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On values of the Mahler measure in a quadratic field
(solution of a problem of Dixon and Dubickas)

by

A. Schinzel (Warszawa)

To Robert Tijdeman on the occasion of his 60th birthday

For an algebraic number α, let M(α) be the Mahler measure of α and
let M = {M(α) | α ∈ Q}. No method is known to decide whether a given
algebraic integer β is inM. Partial results have been obtained by Adler and
Marcus [1], Boyd [2]–[4], Dubickas [6]–[8] and Dixon and Dubickas [5], but
the problem has not been solved even for β of degree two. The following
theorem, similar to, but not identical with Theorem 9 of [5], is an easy
consequence of [7].

Theorem 1. A primitive real quadratic integer β is in M if and only if
there exists a rational integer a such that β > a > |β′| and a |ββ′, where
β′ is the conjugate of β. If the condition is satisfied , then β = M(β/a) and
a = N(a, β), where N denotes the absolute norm.

There remain to be considered quadratic integers that are not primitive.
The following theorem deals with the simplest class of such numbers.

Theorem 2. Let K be a quadratic field with discriminant ∆ > 0, β, β′

be conjugate primitive integers of K and p a prime. If

(1) pβ ∈ M,

then either there exists an integer r such that

(2) pβ > r > p|β′| and r |ββ′, p - r

or

(3) β ∈M and p splits in K.
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Conversely , (2) implies (1), while (3) implies (1) provided either

(4) β > max
{
−4β′,

(
1 +
√
∆

4

)2}

or

(5) p >
√
∆.

Remark 1. (2) implies β > pβ|β′|/r ≥ p.
Theorem 2 answers two questions raised in [5].

Corollary 1. For all primes p we have p 3+
√

5
2 ∈ M if and only if

either p = 2, or p = 5, or p ≡ ±1 (mod 5).

Corollary 2. For every real quadratic field K there is an irreducible
polynomial f ∈ Z[x], basal in the sense of [5], such that M(f) ∈ K, but the
zeros of f do not lie in K.

Corollary 3. In every real quadratic field K there are only finitely
many integers pβ, where p is prime, while β is primitive and totally positive,
for which the condition pβ ∈ M is not equivalent to the alternative of (2)
and (3).

Proof of Theorem 1. Necessity. Let β = M(α), let f be the minimal
polynomial of α over Z, a > 0 its leading coefficient, D its degree, and
α1, . . . , αD all its zeros. By Lemma 2 of [7] applied with d = 2,

(6) ββ′ = a2
D∏

i=1

αi = (−1)Daf(0).

Moreover, by formula (3) of [7], D = 2s, where s is the number of i ≤ D with
|αi| > 1. Without loss of generality we may assume that |αi| > 1 precisely
for i ≤ s. For some η ∈ {1,−1} we have

(7)
s∏

i=1

αi = ηβ/a,

hence, by (6),

(8)
D∏

i=s+1

αi = ηβ′/a,

which gives

(9) β > a > |β′|.
Also, by (6),

(10) a |ββ′.
Sufficiency. Assume the existence of an integer a satisfying (9) and (10)

and consider the polynomial
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g(x) = ax2 − (β + β′)x+ ββ′/a.

If g is not primitive, there exists a prime p such that p | a, p |β + β ′ and
p |ββ′/a. However, then p2 |ββ′ and β/p is a zero of the polynomial x2 −
β+β′

p x+ ββ′

p2 ∈ Z[x], contrary to the assumption that β is primitive. There-
fore, g is the minimal polynomial of β/a over Z and β = M(β/a). Also,
(a) | (a2, aβ, aβ′, ββ′) | (a2, a(β + β′), ββ′) = (a), hence

(a) = (a2, aβ, aβ′, ββ′) = (a, β)(a, β′).

The proof of Theorem 2 is based on three lemmas.

Lemma 1. If an integer β of K is the Mahler measure of an algebraic
number whose minimal polynomial over Z has leading coefficient a, then a
is the norm of an ideal of K.

Proof. In the notation of the proof of Theorem 1 (necessity part) we have
(7) and (8). Since ηβ′/a is the only conjugate of ηβ/a, every automorphism
of the splitting field of f that sends an αi (i ≤ s) to an αj (j > s) sends
the set {α1, . . . , αs} onto {αs+1, . . . , αD} (compare the proof of Lemma 2
in [7]). Hence {α1, . . . , αs} and {αs+1, . . . , αD} are blocks of imprimitivity
of the Galois group of f and the coefficients of the polynomials

P (x) =
s∏

i=1

(x− αi), P ′(x) =
D∏

i=s+1

(x− αi)

belong to a quadratic field, which clearly is K. Let the contents of P and
P ′ be a−1 and a′−1, where a and a′ are conjugate ideals of K. Since f is
primitive, we have

(1) = cont f = cont(aPP ′) = (a)/aa′

and, since a > 0, a = Na.

Lemma 2. If the dash denotes conjugation in K, δ, ε are elements of K
such that

(11) δ > 1 > δ′ > −1/2,

(12) (1, δ) | ε, ε 6= ε′,

(13) |ε− ε′|+ 1 < 4
√
δ,

while p is an ideal of K, then there exists γ ∈ K such that

(14) (1, γ, δ) =
(1, δ)

p
,

(15) |γ| < 2
√
δ, |γ′| < 1 + δ′.
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Proof. Take an integer α of K divisible by p(1, δ)−1. Applying Theo-
rem 74 of [9] with

a =
(α)(1, δ)

p
, b =

p

(1, δ)

we find an integer ω of K such that (α, ω) = a, hence

(16)
(

1,
ω

α

)
=

(1, δ)
p

.

Taking

b =
⌊(

ω

α
− ω′

α′

)/
(ε− ε′) +

1
2

⌋
, a =

⌊
ω′

α′
− bε′ + 1

2

⌋

we find

(17)
∣∣∣∣
ω

α
− ω′

α′
− b(ε− ε′)

∣∣∣∣ ≤
|ε− ε′|

2
,

∣∣∣∣
ω′

α′
− a− bε′

∣∣∣∣ ≤
1
2
< 1 + δ′,

hence on addition, by (13),

(18)
∣∣∣∣
ω

α
− a− bε

∣∣∣∣ ≤
|ε− ε′|

2
+

1
2
< 2
√
δ

and for γ = ω/α − a − bε, (14) follows from (16), while (15) from (17)
and (18).

Lemma 3. If , in the notation of Lemma 2, p is a prime ideal dividing a
rational prime p, then the conclusion of the lemma holds, provided

(19) p >
N(1, δ)

√
∆

min{N(1, δ), 2
√
δ(1 + δ′)}

.

Proof. Let the ideal (1, δ) considered as a module over Z have the basis
[η, ζ]. The system of inequalities

|c| < p,

∣∣∣∣c
ω

α
−aη−bζ

∣∣∣∣ < 2
√
δ,

∣∣∣∣c
ω′

α′
−aη′−bζ ′

∣∣∣∣ < min
{
N(1, δ)

2
√
δ
, 1+δ′

}

has a non-zero integer solution by Minkowski’s theorem (Theorem 94 of [9]),
since by Theorem 76 of [9], which applies also to fractional ideals (see §31,
formula (47))

|ηζ ′ − η′ζ| = N(1, δ)
√
∆ < min{N(1, δ), 2

√
δ(1 + δ′)}p.

If in this solution we had c = 0 it would follow that aη + bζ 6= 0 and

N(1, δ) ≤ |N(aη + bζ)| < 2
√
δ
N(1, δ)

2
√
δ

= N(1, δ),

a contradiction. Therefore c 6= 0, c 6≡ 0 (mod p) and γ = cωα − aη − bζ has
the required properties.
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Proof of Theorem 2. Assume first that (1) holds and let f be the minimal
polynomial of α over Z, a > 0 its leading coefficient, and D its degree. By
(6) and (7) with β replaced by pβ, we have

(20) p2ββ′ = (−1)Daf(0),

(21) pβ > max{a, |f(0)|} ≥ min{a, |f(0)|} > p|β ′|.
Let pµ ‖ a, pν ‖ββ′. If µ = 0 or µ = ν + 2, then (2) follows with r = a or
r = |f(0)|, respectively. Therefore, assume

(22) 1 ≤ µ ≤ ν + 1.

Let a = pµb. By (20) and (22),

pµ−1b |ββ′,
while by (21),

β > pµ−1b > |β′|.
By Theorem 1 we have β ∈ M. If ν > 0, then p |ββ′ and since β is primitive,
p splits in K. If ν = 0 we have, by (22), µ = 1 and since, by Lemma 1, a is
the norm of an ideal of K, p splits in K. This proves (3).

In the opposite direction, (2) implies pβ = M(pβ/r) ∈ M. Indeed, the
minimal polynomial of pβ/r is rx2 − p(β + β′)x + ββ′/r, where (r, β + β′,
ββ′/r) = 1, since β is primitive (see the proof of Theorem 1). Assume now
that (3) holds. By Theorem 1 we have β = M(β/b), where

(23) b ∈ N, β > b > |β′|, b = N(b, β).

Replacing b by β|β′|/b if necessary, we may assume

(24) b ≥
√
β|β′|.

First, assume (4). Since β is primitive all prime ideal factors of (b, β) are of
degree one and no two of them are conjugate. Hence there exists c ∈ Z such
that

(25) ω :=
∆+

√
∆

2
≡ −c (mod (b, β)).

We put δ = β/b, ε = (c + ω)/b. In order to apply Lemma 2 we have to
check the assumptions. Now, (11) follows from (23), (24) and β > −4β ′,
(12) follows from (25), and (13) is equivalent to the inequality

√
∆/
√
b+
√
b < 4

√
β.

The left-hand side considered as a function of b on the interval [1, β] takes
its maximum at an end of the interval. We have

√
∆+ 1 < 4

√
β by (4) and√

∆/
√
β +
√
β < 4

√
β since β ≥ (1 +

√
∆)/2.
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The assumptions of Lemma 2 being satisfied there exists γ ∈ K such
that

(26) (1, γ, δ) =
(b, β)
(b)p

=
1

(b, β′)p
, |γ| < 2

√
δ, |γ′| < 1 + δ′.

Let us consider the polynomial

P (x) = x2 + γx+ δ.

The discriminant of P , γ2 − 4δ, is negative, hence P is irreducible over the
real field K, moreover its zeros are equal to

√
δ > 1 in absolute value. On

the other hand, the zeros of the polynomial

P ′(x) = x2 + γ′x+ δ′

are less than 1 in absolute value. This is clear if γ ′2− 4δ′ < 0, since |δ′| < 1,
and if γ′2 − 4δ′ ≥ 0 the inequality

|γ′|+
√
γ′2 − 4δ′

2
< 1

follows from the condition |γ′| < 1 + δ′. Taking for α a zero of P we obtain,
by (23) and (26),

M(α) =
M(PP ′)
N contP

= δN(b, β′)Np =
β

b
· bp = pβ.

Now, assume (5) and let again δ = β/b. In order to apply Lemma 3 we
have to check (19).

Consider first the case

(27) β 6∈
{

1 +
√

4e+ 1
2

: e ∈ N
}
.

Then

(28) β − |β′| ≥ 2, β ≥ 1 +
√

2

and by (24),

R :=
2
√
δ (1 + δ′)
N(1, δ)

= 2

√
β

b
(b+ β′) ≥ 2

√
β( 4
√
β|β′|+ sgnβ′ 4

√
|β′|3/β).

If β′ > 0 we clearly have R > 1, while if β′ < 0 we have, by (26),

R = 2 4
√
β|β′|(

√
β −

√
|β′|) ≥ 4 4

√
β|β′|/(

√
β +

√
|β′|).

If
√
|β′| ≤ 1

2

√
β, it follows that

R ≥ 4
√
β|β′|

√
β > 1,

while if
√
|β′| > 1

2

√
β, it follows that

R >
4√
2

√
β

2
√
β

=
√

2 > 1;
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thus (27) implies

min{N(1, δ), 2
√
δ(1 + δ′)} = N(1, δ)

and (19) follows from (5).
Consider now the case

β =
1 +
√

4e+ 1
2

.

By (23), b2 + b > e > b2 − b, b | e, which implies e = b2. On the other hand,
4e+ 1 = f2∆ for some f ∈ N. The inequality

p >
√
∆ =

√
4b2 + 1
f

implies by a tedious computation

p ≥ 2b+ 1
f

>

√
∆

2
√

β
b (b+ β′)

=
N(1, δ)

√
∆

min{N(1, δ), 2
√
δ (1 + δ′)}

,

hence (19) holds.
The assumptions of Lemma 3 being satisfied there exists γ ∈ K satisfying

(26) and arguing as before we obtain

pβ = M(α),

where α is a zero of x2 + γx+ δ.

Proof of Corollary 1. For β = (3 +
√

5)/2 the condition (4) is satisfied.
Now, (2) is fulfilled by p = 2 only, and (3) is fulfilled by p = 5 and by p ≡ ±1
(mod 5) only.

Proof of Corollary 2. Take a totally positive unit ε > 1 of K and a prime
p > ε that splits in K. Then by Theorem 2, pε ∈ M. Assume that the basal
irreducible polynomial f of pε has all its zeros in K. Hence

f(x) = a

(
x± pε

a

)(
x± pε′

a

)
, pε > a > pε′, a ∈ N

and the condition p2/a ∈ Z together with p > ε implies a = p. However, for
a = p, f is not primitive.

Example 1. For K = Q(
√

2) we can take

pε = 21 + 14
√

2 = M(7x4 + 2x3 + 41x2 + 22x+ 7).

Proof of Corollary 3. There are only finitely many totally positive inte-
gers β of K, which are Perron numbers, but do not satisfy (4).
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Remark 2. By a more complicated argument one can show that for β
totally positive, (3) implies (1) unless

4
√
Nβ +

√
∆

4
√
Nβ
≥ 4
√
β and p < 1 +

1
2
√
β

(
4
√
Nβ +

√
∆

4
√
Nβ

)
.

Example 2. Theorem 2 does not allow us to decide whether 1 +
√

17
∈ M. This question is open, as is a more general question, whether (3)
implies (1).
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