

1 . . . εwss (F ∗i )ηU .
It follows that C∗ decomposes into at most rsh OS-equivalence classes,

each represented by εw1
1 . . . εwss F ∗i for certain w1, . . . , ws ∈ {0, . . . , r − 1},

i ∈ {1, . . . , h}. Lemma 3.3 follows.

4. From k-equivalence classes to OS-equivalence classes. We keep
the notation introduced in §§2–3. Let K0, . . . ,Kt be a sequence of finite
extensions of k. Let C∗ be a set of augmented (K0, . . . ,Kt)-forms which are
all k-equivalent to one another, and such that every F ∗ = (F, θ0,F , . . . , θt,F )
∈ C∗ satisfies F ∈ OS[X,Y ] and (2.11). We will show that C∗ is contained in
finitely many OS-equivalence classes and estimate from above the number of
these classes. We first localize at a place v 6∈ S, and estimate from above the
number of Ov-equivalence classes containing C∗. Then we use Lemma 3.2.

Let v ∈Mk be a finite place. Denote by Ov the local ring of v and by pv
the maximal ideal of Ov, i.e.,

Ov = {x ∈ k : |x|v ≤ 1}, pv = {x ∈ k : |x|v < 1}.
Put Nv := #(Ov/pv).

Given a finite extension L of k, we denote by OL,v the integral closure of
Ov in L. The ring OL,v is a principal ideal domain with finitely many prime
ideals. Further, it is a free Ov-module. The v-discriminant ideal of L/k is
given by the ideal of Ov,
(4.1) dL/k,v = DL/k(α1, . . . , αr) · Ov,
where α1, . . . , αr is any Ov-module basis of OL,v. This does not depend on
the choice of α1, . . . , αr.

We will often denote the fractional OL,v-ideal generated by a1, . . . , am
by [a1, . . . , am]; from the context it will always be clear in which field L we
are working. Given a polynomial f ∈ L[X1, . . . ,Xm], we denote by [f ] the
fractional OL,v-ideal generated by the coefficients of f . Then according to
Gauss’s Lemma,

(4.2) [fg] = [f ][g] for f, g ∈ L[X1, . . . ,Xm].

Below we need some properties of resultants. The resultant of two binary
forms F = a

∏r
i=1(X − αiY ), G = b

∏s
j=1(X − βjY ) is given by

(4.3) R(F,G) = asbr
r∏

i=1

s∏

j=1

(αi − βj).

The resultant R(F,G) is a polynomial in the coefficients of F and G with
rational integral coefficients. It is homogeneous of degree s in the coefficients
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of F and homogeneous of degree r in the coefficients of G. For binary forms
F0, . . . , Ft we have

(4.4) D(F ) =
( t∏

i=0

D(Fi)
)
·
∏

0≤i<j≤t
R(Fi, Fj)

2.

Now let K0, . . . ,Kt be a sequence of finite extensions of k. Denote the
normal closure over k of the compositum K0 . . .Kt by L. Put ri := [Ki : k]
(i = 0, . . . , t) and r := r0 + . . . + rt. For i = 0, . . . , t let ξ 7→ ξ(i,j) (j =
1, . . . , ri) denote the k-isomorphic embeddings of Ki into L.

We prove some properties of augmented (K0, . . . ,Kt)-forms.

Lemma 4.1. Let F ∗ = (F, θ0,F , . . . , θt,F ) be an augmented (K0, . . . ,Kt)-
form.

(i) Let v ∈ Mk be a finite place and suppose F ∈ Ov[X,Y ]. Then there
is an ideal cv of Ov such that

D(F ) · Ov = c2
vdK0/k,v . . . dKt/k,v.

(ii) Suppose that F ∈ OS [X,Y ]. Then there is an ideal c of OS such that

D(F ) · OS = c2dK0/k,S . . . dKt/k,S.

Proof. (ii) follows by applying (i) for every v 6∈ S. We prove (i). Since
Ov is a principal ideal domain we may write F = F0F1 . . . Ft, where F ∗i =
(Fi, θi,F ) is an augmented Ki-form and Fi ∈ Ov[X,Y ] for i = 0, . . . , t. In
view of (4.4) and since R(Fi, Fj) ∈ Ov for all i, j, it suffices to show that
D(Fi) · Ov = c2

v,idKi/k,v for some ideal cv,i of Ov.
Write Fi(X,Y ) = a0X

ri + a1X
ri−1Y + . . . + ariY

ri , and put ω1 = 1,

ω2 = a0θi,F , ω3 = a0θ
2
i,F +a1θi,F , . . . , ωri = a0θ

ri−1
i,F +a1θ

ri−2
i,F +. . .+ari−2θi,F .

Let {α1, . . . , αri} be an Ov-basis of OKi,v. Then since ω1, . . . , ωri ∈ OKi,v
we have ωi =

∑ri
j=1 ξijαj with ξij ∈ Ov. Invoking (2.6) we obtain

D(Fi) · Ov = DKi/k(ω1, . . . , ωri) · Ov
= det(ξij)

2DKi/k(α1, . . . , αri) · Ov = det(ξij)
2dKi/k,v.

Now Lemma 4.1 follows.

Let again F ∗ = (F, θ0,F , . . . , θt,F ) be an augmented (K0, . . . ,Kt)-form.
Henceforth we fix a finite place v ∈Mk and assume that F ∈ Ov[X,Y ]. For
i = 0, . . . , t, choose αi,F , βi,F such that

(4.5)
αi,F , βi,F ∈ OKi,v,

αi,F
βi,F

= θi,F , [αi,F , βi,F ] = [1] if θi,F 6=∞,

αi,F ∈ O∗v, βi,F = 0 if θi,F =∞;
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this is possible since OKi,v is a principal ideal domain. We may write

(4.6) F = εF

t∏

i=0

ri∏

j=1

(β
(i,j)
i,F X − α(i,j)

i,F Y ) with εF ∈ Ov, εF 6= 0.

Indeed, a priori we know only that εF ∈ k∗. But by Gauss’s Lemma we have

(4.7) [F ] = [εF ]
t∏

i=0

ri∏

j=1

[β
(i,j)
i,F , α

(i,j)
i,F ] = [εF ],

and thus εF ∈ Ov follows.
To pass from double to single indices we define a map

(4.8) ϕ : 1, . . . , r → (0, 1), . . . , (0, r0), . . .

. . . , (1, 1), . . . , (1, r1), . . . , (t, 1), . . . , (t, rt),

meaning that ϕ maps 1, . . . , r to (0, 1), . . . , (t, rt), respectively. We define
the ideals of OL,v:

(4.9) dkl(F
∗) = [α

(i1,j1)
i1,F

β
(i2,j2)
i2,F

− α(i2,j2)
i2,F

β
(i1,j1)
i1,F

]

for k, l = 1, . . . , r, k < l, where ϕ(k) = (i1, j1), ϕ(l) = (i2, j2). Notice that
the ideals dkl(F

∗) are independent of the choice of αi,F , βi,F in (4.5). By
(4.6), (2.1), we have

(4.10)
∏

1≤k<l≤r
dkl(F

∗)2 ⊇ [D(F )].

Further, if G∗ is an augmented (K0, . . . ,Kt)-form which is Ov-equivalent to
F ∗ then

(4.11) dkl(F
∗) = dkl(G

∗) for 1 ≤ k < l ≤ r.
The latter can be checked easily by taking U ∈ GL2(Ov) such that G∗ = F ∗U
and putting

( αi,G
βi,G

)
:= U−1

( αi,F
βi,F

)
, θi,G := 〈U〉−1θi,F for i = 0, . . . , t. Then

(4.5), (4.6), (4.9) hold with G,G∗ in place of F,F ∗ everywhere and we obtain
dkl(G

∗) = (detU−1) · dkl(F ∗) = dkl(F
∗) since detU−1 ∈ O∗v.

Lemma 4.2. There are ideals dkl of OL,v independent of F ∗ such that

dkl(F
∗) ⊆ dkl for 1 ≤ k < l ≤ r,(4.12) ∏

1≤k<l≤r
d2
kl ⊆ dK0/k,v . . . dKt/k,v.(4.13)

Proof. Take i ∈ {0, . . . , t} and choose an Ov-basis {αi,1, . . . , αi,ri} of
OKi,v. Then there is a polynomial IKi/k ∈ Ov[X1, . . . ,Xri ] (the index form
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of Ki/k with respect to αi,1, . . . , αi,ri) such that

∏

1≤j1<j2≤ri

( ri∑

m=1

α
(i,j1)
i,m Xm −

ri∑

m=1

α
(i,j2)
i,m Xm

)2

= DKi/k(αi,1, . . . , αi,ri)I
2
Ki/k(X1, . . . ,Xri).

Define the ideal of OL,v:

(4.14) bi,j1,j2 := [α
(i,j1)
i,1 − α(i,j2)

i,1 , . . . , α
(i,j1)
i,ri

− α(i,j2)
i,ri

].

Then by Gauss’s Lemma

(4.15)
∏

1≤j1<j2≤ri
b2
i,j1,j2 ⊆ [DKi/k(αi,1, . . . , αi,ri)] = dKi/k,v.

Moreover ξ(i,j1) − ξ(i,j2) ∈ bi,j1,j2 for any ξ ∈ OKi,v. Hence for the numbers
αi,F , βi,F chosen in (4.9) we have

(4.16) α
(i,j1)
i,F β

(i,j2)
i,F − α(i,j2)

i,F β
(i,j1)
i,F ∈ bi,j1,j2 (1 ≤ j1 < j2 ≤ ri).

Let ϕ be the map from (4.8). Define dkl by

(4.17) dkl =

{
bi,j1,j2 if ϕ(k) = (i, j1), ϕ(l) = (i, j2),

[1] if ϕ(k) = (i1, j1), ϕ(l) = (i2, j2) with i1 6= i2.

Then (4.12), (4.13) follow at once from (4.16), (4.17), (4.10).

Let cv = cv(F
∗) be the ideal from Lemma 4.1(i). Define %v(F

∗) ∈ Z by

cv = p
%v(F ∗)
v . Thus, [D(F )] = p

2%v(F ∗)
v

∏t
i=0 dKi/k,v.

Lemma 4.3. Let % be a non-negative integer. Then as the tuple F ∗ =
(F, θ0,F , . . . , θt,F ) runs through the collection of augmented (K0, . . . ,Kt)-
forms with

F ∈ Ov[X,Y ],(4.18)

%v(F
∗) ≤ %,(4.19)

the tuple (dkl(F
∗) : 1 ≤ k < l ≤ r) runs through a set of cardinality at most

(4.20)

(
2%+ 1

2r(r − 1)
1
2r(r − 1)

)

depending only on K0, . . . ,Kt, v, %.

Proof. We define an action of the Galois group Gal(L/k) on the set of
subscripts {1, . . . , r} as follows. Denote byA the set of all r-tuples (γ1, . . . , γr)
with the property that there are ξ0 ∈ K0, ξ1 ∈ K1, . . . , ξt ∈ Kt such that

(γ1, . . . , γr) = (ξ
(0,1)
0 , . . . , ξ

(0,r0)
0 , . . . , ξ

(t,1)
t , . . . , ξ

(t,rt)
t ).
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Then there is a homomorphism τ 7→ τ ∗ from Gal(L/k) to the permutation
group of {1, . . . , r}, such that

(4.21) τ(γk) = γτ∗(k) for (γ1, . . . , γr) ∈ A, k = 1, . . . , r.

Notice that if ϕ(k) = (i, j), then ϕ(τ ∗(k)) = (i, j′) for some j′ ∈ {1, . . . , ri}
where ϕ is the map given by (4.8).

For each k, l ∈ {1, . . . , r}, with k < l, we define the subfield Lkl of L by

(4.22) Gal(L/Lkl) = {τ ∈ Gal(L/k) : τ ∗({k, l}) = {k, l}}
(i.e. τ ∗(k) = k, τ ∗(l) = l, or τ ∗(k) = l, τ ∗(l) = k). We partition the set
of pairs {(k, l) : k, l ∈ {1, . . . , r}, k < l} into orbits C1, . . . , Cn in such a
way that (k1, l1), (k2, l2) belong to the same orbit if and only if {k2, l2} =
τ∗({k1, l1}) for some τ ∈ Gal(L/k). For each m = 1, . . . , n we choose a
representative (km, lm) of Cm. Then if (k, l) runs through Cm, the field Lkl
runs through all conjugates over k of Lkmlm , and so

(4.23) #Cm = [Lkmlm : k] for m = 1, . . . , n.

Now let F ∗ = (F, θ0,F , . . . , θt,F ) be an augmented (K0, . . . ,Kt)-form sat-
isfying (4.18), (4.19). Define the ideals

akl(F
∗) := dkl(F

∗)2d−2
kl (1 ≤ k < l ≤ r).

By Lemma 4.2 we have akl(F
∗) ⊆ OL,v, and by (4.9), (4.14), (4.17), the

ideal akl(F
∗) is generated by elements from the field Lkl. It is clear that the

ideals akl(F
∗) determine dkl(F

∗) (1 ≤ k < l ≤ r) uniquely.
For brevity put

Lm := Lkmlm , am(F ∗) := akmlm(F ∗) ∩ Lm (m = 1, . . . , n);

thus am(F ∗) is an ideal of OLm,v. The ideals a1(F ∗), . . . , an(F ∗) determine
dkl(F

∗) (1 ≤ k < l ≤ r) uniquely. Indeed, they determine the ideals
akmlm(F ∗) (m = 1, . . . , n) of OL,v since the latter are generated by ele-
ments from Lm; and then by taking conjugates over k one obtains all ideals
akl(F

∗) (1 ≤ k < l ≤ r), which, as mentioned before, determine dkl(F
∗)

(1 ≤ k < l ≤ r).
For m = 1, . . . , n let Pm1, . . . ,Pmgm be the prime ideals of OLm,v. Thus,

am(F ∗) = P
wm1(F ∗)
m1 . . .P

wmgm (F ∗)
mgm

where wm1(F ∗), . . . , wmgm(F ∗) are non-negative integers since am(F ∗) is an
ideal of OLm,v. Now the tuple of integers

w(F ∗) := (wm,k(F
∗) : m = 1, . . . , n, k = 1, . . . , gm)

determines uniquely the ideals am(F ∗) (m = 1, . . . , n), hence the ideals
dkl(F

∗) (1 ≤ k < l ≤ r). Therefore it suffices to show that for w(F ∗) there

are at most
(2%+ 1

2
r(r−1)

1
2
r(r−1)

)
possibilities.
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Now on the one hand we have by (4.10), (4.13), Lemma 4.1(i), and
assumption (4.19),
∏

1≤k<l≤r
akl(F

∗) ⊇ D(F )(dK0/k,v . . . dKt/k,v)
−1 · OL,v = c2

v · OL,v ⊇ p2%
v · OL,v,

while on the other hand,

∏

1≤k<l≤r
akl(F

∗) =
n∏

m=1

∏

(k,l)∈Cm
akl(F

∗) =
n∏

m=1

NLm/k(am(F ∗)) · OL,v

=

n∏

m=1

gm∏

h=1

NLm/k(Pmh)wmh(F ∗) · OL,v

=
n∏

m=1

gm∏

h=1

pfmhwmh(F ∗)
v · OL,v

⊆ p
∑n
m=1

∑gm
h=1 wmh(F ∗)

v · OL,v,
where fmh is the residue class degree of Pmh over pv. Therefore,

(4.24)

n∑

m=1

gm∑

h=1

wmh(F ∗) ≤ 2%.

Now gm ≤ [Lm : k] ≤ #Cm for m = 1, . . . , n in view of (4.23). Hence the
number of summands on the left-hand side is at most

n∑

m=1

#Cm = #{(k, l) : 1 ≤ k < l ≤ r} =
1

2
r(r − 1).

By elementary combinatorics, the number of tuples of non-negative integers
w(F ∗) with (4.24) is at most

(
2%+ 1

2r(r − 1)
1
2r(r − 1)

)
.

As observed above, this implies Lemma 4.3.

Let C∗ be a k-equivalence class of augmented (K0, . . . ,Kt)-forms. Given
an ideal cv of Ov and a tuple of ideals {dkl : 1 ≤ k < l ≤ r} of OL,v, let
C∗(cv, {dkl}) denote the collection of augmented (K0, . . . ,Kt)-forms F ∗ =
(F, θ0,F , . . . , θt,F ) such that

F ∗ ∈ C∗;(4.25)

F ∈ Ov[X,Y ];(4.26)

[D(F )] = c2
vdK0/k,v . . . dKt/k,v;(4.27)

dkl(F
∗) = dkl for k, l ∈ {1, . . . , r}, 1 ≤ k < l ≤ r.(4.28)
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Lemma 4.4. Suppose r :=
∑t

i=0[Ki : k] ≥ 3. Let cv be an ideal of Ov
and {dkl : 1 ≤ k < l ≤ r} a collection of ideals from OL,v such that the set
C∗(cv, {dkl}) is not contained in a single Ov-equivalence class. Then

(4.29) cv ⊆ pr(r−1)/2
v , dkl ⊆ pvOL,v for 1 ≤ k < l ≤ r,

and for every F ∗ ∈ C∗(cv, {dkl}) there is an H∗ with

(4.30) H∗
Ov≺ F ∗, H∗ ∈ C∗(p−r(r−1)/2

v cv, {p−1
v dkl}).

Proof. If H∗ = (H, θ0,H , . . . , θt,H) is an augmented form with H ∈
Ov[X,Y ], then dkl(H

∗) (1 ≤ k < l ≤ r) are all ideals of OL,v, and by Lemma
4.1(i), there is an ideal c′v ⊆ Ov such that [D(H)] = c′2v dK0/k,v . . . dKt/k,v. So
if we show that there exists an H∗ with (4.30), then (4.29) follows automat-
ically.

Let F ∗ ∈ C∗(cv, {dkl}). There is a G∗ ∈ C∗(cv, {dkl}) which is not Ov-
equivalent to F ∗. This means that there is a matrix A ∈ GL2(k) with A 6∈
GL2(Ov) such that G∗ = F ∗A. Since Ov is a principal ideal domain, there are
matrices U1, U2 ∈ GL2(Ov) such that

A = U1

(
α 0

0 δ

)
U2

with

(4.31) α, δ ∈ k∗, δ

α
∈ Ov,

(
α 0

0 δ

)
6∈ GL2(Ov).

Put F̃ ∗ := F ∗U1
, G̃∗ := G∗

U−1
2

. Then

(4.32) G̃∗ = F̃ ∗(α 0
0 δ

).

Further, F̃ ∗
Ov∼ F ∗, G̃∗

Ov∼ G∗, so by (4.11), (2.3),

(4.33) F̃ ∗, G̃∗ ∈ C∗(cv, {dkl}).
Clearly, in view of Lemma 3.1(iv), it follows that there is an H∗ with (4.30)
once we have proved that there is an H∗ with

(4.34) H∗
Ov≺ F̃ ∗, H∗ ∈ C∗(p−r(r−1)/2

v cv, {p−1
v dkl}).

By (4.33), (4.27), (4.32), (2.2), we have

[D(F̃ )] = c2
v

t∏

i=0

dKi/k,v = [D(G̃)] = [αδ]r(r−1)[D(F̃ )],

and together with (4.31) this implies

(4.35) αδ ∈ O∗v, δ ∈ Ov, δ 6∈ O∗v.
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Write F̃ ∗ = (F̃ , θ
0,F̃
, . . . , θ

t,F̃
). Then by (4.32) we have

G̃∗ =

(
F̃(α 0

0 δ

), δ
α
θ

0,F̃
, . . . ,

δ

α
θ
t,F̃

)
.

Similarly to (4.5), choose α
i,F̃
, β
i,F̃
∈ OKi,v such that α

i,F̃
/β

i,F̃
= θ

i,F̃
and

[α
i,F̃
, β
i,F̃

] = [1] if θ
i,F̃
6=∞, and α

i,F̃
∈ O∗v, βi,F̃ = 0 if θ

i,F̃
=∞. Likewise,

choose α
i,G̃
, β
i,G̃
∈ OKi,v such that α

i,G̃
/β

i,G̃
= δθ

i,F̃
/α and [α

i,G̃
, β
i,G̃

] = [1]

if θ
i,F̃
6=∞, and α

i,G̃
∈ O∗v, βi,G̃ = 0 if θ

i,F̃
=∞. Then for i = 0, . . . , t there

is a λi ∈ K∗i such that

(4.36) (α
i,G̃
, β
i,G̃

) = λi(δαi,F̃ , αβi,F̃ ) for i = 0, . . . , t.

Take two pairs (i1, j1), (i2, j2) from {(i, j) : i = 0, . . . , t, j = 1, . . . , ri}.
Let k, l ∈ {1, . . . , r} be such that ϕ(k) = (i1, j1), ϕ(l) = (i2, j2), where ϕ is
the map from (4.8). Then by (4.33), (4.36), (4.35) and again (4.33),

dkl = [α
(i1,j1)

i1,G̃
β

(i2,j2)

i2,G̃
− α(i2,j2)

i2,G̃
β

(i1,j1)

i1,G̃
]

= [λ
(i1,j1)
i1

λ
(i2,j2)
i2

αδ(α
(i1,j1)

i1,F̃
β

(i2,j2)

i2,F̃
− α(i2,j2)

i2,F̃
β

(i1,j1)

i1,F̃
)]

= [λ
(i1,j1)
i1

][λ
(i2,j2)
i2

]dkl

and so [λ
(i1,j1)
i1

][λ
(i2,j2)
i2

] = [1]. This holds for any two distinct pairs (i1, j1),
(i2, j2) from {(i, j) : i = 0, . . . , t, j = 1, . . . , ri}. Taking any pair (i, j) from
this set and then any two other pairs (i1, j1), (i2, j2) (which is possible since
by assumption r0 + . . .+ rt = r ≥ 3), we obtain

[λ
(i,j)
i ]2 =

[λ
(i,j)
i ][λ

(i1,j1)
i1

][λ
(i,j)
i ][λ

(i2,j2)
i2

]

[λ
(i1,j1)
i1

][λ
(i2,j2)
i2

]
= [1],

so [λ
(i,j)
i ] = [1] for i = 0, . . . , t, j = 1, . . . , ri. Together with (4.36), this

implies

[δα
i,F̃
, αβ

i,F̃
] = [1] for i = 0, . . . , t.

By (4.35) we have δ ∈ pv, hence δα
i,F̃
∈ pvOL,v for i = 0, . . . , t. This

implies that δα
i,F̃

is divisible by each prime ideal of OL,v, therefore [αβ
i,F̃

] =

[1] for i = 0, . . . , t. Since by (4.35), [α] = [δ−1] ⊇ p−1
v we have β

i,F̃
∈ pvOL,v

for i = 0, . . . , t. So

(4.37) β
(i,j)

i,F̃
∈ pvOL,v for i = 0, . . . , t, j = 1, . . . , ri.

We now construct an H∗ with (4.34). Choose Π with pv = [Π] and take

H∗ = F̃ ∗(
Π−1 0

0 1

) = (F̃(Π−1 0
0 1

),Πθ
0,F̃
, . . . ,Πθ

t,F̃
).
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Clearly,

(4.38) H∗
Ov≺ F̃ ∗.

Similarly to (4.6) we may write

F̃ = ε
F̃

t∏

i=0

ri∏

j=1

(β
(i,j)

i,F̃
X − α(i,j)

i,F̃
Y ) with ε

F̃
∈ Ov.

Now (4.37) implies that

H := F̃(Π−1 0
0 1

) = ε
F̃

t∏

i=0

ri∏

j=1

(Π−1β
(i,j)

i,F̃
X − α(i,j)

i,F̃
Y ) ∈ OL,v[X,Y ].

Since also H ∈ k[X,Y ], we have

(4.39) H ∈ Ov[X,Y ].

Moreover, by (2.2), (4.33),

(4.40) [D(H)] = [Π−r(r−1)D(F̃ )] = (p−r(r−1)/2
v cv)

2dK0/k,v . . . dKt/k,v.

Further, we have Πθ
i,F̃

= α
i,F̃
/Π−1β

i,F̃
and [α

i,F̃
,Π−1β

i,F̃
] = [1] for i =

0, . . . , t. The latter is true since α
i,F̃
,Π−1β

i,F̃
∈ OL,v and [α

i,F̃
, β
i,F̃

] = [1].

So by definition (4.9) and by (4.33) we have for 1 ≤ k < l ≤ r,
dkl(H

∗) = [α
(i1,j1)

i1,F̃
Π−1β

(i2,j2)

i2,F̃
− α(i2,j2)

i2,F̃
Π−1β

(i1,j1)

i1,F̃
](4.41)

= [Π]−1dkl(F̃
∗) = p−1

v dkl,

where ϕ(k) = (i1, j1), ϕ(l) = (i2, j2).
Now by collecting (4.38)–(4.41) and the obvious fact that H∗ is k-

equivalent to F̃ ∗ we infer that indeed H∗ satisfies (4.34). This completes
the proof of Lemma 4.4.

Lemma 4.5. Suppose r :=
∑t

i=0[Ki : k] ≥ 3. Let cv, {dkl : 1 ≤ k < l
≤ r} be as in Lemma 4.4. Suppose that C∗(cv, {dkl}) 6= ∅. Then there is an
augmented (K0, . . . ,Kt)-form F ∗0 = (F0, θ0,F0 , . . . , θt,F0) such that

(4.42) F0 ∈ Ov[X,Y ]

and

(4.43) F ∗0
Ov≺ F ∗ for every F ∗ ∈ C∗(cv, {dkl}).

Proof. We claim that there is a non-negative integer i such that

p−r(r−1)i/2
v cv ⊆ [1], p−iv dkl ⊆ [1] (1 ≤ k < l ≤ r),(4.44)

C∗(p−r(r−1)i/2
v cv, {p−iv dkl}) 6= ∅,(4.45)

C∗(p−r(r−1)i/2
v cv, {p−iv dkl})(4.46)

is contained in a single Ov-equivalence class.
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Indeed, if there is no such integer i, then by inductively applying Lemma
4.1 it follows that there are arbitrarily large integers i with (4.44), (4.45).
But there cannot be arbitrarily large i with (4.44).

Let i0 be the smallest integer i with (4.44), (4.45), (4.46). Pick

F ∗0 = (F0, θ0,F0 , . . . , θt,F0) ∈ C∗(p−r(r−1)i0/2
v cv, {p−i0v dkl}).

Then F0[X,Y ] ∈ Ov[X,Y ]. By Lemma 4.4, for every F ∗ ∈ C∗(cv, {dkl})
there is a sequence

F ∗i0
Ov≺ F ∗i0−1

Ov≺ . . .
Ov≺ F ∗1

Ov≺ F ∗

with F ∗i ∈ C∗(p
−r(r−1)i/2
v cv, {p−iv dkl}) for i = 1, . . . , i0. By (4.46) we have

F ∗0
Ov∼ F ∗i0 and then by (iv) and (iii) of Lemma 3.1, F ∗0

Ov≺ F ∗i0 , F ∗0
Ov≺ F ∗.

This proves Lemma 4.5.

Lemma 4.6. Suppose r :=
∑t

i=0[Ki : k] ≥ 3. Let cv be an ideal of Ov. Let
%v be the non-negative integer given by cv = p

%v
v . Let C∗ be a k-equivalence

class of augmented (K0, . . . ,Kt)-forms. Denote by C∗(cv) the collection of
augmented (K0, . . . ,Kt)-forms F ∗ = (F, θ0,F , . . . , θt,F ) in C∗ satisfying

F ∈ Ov[X,Y ],(4.47)

[D(F )] = c2
vdK0/k,v . . . dKt/k,v.(4.48)

Then C∗(cv) is the union of at most

(4.49)

(
2%v + 1

2r(r − 1)
1
2r(r − 1)

)( [2%v/r(r−1)]∑

i=0

(Nv)i
)

Ov-equivalence classes.

Proof. By Lemma 4.3, we can express the set C∗(cv) as a union of at most(2%v+ 1
2
r(r−1)

1
2
r(r−1)

)
sets C∗(cv, {dkl}) where dkl (1 ≤ k < l ≤ r) are ideals of OL,v.

So it suffices to show that for given ideals cv of Ov and dkl (1 ≤ k < l ≤ r)
of OL,v, the set C∗(cv, {dkl}) is the union of not more than

(4.50)

[2%v/r(r−1)]∑

i=0

(Nv)i

Ov-equivalence classes.
According to Lemma 4.5, there is a fixed augmented (K0, . . . ,Kt)-form

F ∗0 = (F0, θ0,F , . . . , θt,F ) with F0 ∈ Ov[X,Y ] such that F ∗0
Ov≺ F ∗ for every

F ∗ ∈ C∗(cv, {dkl}). That is, for every F ∗ ∈ C∗(cv, {dkl}) there is a matrix
A ∈ Mns

2 (Ov) such that F ∗ = (F ∗0 )A. By Lemma 4.1, there is an ideal cv0 of
Ov such that [D(F0)] = c2

v0dK0/k,v . . . dKt/k,v. Let %v0 ∈ Z≥0 be defined by
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cv0 = p
%v0
v . Then by (4.48), (2.2),

[D(F )] = p2%v
v dK0/k,v . . . dKt/k,v

= [detA]r(r−1)[D(F0)] = [detA]r(r−1)p
2%v0
v dK0/k,v . . . dKt/k,v.

Hence

(4.51) [detA] = puv with u =
2(%v − %v0)

r(r − 1)
.

Choose Π with pv = [Π]. The ideals of Ov are of the shape pmv (m ≥ 0) and
#Ov/pmv has cardinality (Nv)m. From these facts it can be deduced that
every matrix A ∈Mns

2 (Ov) with (4.51) can be expressed as

A = AijU with U ∈ GL2(Ov), Aij =

(
Πu−i 0

βij Π i

)

where i ∈ {0, 1, . . . , u} and where βi1, . . . , βi,(Nv)i is a full system of repre-

sentatives for the residue classes of Ov modulo piv.
Now if F ∗ ∈ C∗(cv, {dkl}) then F ∗ = (F ∗0 )A for some A ∈ Mns

2 (Ov)
with (4.51), hence F ∗ = (F ∗0 )AijU

Ov∼ (F ∗0 )Aij for some i ∈ {0, . . . , u}, j ∈
{1, . . . , (Nv)i}. This implies that C∗(cv, {dkl}) is contained in the union of

u∑

i=0

(Nv)i =

2(%v−%v0)/r(r−1)∑

i=0

(Nv)i ≤
[2%v/r(r−1)]∑

i=0

(Nv)i

Ov-equivalence classes. This proves Lemma 4.6.

We now arrive at the main result of this section. We formulate it both
for augmented forms and for ordinary binary forms.

Proposition 4.7. Let c be an ideal of OS. Let r :=
∑t

i=0[Ki : k] ≥ 3.

(i) Let C∗(c) be a k-equivalence class of augmented (K0, . . . ,Kt)-forms
such that any two elements of C∗(c) are k-equivalent and such that every
F ∗ = (F, θ0,F , . . . , θt,F ) ∈ C∗(c) satisfies

F ∈ OS[X,Y ],(4.52)

D(F ) · OS = c2dK0/k,S . . . dKt/k,S.(4.53)

Then C∗(c) is contained in the union of at most

(4.54) τr(r−1)/2(c2)
( ∑

dr(r−1)/2|c
NS(d)

)

OS-equivalence classes.
(ii) Let C(c) be a subset of F(OS,K0, . . . ,Kt) such that any two binary

forms in C(c) are k-equivalent and such that every F ∈ C(c) satisfies (4.53).
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Then C(c) is contained in the union of finitely many OS-equivalence classes,
the number of which is bounded above by (4.54).

Proof. (i) For v 6∈ S, let pv be the prime ideal of OS corresponding to v,
i.e., pv = {x ∈ OS : |x|v < 1}. Then c =

∏
v 6∈S p

%v
v with %v ∈ Z≥0. According

to Lemma 4.6, for each v 6∈ S the collection C∗(c) is contained in the union
of at most

Av :=

(
2%v + 1

2r(r − 1)
1
2r(r − 1)

) [2%v/r(r−1)]∑

i=0

(Nv)i

=

(
2%v + 1

2r(r − 1)
1
2r(r − 1)

) [2%v/r(r−1)]∑

i=0

(NSpv)
i

Ov-equivalence classes. Lemma 3.2 implies that if Av is an Ov-equivalence
class of augmented (K0, . . . ,Kt)-forms for v 6∈ S, then

⋂
v 6∈S Av is an OS-

equivalence class. This implies that C∗(c) is contained in the union of at
most ∏

v 6∈S
Av = τr(r−1)/2(c2)

( ∑

dr(r−1)/2|c
NS(d)

)

OS-equivalence classes. This proves (i).
(ii) Fix F0 ∈ C(c). Extend F0 to an augmented (K0, . . . ,Kt)-form F ∗0 =

(F0, θ0,F0 , . . . , θt,Ft). For every F ∈ C(c), choose A ∈ GL2(K) such that F =
(F0)A and define F ∗ := (F ∗0 )A. Clearly, the augmented forms constructed
in this manner are k-equivalent to one another. Now by applying (i) to the
collection C∗(c) := {F ∗ : F ∈ C(c)}, our assertion (ii) follows at once.

5. Orders. Below, k is a number field, and K is a finite extension of
k of degree r ≥ 3. We denote by ξ 7→ ξ(i) (i = 1, . . . , r) the k-isomorphic
embeddings of K into some normal closure L of K over k. As before, S
is a finite subset of Mk containing all infinite places. Denote by OL,S the
integral closure of OS in L. Given a1, . . . , am, we denote by [a1, . . . , am]
the fractional OL,S-ideal generated by a1, . . . , am. For f ∈ L[X1, . . . ,Xm]
denote by [f ] the fractional OL,S-ideal generated by the coefficients of f .
Given fractional OL,S-ideals a, b we write a

b for ab−1 where b−1 is the inverse
fractional OL,S-ideal of b. For a finitely generated OS-moduleM⊂ K with
M 6= (0) define

(5.1) dij(M) := [ξ(i) − ξ(j) : ξ ∈ M] (1 ≤ i, j ≤ r, i 6= j)

to be the fractional OL,S-ideal generated by all elements ξ(i) − ξ(j) (1 ≤
i, j ≤ r, i 6= j) with ξ ∈ M, and

(5.2) D(M) := [DK/k(ω1, . . . , ωr) : ω1, . . . , ωr ∈M]
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to be the fractional OL,S-ideal generated by all discriminants of all r-tuples
ω1, . . . , ωr ∈M.

Let F ∗ = (F, θF ) be an augmented K-form. Suppose that F ∈ R[X,Y ]
where R is some subring of k. Then the invariant order OF ∗,R of F ∗ is defined
to be the R-submodule of K with basis ω1, . . . , ωr given by (2.4). By Simon
[9], OF ∗,R is indeed an R-order with quotient field K,

(5.3) F ∗ R∼ G∗ ⇒ OF ∗,R = OG∗,R
for any two augmented K-forms F ∗, G∗ (which is slightly stronger than
(2.5)), and DK/k(ω1, . . . , ωr) = D(F ∗). If R = OS we write OF ∗,S for OF ∗,R
and if R = Ov (local ring) we write OF ∗,v for OF ∗,R. Thus if R = OS we
have

(5.4) D(OF ∗,S) = D(F ∗) · OS.

Lemma 5.1. Let F ∗ = (F, θF ) be an augmented K-form with F ∈
OS[X,Y ]. Then

(5.5) dij(OF ∗,S) = [F ]
[θ

(i)
F − θ

(j)
F ]

[1, θ
(i)
F ][1, θ

(j)
F ]

(1 ≤ i, j ≤ r, i 6= j),

and

(5.6)
∏

1≤i<j≤r
dij(OF ∗,S)2 = [F ](r−1)(r−2)D(OF ∗,S).

Proof. We first prove (5.5). Let i, j ∈ {1, . . . , r}, i 6= j. Write F =

a0X
r + a1X

r−1Y + . . . + arY
r. Then F = a0

∏r
k=1(X − θ(k)

F Y ), and so by
Gauss’s Lemma,

(5.7) [F ] = [a0]
r∏

k=1

[1, θ
(k)
F ].

Write

(5.8)
r∏

k=1
k 6=i,j

(X − θ(k)
F Y ) = B0X

r−2 +B1X
r−3Y + . . .+Br−2Y

r−2.

Then B0 = 1, and by Gauss’s Lemma and (5.7),

(5.9) [B0, B1, . . . , Br−2] =
r∏

k=1

[1, θ
(k)
F ] = [F ][a0]−1[1, θ

(i)
F ]−1[1, θ

(j)
F ]−1.

Let {ω1, . . . , ωr} be the basis of OF ∗,S given by (2.4). We first show that

(5.10) ω(i)
m − ω(j)

m = a0Bm−2(θ
(i)
F − θ

(j)
F ) for m = 2, . . . , r.
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Write bk := ak/a0 for k = 0, . . . , r. Then
r∏

k=1

(X − θ(k)
F Y ) = b0X

r + b1X
r−1Y + . . .+ brY

r

and

a−1
0 ωm =

m−2∑

k=0

bkθ
m−k−1
F for m = 2, . . . , r.

Assertion (5.10) is clear for m = 2. Let m ≥ 3. We have (on putting B−2 =
B−1 = 0)

bk = Bk −Bk−1(θ
(i)
F + θ

(j)
F ) +Bk−2θ

(i)
F θ

(j)
F for k = 0, . . . , r,

and so

a−1
0 (ω(i)

m − ω(j)
m ) =

m−2∑

k=0

bk((θ
(i)
F )m−k−1 − (θ

(j)
F )m−k−1)

=
m−2∑

k=0

{Bk −Bk−1(θ
(i)
F + θ

(j)
F ) +Bk−2θ

(i)
F θ

(j)
F } · {(θ

(i)
F )m−k−1 − (θ

(j)
F )m−k−1}

=
m−2∑

k=0

ckBk,

where

cm−2 = θ
(i)
F − θ

(j)
F , cm−3 = (θ

(i)
F )2 − (θ

(j)
F )2 − (θ

(i)
F + θ

(j)
F )(θ

(i)
F − θ

(j)
F ) = 0,

and, if m ≥ 4,

ck = (θ
(i)
F )m−k−1 − (θ

(j)
F )m−k−1 − (θ

(i)
F + θ

(j)
F )((θ

(i)
F )m−k−2 − (θ

(j)
F )m−k−2)

+ θ
(i)
F θ

(j)
F ((θ

(i)
F )m−k−3 − (θ

(j)
F )m−k−3) = 0

for k = 0, . . . ,m − 4. This implies (5.10). By combining (5.10), (5.9) we
obtain

dij(OF ∗,S) = [ω
(i)
2 − ω

(j)
2 , . . . , ω(i)

r − ω(j)
r ]

= [a0] · [B0, B1, . . . , Br−2] · [θ(i)
F − θ

(j)
F ]

= [F ]
[θ

(i)
F − θ

(j)
F ]

[1, θ
(i)
F ][1, θ

(j)
F ]

which is (5.5).
Now from (5.4), (2.1), (5.7), (5.5) we infer

D(OF ∗,S)OL,S = [D(F )] =
[
a2r−2

0

∏

1≤i<j≤r
(θ

(i)
F − θ

(j)
F )2

]
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= [F ]2r−2
∏

1≤i<j≤r

(
[θ

(i)
F − θ

(j)
F ]

[1, θ
(i)
F ][1, θ

(j)
F ]

)2

= [F ]−(r−1)(r−2)
∏

1≤i<j≤r
dij(OF ∗,S)2,

which is (5.6).

Lemma 5.2. Let F ∗ = (F, θF ), G∗ = (G, θG) be two augmented K-forms
such that

F,G ∈ OS[X,Y ];(5.11)

OF ∗,S = OG∗,S ;(5.12)

F ∗, G∗ are weakly k-equivalent.(5.13)

Then F ∗, G∗ are weakly Ov-equivalent for every v 6∈ S.

Proof. Take v 6∈ S. By (5.13) there are A ∈ GL2(k), λ ∈ k∗ such that
G∗ = λF ∗A. Since Ov is a principal ideal domain, there are matrices U1, U2 ∈
GL2(Ov) such that A = U1

(
a 0
0 d

)
U2 with a, d ∈ k∗. Let F̃ ∗ := F ∗U1

, G̃∗ :=
G∗
U−1

2

. Then

(5.14) F̃ ∗
Ov∼ F ∗, G̃∗

Ov∼ G∗,

hence it suffices to show that F̃ ∗, G̃∗ are weakly Ov-equivalent. Write F̃ ∗ =

(F̃ , θ
F̃

), G̃∗ = (G̃, θ
G̃

). Then G̃∗ = λF̃ ∗(
a 0
0 d

) which means that

(5.15) G̃(X,Y ) = λF̃ (aX, dY ), θ
G̃

=
d

a
θ
F̃
.

Write F̃ (X,Y ) = a0X
r+a1X

r−1Y +. . .+arY
r. Then O

F̃ ∗,v is an Ov-module

with basis

ω1 = 1, ωi =
i−2∑

j=0

ajθ
i−j−1

F̃
(i = 2, . . . , r).

By (5.15), G̃(X,Y ) = λa0a
rXr+λa1a

r−1dXr−1Y + . . .+λard
rY r and O

G̃∗,v
is an Ov-module with basis

ω′1 = 1, ω′i =
i−2∑

j=0

λaja
r−jdj

(
d

a
θ
F̃

)i−j−1

= λar−i+1di−1ωi (i = 2, . . . , r).

By (5.14), (5.12), (5.3) we haveO
F̃ ∗,v = O

G̃∗,v. Therefore, the matrix relating

{ω′1, . . . , ω′r} to {ω1, . . . , ωr} is in GL2(Ov). That is,

λar−1d ∈ O∗v, λar−2d2 ∈ O∗v, . . . , λadr−1 ∈ O∗v,
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which implies d = au with u ∈ O∗v. Further, λar = u−1λar−1d ∈ O∗v.
Inserting this into (5.15) we obtain

G̃(X,Y ) = λF̃ (aX, auY ) = λarF̃ (X,uY ), θG̃ = uθF̃ ,

which implies that F̃ ∗, G̃∗ are weakly Ov-equivalent. This proves Lemma
5.2.

We now arrive at our final result:

Proposition 5.3. Let C∗ be a collection of augmented K-forms such
that

F ∈ OS [X,Y ] for every F ∗ = (F, θF ) ∈ C∗;(5.16)

OF ∗,S = OG∗,S for every pair F ∗, G∗ ∈ C∗;(5.17)

the elements of C∗ are weakly k-equivalent to one another.(5.18)

Then if r is odd , C∗ is contained in the union of at most rs OS-equivalence
classes, while if r is even, C∗ is contained in the union of at most rsh2(OS)
OS-equivalence classes.

Proof. Combine Lemmata 5.2 and 3.3.

6. Proof of Theorem 2.1. Let k, S be as in Section 2; thus #S = s.
Let O be an OS-order of degree r ≥ 3 and denote by K its quotient field.
Let F ∈ OS[X,Y ] be a binary form which is irreducible in k[X,Y ] and such
that OF,S ∼= O (as OS-algebras). Then there is a θF such that F (θF , 1) = 0,
K = k(θF ) and such that ω1, . . . , ωr given by (2.4) form an OS-basis of O.
Thus, F ∗ := (F, θF ) is an augmented K-form with OF ∗,S = O. Now it is
obvious that in order to prove Theorem 2.1 it suffices to prove the following:

Proposition 6.1. Let #S = s, and let K be a finite extension of k of
degree r ≥ 3. Let O ⊂ K be an OS-order with quotient field K. Then the
set of augmented K-forms F ∗ = (F, θF ) with

F ∈ OS [X,Y ],(6.1)

OF ∗ = O(6.2)

is contained in the union of finitely many OS-equivalence classes, whose
number is bounded above by

(6.3) 224r3s if r is odd ; 224r3sh2(OS) if r is even.

For the moment we assume r ≥ 4. The case r = 3 will be treated
separately. Our main tool is a result of Beukers and Schlickewei on equations
in two variables with unknowns from a multiplicative group of finite rank.
Let Ω be a field of characteristic 0. We endow (Ω∗)2 with coordinatewise
multiplication (x1, y1) ∗ (x2, y2) = (x1x2, y1y2); thus (Ω∗)2 becomes a group
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with unit element (1, 1). For (x, y) ∈ (Ω∗)2, m ∈ Z we write (x, y)m :=
(xm, ym).

Lemma 6.2. Let (x1, y1), . . . , (xn, yn) ∈ (Ω∗)2. Let

Γ := {(x, y) ∈ (Ω∗)2 : ∃m ∈ N, z1, . . . , zn ∈ Z
with (x, y)m = (x1, y1)z1 ∗ . . . ∗ (xn, yn)zn}.

Then the equation

(6.4) x+ y = 1 in (x, y) ∈ Γ
has at most 28(n+1) solutions.

Proof. See [1, Theorem 1].

Let O, K be as above. Choose a normal closure L of K over k and denote
again by ξ 7→ ξ(i) (i = 1, . . . , r) the k-isomorphic embeddings of K into L.
We recall that the cross ratio of α1, α2, α3, α4 ∈ P1(L) is given by

(6.5) {α1, α2;α3, α4} :=
(α1 − α2)(α3 − α4)

(α1 − α3)(α2 − α4)

(with the usual modifications if one of α1, . . . , α4 is ∞ or if α1, . . . , α4 are
not all distinct). As is well known, cross ratios are invariant under projective
transformations.

For an augmented K-form F ∗ = (F, θF ) with (6.1), (6.2) we define the

tuple of all cross ratios of θ
(1)
F , . . . , θ

(r)
F ,

(6.6) ∆(F ∗) := ({θ(i)
F , θ

(j)
F ; θ

(k)
F , θ

(l)
F } : 1 ≤ i, j, k, l ≤ r; i, j, k, l distinct).

Lemma 6.3. If F ∗ runs through the collection of augmented K-forms
with (6.1), (6.2), then ∆(F ∗) runs through a collection of cardinality at most

(6.7) 224(r3−r2)s.

Proof. Let F ∗ = (F, θF ) be an augmented K-form with (6.1), (6.2). Let
i, j, k, l ∈ {1, . . . , r} be distinct. We have

(6.8) {θ(i)
F , θ

(j)
F ; θ

(k)
F , θ

(l)
F }+ {θ(i)

F , θ
(l)
F ; θ

(k)
F , θ

(j)
F } = 1.

Write (6.8) as x + y = 1. We want to apply Lemma 6.2 to (6.8) and to
this end we have to find a suitable group Γ independent of F ∗ such that
(x, y) ∈ Γ .

Fix θ0 with k(θ0) = K. For each two-element subset {i, j} of {1, . . . , r}
define the field

K{i,j} := k(θ
(i)
0 + θ

(j)
0 , θ

(i)
0 θ

(j)
0 ).

Thus, if P (X,Y ) ∈ k[X,Y ] is a symmetric polynomial, then P (ξ(i), ξ(j)) ∈
K{i,j} for every ξ ∈ K. Further, [K{i,j} : k] ≤

(r
2

)
. Let t({i, j}) denote the

rank of O∗
K{i,j},S, i.e., the unit group of the integral closure of OS in K{i,j}.
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Then t({i, j}) is equal to the number of places of K{i,j} lying above the
places in S, minus 1. That is,

(6.9) t({i, j}) ≤ [K{i,j} : k]s− 1 ≤
(
r

2

)
s− 1.

There are ε
{i,j}
1 , . . . , ε

{i,j}
t({i,j}) ∈ O∗K{i,j},S such that every element of O∗

K{i,j},S
can be expressed uniquely as

(6.10) ζ

t({i,j})∏

m=1

(ε{i,j}m )wm

where ζ ∈ K{i,j} is a root of unity and wm ∈ Z for m = 1, . . . , t({i, j}).
Let h be the least common multiple of the following integers: the class

number of K, the class number of K{i,j} for each two-element subset {i, j}
of {1, . . . , r}, and the number of roots of unity in K{i,j} for each two-element
subset {i, j} of {1, . . . , r}.

We raise the identity (5.5) to the power 2h to obtain something useful.
Let i, j ∈ {1, . . . , r}, i 6= j. First we have an identity of fractionalOK,S-ideals

(6.11) [1, θF ]2h = [αF ] with αF ∈ K∗

since 2h is a multiple of the class number of K. Further, (θ
(i)
F − θ

(j)
F )2h ∈

K{i,j}. The ideal (dijOF ∗,S)2 is generated by elements (ξ(i) − ξ(j))2 (ξ ∈
OF ∗,S) which belong to K{i,j}. By (5.6) the OS-ideal [F ] generated by the
coefficients of F depends only on OF ∗,S , hence by (6.2) on O. Therefore we
have an identity of fractional OK{i,j},S-ideals

(6.12) ([F ]−1dij(OF ∗,S))2h = [βij ] with βij ∈ (K{i,j})∗,

where βij depends only on O. So in particular, βij is independent of F ∗.

Lastly, α
(i)
F α

(j)
F ∈ K{i,j}. Now (5.5), (6.11), (6.12) yield an identity of frac-

tional OK{i,j},S-ideals [θ
(i)
F − θ

(j)
F ]2h = [α

(i)
F α

(j)
F βij ], that is, (θ

(i)
F − θ

(j)
F )2h =

α
(i)
F α

(j)
F βijηij with ηij ∈ O∗K{i,j},S . We can express ηij as in (6.10). By raising

again to the power h, we can cancel the root of unity, and obtain

(6.13) (θ
(i)
F − θ

(j)
F )2h2

= (α
(i)
F α

(j)
F βij)

h

t({i,j})∏

m=1

(ε{i,j}m )wm with wm ∈ Z.

Taking any distinct i, j, k, l ∈ {1, . . . , r}, and writing again (6.8) as x+y = 1,
it follows that

(x, y)2h2
= ({θ(i)

F , θ
(j)
F ; θ

(k)
F , θ

(l)
F }, {θ

(i)
F , θ

(l)
F ; θ

(k)
F , θ

(j)
F })2h2
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=

(
(θ

(i)
F − θ

(j)
F )(θ

(k)
F − θ

(l)
F )

(θ
(i)
F − θ

(k)
F )(θ

(j)
F − θ

(l)
F )

,
(θ

(i)
F − θ

(l)
F )(θ

(j)
F − θ

(k)
F )

(θ
(i)
F − θ

(k)
F )(θ

(j)
F − θ

(l)
F )

)2h2

=

(
βijβkl
βikβjl

,
βilβjk
βikβjl

)h
∗ (η1, η2)

where (η1, η2) is a product of powers of

(ε{i,j}m , 1) (1 ≤ m ≤ t({i, j})); (ε
{k,l}
m , 1) (1 ≤ m ≤ t({k, l}));

(1, ε{i,l}m ) (1 ≤ m ≤ t({i, l})); (1, ε
{j,k}
m ) (1 ≤ m ≤ t({j, k}));

(ε{i,k}m , ε{i,k}m ) (1 ≤ m ≤ t({i, k})); (ε{j,l}m , ε{j,l}m ) (1 ≤ m ≤ t({j, l})).

It is important to notice that the terms α
(i)
F , α

(j)
F , α

(k)
F , α

(l)
F are cancelled.

Thus, in view of (6.9), (x, y)2h2
is a product of powers of

1 + t({i, j}) + t({k, l}) + t({i, l}) + t({j, k}) + t({i, k}) + t({j, l})

≤ 1 + 6

((
r

2

)
s− 1

)
= 6

(
r

2

)
s− 5

terms which are independent of F ∗.
Now applying Lemma 6.2 to (6.8) yields that (x, y), and so in particular

x = {θ(i)
F , θ

(j)
F ; θ

(k)
F , θ

(l)
F }, belongs to a set independent of F ∗ of cardinality

at most

(6.14) 28{6(r2)s−5+1} = 248(r2)s−32.

We claim that the tuple ∆(F ∗) of all cross ratios is determined uniquely
by the subtuple

(6.15) ∆̃(F ∗) := ({θ(1)
F , θ

(2)
F ; θ

(3)
F , θ

(l)
F } : l = 4, . . . , r).

Indeed, let 〈T 〉 be the unique projective transformation of P1, mapping

θ
(1)
F , θ

(2)
F , θ

(3)
F to 1,∞, 0, respectively. Since 〈T 〉 does not alter cross ratios,

for l = 4, . . . , r the image of θ
(l)
F under 〈T 〉 is {θ(1)

F , θ
(2)
F ; θ

(3)
F , θ

(l)
F }. But then

it follows that {θ(i)
F , θ

(j)
F ; θ

(k)
F , θ

(l)
F } is equal to the cross ratio of the ith, jth,

kth, lth point among 1,∞, 0, {θ(1)
F , θ

(2)
F ; θ

(3)
F , θ

(4)
F }, . . . , {θ

(1)
F , θ

(2)
F ; θ

(3)
F , θ

(r)
F }.

So by (6.14) the total number of possibilities for ∆̃(F ∗), and hence that
for ∆(F ∗) is at most

2(48(r2)s−32)(r−3) ≤ 224(r3−r2)s.

This proves Lemma 6.3.

Lemma 6.4. Let F ∗ = (F, θF ), G∗ = (G, θG) be two augmented K-forms
of degree r ≥ 3 with (6.1), (6.2).

(i) If r = 3 then F ∗, G∗ are weakly k-equivalent.
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(ii) If r ≥ 4 and moreover ,

(6.16) ∆(F ∗) = ∆(G∗),

then F ∗, G∗ are weakly k-equivalent.

Proof. If r ≥ 4 then by (6.16), {θ(i)
F , θ

(j)
F ; θ

(k)
F , θ

(l)
F } = {θ(i)

G , θ
(j)
G ; θ

(k)
G , θ

(l)
G }

for each distinct i, j, k, l ∈ {1, . . . , r}. This implies that there is a unique

projective transformation 〈T 〉 : P1(L) → P1(L) with 〈T 〉(θ(i)
F ) = θ

(i)
G for

i = 1, . . . , r. If r = 3 then we simply use the fact that there is a unique

projective transformation 〈T 〉 : P1 → P1 defined over L with 〈T 〉(θ(i)
F ) = θ

(i)
G

for i = 1, 2, 3.
In other words, both for r = 3 and for r ≥ 4 there is a unique matrix

T =
(
a b
c d

)
∈ GL2(L) (up to a scalar factor) such that

(6.17) θ
(i)
G =

aθ
(i)
F + b

cθ
(i)
F + d

for i = 1, . . . , r.

We choose the first non-zero element among a, b, c, d equal to 1 so that T
is uniquely determined. Then for every τ ∈ Gal(L/k), the matrix τ(T ) =( τ(a) τ(b)
τ(c) τ(d)

)
also satisfies (6.17) since τ permutes both sequences θ

(1)
F , . . . , θ

(r)
F

and θ
(1)
G , . . . , θ

(r)
G in the same manner. Hence τ(T ) = T for every τ ∈

Gal(L/k) which implies T ∈ GL2(k).
Write

F = aF

r∏

i=1

(X − θ(i)
F Y ), G = aG

r∏

i=1

(X − θ(i)
G Y )

with aF , aG ∈ k∗. Thus,

G = aG

r∏

i=1

(
X − aθ

(i)
F + b

cθ
(i)
F + d

Y

)

= aGa
−1
F

{ r∏

i=1

(cθ
(i)
F + d)

}−1
F (dX − bY,−cX + aY )

= aGa
−1
F

{ r∏

i=1

(cθ
(i)
F + d)

}−1
(ad− bc)rFT−1(X,Y ) = λFT−1(X,Y )

with λ ∈ k∗, T ∈ GL2(k), and θG = 〈T 〉(θF ). This implies that F ∗, G∗ are
weakly k-equivalent.

Proof of Proposition 6.1. Let r ≥ 3. Put h(r,OS) := 1 if r is odd, and
h(r,OS) := h2(OS) if r is even. By Lemmata 6.3 and 6.4, the collection of
augmented K-forms F ∗ = (F, θF ) with (6.1), (6.2) is contained in the union

of at most 224(r3−r2)s weak k-equivalence classes. Together with Proposition
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5.3 this implies that the collection of augmented K-forms with (6.1), (6.2)
is contained in the union of at most

224(r3−r2)srsh(r,OS) ≤ 224r3sh(r,OS)

OS-equivalence classes. This proves Proposition 6.1.

7. Proof of Theorem 2.2. We keep the notation from Section 2. Thus
k is a number field and S is a finite subset of Mk of cardinality s containing
all infinite places. Let K be an extension of k of degree r ≥ 3. Let c 6= (0)
be an ideal of OS and let S′ = S ∪{v 6∈ S : |x|v < 1 for every x ∈ c}. Notice
that if F ∈ F(OS,K) satisfies (2.9), then

D(F ) · OS′ = dK/k,S′ .

So by (2.6), the OS′-order associated with F is OF,S′ = OK,S′ (the integral
closure of OS′ in K). On applying Theorem 2.1 with S ′ in place of S and
with O = OK,S′ we infer that the set of binary forms F ∈ F(OS,K) with
(2.9) is contained in finitely many OS′-equivalence classes, whose number is
at most

224r3#S′ = 224r3(s+ωS(c)) if r is odd,

224r3#S′h2(OS′) ≤ 224r3(s+ωS(c))h2(OS) if r is even,
(7.1)

where we have used #S′ = s+ ωS(c) and the obvious inequality h2(OS′) ≤
h2(OS).

In particular, the binary forms F ∈ F(OS,K) with (2.9) lie in finitely
many k-equivalence classes, whose number is bounded above by (7.1). By
multiplying this quantity with the upper bound (4.54) from Proposition
(4.7)(ii) we obtain an upper bound for the number of OS-equivalence classes
of binary forms under consideration, which is precisely the upper bound from
Theorem 2.2. This completes our proof.

8. Proof of Theorem 2.3. To prove Theorem 2.3, we need a further
proposition on resultant equations which can be regarded as a quantitative
version of Lemma 1 of Evertse and Győry [6].

For the moment, let K0,K1 be two (not necessarily distinct) extensions
of k of degrees r0, r1, respectively, such that r0 ≥ 3. Let L be a normal
closure over k of the compositum of K0,K1. Below, we denote by [a1, . . . , am]
the fractional OL,S-ideal generated by a1, . . . , am, and by [f ] the fractional
OL,S-ideal generated by the coefficients of a given polynomial f .

Using the notation of Theorems 2.2 and 2.3, fix a binary form F0 ∈
F(OS,K0), and consider the binary forms F1 ∈ F(OS,K1).



394 A. Bérczes et al.

Proposition 8.1. Up to multiplication by S-units, there are at most
224r0r1s binary forms F1 ∈ F(OS,K1) which satisfy

(8.1) R(F0, F1) ∈ O∗S .
Proof. Take F1 ∈ F(OS,K1) with (8.1). By assumption, for i = 0, 1 we

have Fi ∈ OS [X,Y ], Fi is irreducible over k, and there is a θi satisfying
F (θi, 1) = 0 and k(θi) = Ki. We can write

Fi(X,Y ) = ai

ri∏

k=1

(X − θ(k)
i Y ) (i = 0, 1),

where ai ∈ k∗, and where θ
(1)
i , . . . , θ

(ri)
i are the conjugates of θi in L, for

i = 0, 1. By Gauss’s Lemma we have

(8.2) [1] ⊇ [Fi] = [ai]

ri∏

k=1

[1, θ
(k)
i ] (i = 0, 1).

Using (8.1) and expression (4.3) for the resultant, we get

[1] = [R(F0, F1)] = [a0]r1 [a1]r0
r0∏

k=1

r1∏

l=1

[θ
(k)
0 − θ(l)

1 ] ⊆
r0∏

k=1

r1∏

l=1

[θ
(k)
0 − θ(l)

1 ]

[1, θ
(k)
0 ][1, θ

(l)
1 ]

.

In combination with the obvious inclusions [θ
(k)
0 − θ

(l)
1 ] ⊆ [1, θ

(k)
0 ][1, θ

(l)
1 ] this

gives

(8.3) [θ
(k)
0 − θ(l)

1 ] = [1, θ
(k)
0 ][1, θ

(l)
1 ] for k = 1, . . . , r0, l = 1, . . . , r1.

Meanwhile, we have also shown that the inclusions in (8.2) are equalities,
i.e.,

(8.4) [Fi] = [ai]

ri∏

k=1

[1, θ
(k)
i ] = [1] (i = 0, 1).

We proceed as in the proof of Lemma 6.3. Define the fields Ki1 :=

k(θ
(i)
0 , θ1) = K

(i)
0 K1 (i = 1, . . . , r0). Denote by h the least common mul-

tiple of the class numbers of K0, K1, K11, . . . ,Kr0,1 and of the numbers of
roots of unity of K11, . . . ,Kr0,1. By our choice of h, there are α0 ∈ K∗0 such

that [1, θ0]h = [α0], and α1 ∈ K∗1 such that [1, θ1]h = [α1]. Then by (8.3),

[θ
(i)
0 − θ1]h = [α

(i)
0 ][α1] for i = 1, . . . , r0,

that is,

(θ
(i)
0 − θ1)h = α

(i)
0 α1ηi,

where ηi ∈ O∗Ki1,S (i.e., the unit group of the integral closure of OS in Ki1).
Let εi1, . . . , εisi be a system of fundamental units of O∗Ki1,S . Then ηi is a
product of a root of unity in Ki1 and of powers of εi1, . . . , εisi and so, by
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our choice of h,

(θ
(i)
0 − θ1)h

2
= (α

(i)
0 )hαh1ε

wi1
i1 . . . ε

wisi
isi

with wi1, . . . , wisi ∈ Z.
Pick distinct subscripts i, j, k ∈ {1, . . . , r0} and consider the identity

θ
(i)
0 − θ

(j)
0

θ
(i)
0 − θ

(k)
0

· θ
(k)
0 − θ1

θ
(j)
0 − θ1

+
θ

(j)
0 − θ

(k)
0

θ
(i)
0 − θ

(k)
0

· θ
(i)
0 − θ1

θ
(j)
0 − θ1

= 1.

This can be written as x+ y = 1, where

(x, y)h
2

= (a, b) ∗
sk∏

q=1

(εkq, 1)wkq ∗
si∏

q=1

(1, εiq)
wiq ∗

sj∏

q=1

(εjq, εjq)
−wjq

with

(a, b) =

((
θ

(i)
0 − θ

(j)
0

θ
(i)
0 − θ

(k)
0

)h2(
α

(k)
0

α
(j)
0

)h
,

(
θ

(j)
0 − θ

(k)
0

θ
(i)
0 − θ

(k)
0

)h2(
α

(i)
0

α
(j)
0

)h)
.

Notice that
si ≤ [Ki1 : k]s− 1 ≤ r0r1s− 1

and similarly for sj and sk. So, by Lemma 6.2 the number of possibilities
for (x, y) is at most

28(si+sj+sk+1)+8 ≤ 224r0r1s.

This gives at most 224r0r1s possibilities for θ1. But, by (8.4), the ideal [a1] is
uniquely determined once θ1 is uniquely determined and moreover, a1 ∈ k∗.
So a1 is uniquely determined up to a factor from O∗S. We infer that up to
multiplication by some factor from O∗S , for F1 there are at most 224r0r1s

possibilities.

Proof of Theorem 2.3. Let K0,K1, . . . ,Kt be (not necessarily distinct)
extensions of k of degrees r0, r1, . . . , rt, respectively, such that r0 ≥ 3. Let
F ∈ F(OS,K0, . . . ,Kt) be a binary form with the property (2.11). There
are binary forms F0, . . . , Ft with F = F0 . . . Ft and with Fi ∈ F(OS,Ki) for
i = 0, . . . , t. So in particular, Fi ∈ OS[X,Y ] for i = 0, . . . , t. Let S ′ denote
the union of S and the places v 6∈ S such that |x|v < 1 for every x ∈ c. Then

D(F ) · OS′ = dK0/k,S′ . . . dKt/k,S′ .

Now by expressing D(F ) as in (4.4), and using R(Fi, Fj) ∈ OS′ (0 ≤ i <
j ≤ t) and the inclusions

D(Fi) · OS′ ⊆ dKi/k,S′ (i = 0, . . . , t)

(which follow from Lemma 4.1(ii)), we obtain

D(F0) · OS′ = dK0/k,S′ ,(8.5)

R(F0, Fi) ∈ O∗S′ (i = 0, . . . , t).(8.6)
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We now apply Theorem 2.2 to (8.5) with S replaced by S ′; we find that
F0 is contained in the union of at most

(8.7) 224r3
0(#S′)h(r0,OS′) ≤ 224r3

0(s+ωS(c))h(r0,OS)

OS′-equivalence classes. Here we have used the fact that #S ′ = s + ωS(c)
and h(r0,OS′) ≤ h(r0,OS).

Fix one of these OS′-equivalence classes, and pick from this class a rep-
resentative F0 ∈ F(OS,K0) with (8.5). Consider all tuples (F1, . . . , Ft) of
binary forms with Fi ∈ F(OS,Ki) for i = 1, . . . , t and with (8.6). Proposi-
tion 8.1 shows that for given F0 there are, up to S′-unit factors, at most

224r0(r1+...+rt)(s+ωS(c))

such tuples (F1, . . . , Ft).
Combining this with the upper bound (8.7) for the number of OS′-equiv-

alence classes of binary forms F0 ∈ F(OS,K0) with (8.5), we infer that up
to OS′-equivalence, and up to an OS′-unit factor, there are at most

(8.8) 224r3
0(s+ωS(c))h(r0, S) · 224r0(r1+...+rt)(s+ωS(c))

= 224r0(r2
0+r1+...+rt)(s+ωS(c))h(r0,OS)

binary forms F = F0 . . . Ft ∈ F(OS,K0, . . . ,Kt) with (2.11). That is, there
are binary forms G1, . . . , Gm ∈ F(OS,K0, . . . ,Kt), with m bounded above
by the quantity in (8.8), such that every binary form F ∈ F(OS,K0, . . . ,Kt)
with (2.11) is OS′-equivalent to εGi for some i ∈ {1, . . . ,m} and ε ∈ O∗S′ .
But ε can be written in the form εw1

1 . . . ε
ws′
s′ η

r, where s′ = #S′ = s+ωS(c),
ε1, . . . , εs′ are generators of O∗S′ , w1, . . . , ws′ ∈ {0, . . . , r − 1} and η ∈ O∗S′ .
Since Gi is OS′-equivalent to ηrGi = (Gi)( η 0

0 η

), we deduce in fact that every

binary form F under consideration is OS′-equivalent to εw1
1 . . . ε

ws′
s′ Gi, with

w1, . . . , ws′ ∈ {0, . . . , r−1} and with i ∈ {1, . . . ,m}. Assuming as we may in
view of Theorem 2.2 that r1 + . . .+ rt ≥ 1, it follows that the binary forms
F ∈ F(OS,K0, . . . ,Kt) with (2.11) lie in at most

(r · 224r0(r2
0+r1+...+rt))(s+ωS(c))h(r0,OS)

≤ (r · 224(r−1)((r−1)2+1))(s+ωS(c))h(r0,OS)

and so in at most

(8.9) 224r3(s+ωS(c))h(r0,OS)

OS′-equivalence classes.
By Proposition 4.7(ii), the binary forms F ∈ F(OS,K0, . . . ,Kt) with

(2.11) lie in finitely many OS-equivalence classes whose product is bounded
above by the product of (8.9) and of (4.54). Since this is precisely the bound
of Theorem 2.3, this completes our proof.
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9. Lower bounds. We present some examples, showing that the results
mentioned in Section 2 are in certain respects close to best possible.

First letK be a finite extension of k of even degree r ≥ 4. Let S be a finite
subset of Mk such that S contains all infinite places. We show that there are
infinitely many OS-orders O with quotient field K such that the collection
of augmented K-forms F ∗ = (F, θF ) with F ∈ OS [X,Y ] and OF ∗,S = O
cannot be contained in fewer than h2(OS) OS-equivalence classes. Since
each binary form F ∈ F(OS,K) gives rise to at most r augmented K-forms
F ∗ = (F, θF ), it follows that the set of forms F ∈ F(OS,K) with OF,S ∼= O
cannot be contained in fewer than r−1h2(OS) OS-equivalence classes. This
shows that the factor h2(OS) in the upper bound of Theorem 2.1 is necessary.

Pick any augmented K-form F ∗ = (F, θF ) with F ∈ OS[X,Y ]. Let a be
any ideal of OS such that a2 is principal. The ideal a can be generated by
two elements, a = [α, β], say. Let a2 = [λ]. Then there are ξ, η ∈ OS such
that ξα2 − ηβ2 = λ. Define

F ∗a := λ−r/2F ∗( α β
ηβ ξα

).

We first show that F ∗a = (Fa, θFa) with Fa ∈ OS [X,Y ], and OF ∗a ,S =
OF ∗,S . Pick v 6∈ S. Then there is µ ∈ Ov such that in Ov we have the
identity of ideals [α, β] = [µ]. We now get

Fa = λ−r/2F (αX+βY, ηβX+ξαY ) = λ−r/2µrF
(
α

µ
X+

β

µ
Y,
ηβ

µ
X+

ξα

µ
Y

)
.

Since [µ2] = [λ] in Ov we have λ−r/2µr ∈ O∗v. Further,

det

(
α
µ

β
µ

ηβ
µ

ξα
µ

)
=
ξα2 − ηβ2

µ2
=

λ

µ2
∈ O∗v.

Hence F ∗a , F ∗ are weakly Ov-equivalent. This implies Fa ∈ Ov[X,Y ] and,
in view of (5.3), OF ∗a,v = OF ∗,v where OF ∗a,v,OF ∗,v are the localizations at
v of OF ∗a,S ,OF ∗,S . This holds for every v 6∈ S. Hence Fa ∈ OS[X,Y ] and
OF ∗a,S = OF ∗,S .

We now show that if a1, a2 are two ideals of OS such that a2
1, a2

2 are prin-
cipal and a1, a2 do not belong to the same ideal class, then the augmented
K-forms F ∗a1

, F ∗a2
constructed above are not OS-equivalent. Thus, the collec-

tion of augmented K-forms F ∗a such that a is an ideal of OS for which a2 is
principal cannot be contained in fewer than h2(OS) OS-equivalence classes.

For i = 1, 2 let ai = [αi, βi] be an ideal of OS, suppose that a2
i = [λi]

is principal, and choose ξi, ηi ∈ OS such that ξiα
2
i − ηiβ2

i = λi for i = 1, 2.
Define

F ∗ai := λ
−r/2
i F ∗( αi βi

ηiβi ξiαi

) (i = 1, 2).
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Suppose that F ∗a2
= (F ∗a1

)U for some U ∈ GL2(OS). Then by Lemma 3.1(ii),
there is % ∈ k∗ such that

(
α2 β2

η2β2 ξ2α2

)
= %

(
α1 β1

η1β1 ξ1α1

)
U, %r = (λ1λ

−1
2 )r/2.

Hence [%]r = (a1a
−1
2 )r, which implies a1 = %a2. So a1, a2 lie in the same ideal

class. This proves our assertion.
Now let (K0, . . . ,Kt) be a sequence of finite extensions of k such that∑t
i=0[Ki : k] =: r ≥ 3. We show that there are infinitely many ideals c of

OS such that the collection of binary forms F(OS,K0, . . . ,Kt) with (2.11)

cannot be contained in fewer than C×NS(c)2/r(r−1) OS-equivalence classes,
where C is some positive constant.

Fix F̃ ∈ F(OS,K0, . . . ,Kt) withD(F̃ ) 6= 0. Extend this to an augmented

(K0, . . . ,Kt)-form F̃ ∗ = (F̃ , θ
0,F̃
, . . . , θ

t,F̃
). Let a ∈ OS, a 6= 0. For β ∈ OS

define

F̃ ∗β := F̃ ∗( 1 β
0 a

) = (F̃β, θ0,F̃β
, . . . , θt,F̃β ) with F̃β = F̃ (X + βY, aY ).

Now if β1, β2 ∈ OS are such that F̃ ∗β1
, F̃ ∗β2

are OS-equivalent, then

F̃ ∗( 1 β1
0 a

) = F̃ ∗( 1 β2
0 a

)
U

for some matrix U ∈ GL2(OS). According to Lemma 3.1(ii), this implies

(
1 β1

0 a

)−1(1 β2

0 a

)
∈ GL2(OS)

and therefore, (β1 − β2)/a ∈ OS.

Consequently, the augmented (K0, . . . ,Kt)-forms F̃ ∗β (β ∈ OS) cannot

be contained in the union of fewer than #OS/[a] = NS(a) OS-equivalence
classes.

Notice that F̃β ∈ F(OS,K0, . . . ,Kt) for β ∈ OS . By Lemma 4.1(ii),

there is an ideal c0 of OS such that [D(F̃ )] = c2
0dK0/k,S . . . dKt/k,S. Put

c := ar(r−1)/2c0. Then by (2.2), F̃β satisfies (2.11) with this c.

Since there are at most rt+1 different augmented forms F̃ ∗β coming from

the same binary form F̃β , it follows that for each ideal c as constructed
above, the set of binary forms F ∈ F(OS,K0, . . . ,Kt) with (2.11) cannot be
contained in the union of fewer than

r−t−1NS(a) = r−t−1NS(c0)−2/r(r−1)NS(c)2/r(r−1) =: C ×NS(c)2/r(r−1)

OS-equivalence classes.
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