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To Robert Tijdeman on the occasion of his 60th birthday

For an algebraic number a, let M («) be the Mahler measure of o and
let M = {M(a) | a € Q}. No method is known to decide whether a given
algebraic integer [ is in M. Partial results have been obtained by Adler and
Marcus [1], Boyd [2]-[4], Dubickas [6]-[8] and Dixon and Dubickas [5], but
the problem has not been solved even for § of degree two. The following
theorem, similar to, but not identical with Theorem 9 of [5], is an easy
consequence of [7].

THEOREM 1. A primitive real quadratic integer 3 is in M if and only if
there exists a rational integer a such that > a > |f'| and a|pBB’, where
B is the conjugate of (. If the condition is satisfied, then 3 = M(3/a) and
a = N(a, ), where N denotes the absolute norm.

There remain to be considered quadratic integers that are not primitive.
The following theorem deals with the simplest class of such numbers.

THEOREM 2. Let K be a quadratic field with discriminant A > 0, 3,3
be conjugate primitive integers of K and p a prime. If

(1) pBEM,

then either there exists an integer r such that

(2) pB>r>plf| and r|BF, pir
or

(3) BeM and p splitsin K.
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Conversely, (2) implies (1), while (3) implies (1) provided either

1+4\/Z>2}

(4) B> max{—llﬁ', (

or

(5) p> VA
REMARK 1. (2) implies 8 > pS3|3'|/r > p.
Theorem 2 answers two questions raised in [5].

COROLLARY 1. For all primes p we have p% € M if and only if
either p =2, or p=>5, or p=£1 (mod?5).

COROLLARY 2. For every real quadratic field K there is an irreducible
polynomial f € Z[x], basal in the sense of [5], such that M(f) € K, but the
zeros of f do not lie in K.

COROLLARY 3. In every real quadratic field K there are only finitely
many integers pB3, where p is prime, while G is primitive and totally positive,
for which the condition pB € M is not equivalent to the alternative of (2)
and (3).

Proof of Theorem 1. Necessity. Let = M(«), let f be the minimal
polynomial of « over Z, a > 0 its leading coefficient, D its degree, and
aq,...,ap all its zeros. By Lemma 2 of [7] applied with d = 2,

(® 55" = [ as = (-1)Paf (0)

Moreover, by formula (3) of [7], D = 2s, where s is the number of i < D with
|a;| > 1. Without loss of generality we may assume that |a;| > 1 precisely
for i < s. For some n € {1,—1} we have

(7) [ =n8/a,
hence, by (6), -

(8) H Q; = 77/8//0’7

1=s+1
which gives
(9) B>a> |3
Also, by (6),
(10) alBp'.

Sufficiency. Assume the existence of an integer a satisfying (9) and (10)
and consider the polynomial
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g(x) = az® — (B + §')a + 56 /a.

If g is not primitive, there exists a prime p such that p|a, p|3 + 4’ and

p| BB’ /a. However, then p? | 33" and 3/p is a zero of the polynomial x2 —
B+8’

foﬁe, g is the minimal polynomial of §/a over Z and § = M(3/a). Also,
(a)] (a® aB,af, B3") | (a®, a(B + 3),36") = (a), hence
(a) = (a®,aB, a8, B3') = (a, B)(a, B).

The proof of Theorem 2 is based on three lemmas.

z+ %ﬁgl € Z[z], contrary to the assumption that [ is primitive. There-

LEMMA 1. If an integer B of K is the Mahler measure of an algebraic
number whose minimal polynomial over Z has leading coefficient a, then a
is the norm of an ideal of K.

Proof. In the notation of the proof of Theorem 1 (necessity part) we have
(7) and (8). Since nf’/a is the only conjugate of n/3/a, every automorphism
of the splitting field of f that sends an «; (i < s) to an a; (j > s) sends
the set {a1,...,as} onto {asy1,...,ap} (compare the proof of Lemma 2
in [7]). Hence {a1,...,as} and {as41,...,ap} are blocks of imprimitivity
of the Galois group of f and the coefficients of the polynomials

s D
P =[[-a), P = ]] =-a)
i=1 i=s+1

belong to a quadratic field, which clearly is K. Let the contents of P and
P’ be a=! and a’~!, where a and o’ are conjugate ideals of K. Since f is
primitive, we have

(1) = cont f = cont(aPP") = (a)/ad
and, since @ > 0, a = Na.

LEMMA 2. If the dash denotes conjugation in K, §, € are elements of K
such that

(11) §>1>68>-1/2,

(12) (L) |e, e#€,

(13) le—e'|+1 <4V,

while p is an ideal of K, then there exists v € K such that
1,4

(14) (17,0 = &2,

(15) vl <2ve, |Y]<1+4.



404 A. Schinzel

Proof. Take an integer o of K divisible by p(1,5)~!. Applying Theo-
rem 74 of [9] with

@8
p (1,9)
we find an integer w of K such that (a,w) = a, hence
(16) (1,5> _ (L9)
a p
Taking
/ !
b:{(g—%)/(a—s’)—%ﬂ, a—{w—/—bE’—F%J
we find
(17) g—w—/—b(s—s’)<’€_6,| W —b5/<1<1+5’
a o - 2 7 o -2 ’

hence on addition, by (13),
/
— 1
E—a—b&? §u+—<2\/5
o} 2 2
and for v = w/a —a — be, (14) follows from (16), while (15) from (17)
and (18).

LEMMA 3. If, in the notation of Lemma 2, p is a prime ideal dividing a
rational prime p, then the conclusion of the lemma holds, provided

N(1,86)VA
min{N(1,6),2v/0(1 + &)}

Proof. Let the ideal (1, ) considered as a module over Z have the basis

[, ¢]. The system of inequalities
N(1
< 2V, <min{ ( ’5),1+5’}
2V/8

has a non-zero integer solution by Minkowski’s theorem (Theorem 94 of [9]),
since by Theorem 76 of [9], which applies also to fractional ideals (see §31,
formula (47))
¢’ = n'¢l = N(1,6)VA < min{N(1,4), 26(1 + &) }p.
If in this solution we had ¢ = 0 it would follow that an + b{ # 0 and
N(1,9)
2V/6

a contradiction. Therefore ¢ # 0, ¢ # 0 (modp) and v = cZ — an — b¢ has
the required properties.

(18)

(19) p>

/

w
ca—an’—bcl

lc| < p,

cg—an—bC
o

N(1,6) < |N(an +bC)| < 2V = N(1,6),
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Proof of Theorem 2. Assume first that (1) holds and let f be the minimal
polynomial of « over Z, a > 0 its leading coefficient, and D its degree. By
(6) and (7) with 3 replaced by pf3, we have

(20) P86 = (—=1)Paf(0),
(21) pB > max{a, |f(0)|} = min{a, |F(0)[} > pl&'|
Let p* |l a, p” || B6". If p =0 or p = v + 2, then (2) follows with r = a or
r = |f(0)|, respectively. Therefore, assume
(22) I<p<v+l
Let a = p*b. By (20) and (22),

TV
while by (21),

g>p" o> |6

By Theorem 1 we have § € M. If v > 0, then p | 53" and since 3 is primitive,

p splits in K. If v = 0 we have, by (22), p = 1 and since, by Lemma 1, a is
the norm of an ideal of K, p splits in K. This proves (3).

In the opposite direction, (2) implies p3 = M (pB/r) € M. Indeed, the
minimal polynomial of p3/r is rz? — p(8 + ')z + BB’ /r, where (r, 5 + 3,
BB’ /r) =1, since (3 is primitive (see the proof of Theorem 1). Assume now
that (3) holds. By Theorem 1 we have 5 = M(3/b), where

(23) beN, pB>b>|f, b=N(2p).

Replacing b by 3|5’|/b if necessary, we may assume

(24) b=/ Bl6].

First, assume (4). Since (3 is primitive all prime ideal factors of (b, 3) are of
degree one and no two of them are conjugate. Hence there exists ¢ € Z such
that

(25) W= % =

—c (mod (b, B)).

We put 6 = /b, ¢ = (¢ + w)/b. In order to apply Lemma 2 we have to
check the assumptions. Now, (11) follows from (23), (24) and 8 > —45’,
(12) follows from (25), and (13) is equivalent to the inequality

VAV + Vb < 44/5.

The left-hand side considered as a function of b on the interval [1, 3] takes
its maximum at an end of the interval. We have vA 4 1 < 41/ by (4) and
VA/NB + VB < 4B since B > (14 VA)/2.
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The assumptions of Lemma 2 being satisfied there exists v € K such
that
(0, 8) 1 / /
26 1,7,0) = = . Nl <2ve, |Y<1+4.
O =y = 7]
Let us consider the polynomial
P(z) = 2° + vz + 0.

The discriminant of P, v? — 44, is negative, hence P is irreducible over the
real field K, moreover its zeros are equal to V8 > 1 in absolute value. On
the other hand, the zeros of the polynomial

Pl(z)=a2>+~z+¢

are less than 1 in absolute value. This is clear if v/2 — 48" < 0, since |§'| < 1,
and if 72 — 48’ > 0 the inequality

W+ VA
2

follows from the condition |y'| < 1+ ¢'. Taking for « a zero of P we obtain,
by (23) and (26),

_ M(PP) Nar B
—m—(SN(byﬁ)NP—g'bp—pﬁ-

Now, assume (5) and let again § = (3/b. In order to apply Lemma 3 we
have to check (19).
Consider first the case

M(«a)

(27) B%{L vietl, eeN}.
Then

(28) B—18>2, B>1+V2
and by (24),

) 5
Ri= 200D s\ 301 ) 2 2 /BB + s YT
If 5/ > 0 we clearly have R > 1, while if 8’ < 0 we have, by (26),
R=2/BI8(vVB— VIB'D) = 4V/BIB1/ (VB + VIBD.
If \/|3'| < 2/B, it follows that

R > /BIFVB > 1,
while if /8’| > 14/B, it follows that
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thus (27) implies
min{N(1,48), 2V5(1 + ¢')} = N(1,0)

and (19) follows from (5).
Consider now the case

ﬁ_1+\/4e+1
-—

By (23), b* +b > e > b? — b, b| e, which implies e = b2. On the other hand,
4e +1 = f2A for some f € N. The inequality
402 + 1
p>va= YL

implies by a tedious computation

2b+ 1 VA N(1,6)VA

> =
b=~ 220+ o) mn(NLe) 2B (1))

hence (19) holds.
The assumptions of Lemma 3 being satisfied there exists v € K satisfying
(26) and arguing as before we obtain

pB = M(a),

where « is a zero of 2% 4+ ya + 4.

Proof of Corollary 1. For 8 = (3 ++/5)/2 the condition (4) is satisfied.
Now, (2) is fulfilled by p = 2 only, and (3) is fulfilled by p = 5 and by p = +1
(mod 5) only.

Proof of Corollary 2. Take a totally positive unit £ > 1 of K and a prime
p > ¢ that splits in K. Then by Theorem 2, pe € M. Assume that the basal
irreducible polynomial f of pe has all its zeros in K. Hence

/
f(a:)za(mip—g><xi]£>, pe>a>pe, a €N
a a

and the condition p?/a € Z together with p > ¢ implies a = p. However, for
a = p, f is not primitive.

EXAMPLE 1. For K = Q(+/2) we can take
pe =21 + 14v2 = M(7z* + 223 + 4122 + 222 + 7).

Proof of Corollary 3. There are only finitely many totally positive inte-
gers (3 of K, which are Perron numbers, but do not satisfy (4).
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REMARK 2. By a more complicated argument one can show that for
totally positive, (3) implies (1) unless

4 VA L (5. VA
Nﬁ+4—\/N_ﬂZ4 8 and p<1+m< Nﬁ+4—\/N_ﬁ>

EXAMPLE 2. Theorem 2 does not allow us to decide whether 1 + /17
€ M. This question is open, as is a more general question, whether (3)
implies (1).
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