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1. Introduction. Let OF be the ring of integers of a number field F .
Let A be a finite Abelian group. We denote the 2-Sylow subgroup of A by
A2, the 2-rank of A by r2(A), and the 4-rank of A by r4(A).

By [2, 5, 9], we have 2-rank and 4-rank formulas for K2OF . For quadratic
fields, Browkin and Schinzel [3] have given 2-rank formulas and forms of el-
ements of order 2 of K2OF ; Qin [12, 13, 14] has obtained a method to
calculate 4-ranks of K2OF . Recently, Hurrelbrink and Kolster [8] have pre-
sented an effective way of computing 4-ranks of K2OF for relative quadratic
extensions via the determination of the F2-ranks of certain matrices of local
Hilbert symbols. In [17] we have proved the following formula:

r4(K2OF ) = a(F ) + r4(C(E)),

where F = Q(
√
d), E = Q(

√
−d), a(F ) = −1, 0, or 1 is a constant deter-

mined effectively by the Rédei matrices of E, and C(E) is the narrow class
group of E.

In the present paper, we concentrate on the structure of the 2-Sylow
subgroup of K2OF and use the method of [5, 9] to give the results of [12, 13,
14] and to express the forms of elements of order 4 of K2OF for quadratic
fields F , which are simpler. Using these forms we discuss whether elements
of order 4 of K2OF are contained in Hilbert kernel <2F . Hence, we get the
relation between r4(K2OF ) and r4(<2F ) and we get some quadratic fields
with elements of order 8 in K2OF . We also obtain the following result: if
F = Q(

√
p1p2), where p1 and p2 are primes with p1 6= p2, p1 ≡ p2 ≡ 5 mod 8,

then K2OF ∼= Z/(2) ⊕ Z/(2) ⊕ Z/(4) if and only if 16 |h(−p1p2), where
h(−p1p2) is the class number of E = Q(

√−p1p2). For imaginary quadratic
fields, we add some values of the Tate kernel to the tables of [13].
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2. Elements of order 4 in the tame kernel. We use the method of
[5, 9] to investigate the elements of order 4 of K2OF for quadratic fields F .
Now, we describe the notations of [5]:

• F = Q(
√
d), E = Q(

√
−d), M = F (i), d > 2 a squarefree integer.

• S is the set of infinite and dyadic places of F .
• GF = {cl(b) ∈ F ∗/F ∗2 | vP (b) ≡ 0 mod 2 for all P 6∈ S}.
• HF = {cl(b) ∈ GF | b ∈ NM/F (M∗)}.
In [5], there are defined maps:

χ1, χ2 : HF → CS(F )/C2
S(F ),

χ1 : cl(b) 7→
[ ∏

P 6∈S
P vP (b)/2

]
, χ2 : cl(b) 7→

[ ∏

P 6∈S
P vP(α)

]
,

where CS(F ) is the S-ideal class group of F , NM/F (α) = b for α ∈M , and
P is a place of M over P . Let χ = χ1χ2. Then kerχ is determined by the
elements of order 4 of K2OF and the elements a ∈ F ∗ with {−1, a} = 1 (see
[5], Prop. 2.3, or [9], Prop. 1.5).

Browkin–Schinzel ([3], Theorem 2) gave the elements of order at most 2
of K2OF for a real quadratic field F = Q(

√
d):

{−1,mγj},
where m is an odd divisor of d and γj = uj +

√
d with u2

j − jw2
j = d,

uj , wj ∈ N, j ∈ NF/Q(F ∗)∩{−1,±2}, γ1 = 1. We denote NF/Q(F ∗) by NF .
By Bass–Tate theorem [10], β ∈ K2F , β2 = {−1,mγj} if and only if

mγj ∈ NM/F (M∗). On the other hand, for all P 6∈ S, the tame symbols
τP {−1,mγj} equal 1, so the Hilbert symbols ηP ({−1,mγj}) are 1 by [2],
Theorem 2. By the Minkowski–Hasse theorem, we know that: if d 6≡ 1 mod 8,
then mγj ∈ NM/F (M∗) if and only if m > 0 and j = 1, 2; if d ≡ 1 mod 8
and 2 6∈ NF , then mγj ∈ NM/F (M∗) if and only if m > 0 and j = 1;
if d ≡ 1 mod 8 and u2 − 2w2 = d, where u,w ∈ N, w ≡ 0 mod 4, then
mγj ∈ NM/F (M∗) if and only if either j = 1, m > 0, and m ≡ 1 mod 4, or
j = 2, m > 0, and m+ u ≡ 2 mod 4.

Suppose that β ∈ K2F and

(2.1) β2 = {−1,mγj} ∈ K2OF .

We will find conditions sufficient for β ∈ K2O2.

Case 1: j = 1 and m is an odd positive divisor of d in (2.1). Since m ∈
NM/F (M∗), there are X = x1 +x2

√
d, Y = y1 +y2

√
d ∈ F and x1, x2, y1, y2

∈ Q such that

m = X2 + Y 2 = (x2
1 + y2

1) + (x2
2 + y2

2)d+ 2(x1x2 + y1y2)
√
d.
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Hence x1x2 + y1y2 = 0. First we assume that x1, x2, y1, y2 are all non-zero,
and put t = x1/y1 = −y2/x2. By the last equality, m = (1 + t2)(y2

1 + x2
2d).

Therefore, there is a squarefree positive integer k, with each odd prime factor
pi ≡ 1 mod 4, such that the Diophantine equation

(2.2) mkz2 = x2 + dy2

is solvable in Z. If x1 = y1 = 0, take k = d/m; if x2 = y2 = 0, take k = m;
if x1 = y2 = 0 or x2 = y1 = 0, take k = 1.

When k ≥ 2, there are g, h ∈ N such that

(2.3) k = g2 + h2.

Take a relatively prime solution (x, y, z) = (a, b, c) of the equation (2.2) in
N. Put α1 = a+b

√
−d, α2 = g+hi, and α = α1α2. Then NM/F (α) = mk2c2

and cl(m) = cl(mk2c2) ∈ HF . Below, we discuss the value of χ(cl(m)). For
convenience, let p be an odd prime, P a place of F over p, and P a place of
M over P , which we denote by P |p and P|P . Suppose p |mk2c2.

(i) If p - k, p |m, then p | a, p - b, p - c for the relatively prime solution
(x, y, z) = (a, b, c) of (2.2) in N. Hence vP (mk2c2)/2 = vP (m)/2 = 1 and
vP(α) = vP(α1) + vP(α2) = 1 + 0 = 1.

(ii) If p - k, p | c, then p - d, p - a, p - b. Hence vP (mk2c2)/2 = vp(c) and
vP(α) ≡ 0 + 0 = 0 mod 2.

(iii) If p | k, p |m, then p ‖ a, p | b, p - c. Hence vP (mk2c2)/2 ≡ 1 mod 2
and vP(α) ≡ 0 + 0 ≡ 0 mod 2.

(iv) If p | k, p -m, p | d, then p | a, p - b, p - c. Hence vP (mk2c2)/2 =
vP (k) ≡ 0 mod 2 and vP(α) ≡ 1 + 0 ≡ 1 mod 2.

(v) If p | k, p - d, then p - a, p - b in both cases p | c and p - c. Hence
vP (mk2c2)/2 = vP (k) + vP (c) ≡ 1 + vp(c) mod 2. In this case, we inves-
tigate the value of vP(α).

There is a diagram of field extensions

M

F = Q(
√
d) L = Q(i) E = Q(

√
−d)
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Since p splits in E and L, p splits completely in M . Let Gal(M/Q) =
{1, σ, %, σ%} be the Galois group of the finite extension M/Q, where σ :√
d 7→

√
d, i 7→ −i and % :

√
d 7→ −

√
d, i 7→ −i. Then pOM = P1P2P3P4,

P2 = σP1, P3 = %P1, P4 = σ%P1, pOF = P1P2, P1OM = P1P2, P2OM =
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P3P4. Hence we have, modulo 2,
{
vP1(α1) = vP3(α1) ≡ 0,
vP2(α1) = vP4(α1) ≡ 1,

or
{
vP1(α1) = vP3(α1) ≡ 1,
vP2(α1) = vP4(α1) ≡ 0,

{
vP1(α2) = vP4(α2) ≡ 0,
vP2(α2) = vP3(α2) ≡ 1,

or
{
vP1(α2) = vP4(α2) ≡ 1
vP2(α2) = vP3(α2) ≡ 0.

Therefore

(2.4)
{
vP1(α) = vP2(α) ≡ 0,
vP3(α) = vP4(α) ≡ 1,

or
{
vP1(α) = vP2(α) ≡ 1,
vP3(α) = vP4(α) ≡ 0.

Consequently, χ(cl(m)) = [cI] = [I], where II = kOF , I a conjugate
ideal of I. Hence cl(m) ∈ kerχ if and only if [I] ∈ C2

S(F ). Let H(F ) be the
narrow class group of F . Then, by the Gauss theorem, [J ] ∈ H2(F ), where
J is an ideal of F , if and only if NF/Q(J) ∈ NF . On the other hand, let [A]
be the narrow class containing the ideal A = (

√
d) and [B] the narrow class

containing B | 2. Put H2(F ) = 〈[A], [B]〉, the group generated by [A], [B].
Then

CS(F ) = H(F )/H2(F ).

Therefore, we have

cl(m) = cl(mk2c2) ∈ kerχ

⇔ [I] ∈ C2
S(F ), i.e., [I][X] ∈ H2(F ), where [X] ∈ H2(F )

⇔ NF/Q(IX) ∈ NF, i.e., kε ∈ NF, where ε ∈ {±1,±2}
⇔ the following equation is solvable in Z:

(2.5) εkz2 = x2 − dy2.

By (2.2) and (2.5), we get:

Theorem 2.1 ([14], Theorem 2.2). Let F = Q(
√
d), d > 2 a squarefree

integer. Then, for every odd positive divisor m of d, there is β ∈ K2OF with
β2 = {−1,m} if and only if there is ε ∈ {±1,±2} such that

(2.6)
(
εdm−1

p

)
=
(
εm

l

)
= 1 for any odd primes p |m, l | dm−1.

By [9], Prop. 1.5, and the preceding argument, we can find y ∈ F ∗ such
that vP (NM/F (α))/2 + vP(α) + vP (y) ≡ 0 mod 2 for all P 6∈ S. Set

β = trM/F ({i, α}){−1, y}(2.7)

= trM/F ({i, α1}) trM/F ({i, α2}){−1, y}

=
{
−
√
db

a
,
kmc2

a2

}{
−h
g
,
k

g2

}
{−1, cδ}{−1, e+ f

√
d},
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where (x, y, z) = (e, f, t) is a relatively prime solution of (2.5) in N and δ | k,
δ ∈ N. Then β ∈ K2OF and β2 = {−1,m}.

In particular, suppose that (m, ε), ε > 0, satisfies (2.6). Then take k = ε
in (2.2) and set

(2.8) β =
{−
√
db

a
,
εmc2

a2

}
{−1, c},

where (x, y, z) = (a, b, c) is a relatively prime solution of εmz2 = x2 + dy2

in N. Then β ∈ K2OF and β2 = {−1,m}.
Case 2: j = 2 and m is an odd positive divisor of d in (2.1). Since

2 ∈ NF , we have u2− 2w2 = d, u, w ∈ N, and γ2 = u+
√
d. If d ≡ 1 mod 8,

we take w ≡ 0 mod 4. Hence,

(2.9)
w2 + (u+ w +

√
d)2 = 2(u+ w)(u+

√
d),

(u+ 2w)2 + d = 2(u+ w)2,

so d and u + w are relatively prime. We assume mγ2 ∈ NM/F (M∗). Then
(u + w)m ∈ NM/F (M∗) by (2.9). By the same method as in the first case,
there is a squarefree positive integer k, with each odd prime divisor pi ≡
1 mod 4, such that the Diophantine equation

(2.10) m(u+ w)kz2 = x2 + dy2, k = g2 + h2, g, h ∈ N,
is solvable in Z. Take α1 = w+ (u+w+

√
d)i, α2 = a+ b

√
−d, α3 = g+hi,

α = α1α2α3, where (x, y, z) = (a, b, c) is a relatively prime solution of (2.10)
in N. Then NM/F (α) = 2m(u +

√
d)k2(u + w)2c2 and cl(m(u +

√
d)) =

cl(NM/F (α)) ∈ HF . We discuss the value of χ(cl(m(u+
√
d))). For p an odd

prime, let P |p in F and P|P in M . Suppose P |NM/F (α). There are the
following cases:

(i) If p - k, p |m, then p -u+w, p | a, p - b, p - c, P -u+
√
d for the relatively

prime solution (x, y, z) = (a, b, c) of (2.10) in N. Hence vP (NM/F (α))/2 =
vP (m)/2 = 1 and vP(α) = vP(α2) = vP(a+ b

√
−d) = 1.

(ii) If p - k, P |u +
√
d, then p -u + w, p - d. Hence vP (NM/F (α))/2 =

vP (u+
√
d)/2 + vp(c) and

vP(α) ≡ vP(α1) + 0 ≡ vP((u+
√
d)i+ w(1 + i)) ≡ vP(w)

≡ vP (u+
√
d)/2 mod 2

by (2.9) and (u+
√
d)(u−

√
d) = 2w2.

(iii) If p - k, p |u + w, then P -u +
√
d, p - d. Without loss of generality,

assume p - a, p - b. Hence vP (NM/F (α))/2 = vp(u+ w) + vp(c) and

vP(α) = vP(α1) + vP(α2) = vP((u+ w)i+ (w +
√
−d)) + vP(α2)

= vP((w +
√
−d)(a+ b

√
−d)).
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(iv) If p | k, p |m, then p ‖ a, p | b, p - c. Hence vP (NM/F (α))/2=vP (m)/2
+ vP (k) ≡ 1 mod 2 and vP(α) = vP(α2) + vP(α3) ≡ 0 + 0 = 0 mod 2.

(v) If p | k, p | d, p -m, then p | a, p - b, p | c. Hence vP (NM/F (α))/2 =
vP (k) ≡ 0 mod 2 and vP(α) = vP(α2) + vP(α3) ≡ 1 + 0 = 1 mod 2.

(vi) If p | k, p - d, then p - a, p - b. Hence we have vP (NM/F (α))/2 =
vp(k)+vp(u+w)+vP (u+

√
d)/2+vp(c). Suppose P |u+

√
d. Then vP(α1) =

vP(u+
√
d+w(1 + i)) = vp(w) = vP (u+

√
d)/2 as (u+

√
d)(u−

√
d) = 2w2.

By the process of proving (v) in the first case, we can get the same result
for vP(α2α3) as in (2.4). Suppose p |u + w and, without loss of generality,
assume p - a, p - b. Then vP(α1α2) = vP((w+

√
−d)(a+ b

√
−d)) by (iii). By

the process of proving (v) in Case 1, we can get the same result for vP(α)
as in (2.4). Suppose p -u+ w, P -u+

√
d. Then we can get the same result

for vP(α) as in (2.4).
Consequently, χ(cl(m(u+

√
d))) = [cδ1I], where δ1 |u+w from (iii) and

II = kOF , I a conjugate ideal of I. By the method of Case 1, we have
χ(cl(m(u +

√
d))) ∈ kerχ if and only if the following equation is solvable

in Z, ε ∈ {±1}:

(2.11) εkz2 = x2 − dy2.

By (2.10) and (2.11), we get

Theorem 2.2 ([14], Theorem 3.3). Let F = Q(
√
d), d > 2 a squarefree

integer. Suppose that d = u2 − 2w2 with u,w ∈ N. Then, for every odd
positive divisor m of d, there is β ∈ K2OF with β2 = {−1,m(u +

√
d)} if

and only if there is ε ∈ {±1} such that

(2.12)

(
εdm−1(u+ w)

p

)
= 1 for every odd prime p |m,

(
εm(u+ w)

l

)
= 1 for every odd prime l | dm−1.

Suppose that (m, ε) satisfies (2.12). Then, by [9], Prop. 1.5 and the pre-
ceding argument, we can find y ∈ F ∗ such that vP (NM/F (α))/2 + vP(α) +
vP (y) ≡ 0 mod 2 for all P 6∈ S. Set

β =
{
−u+ w +

√
d

w
,

2(u+ w)(u+
√
d)

w2

}
(2.13)

×
{
−b
√
d

a
,
m(u+ w)kc2

a2

}

×
{
−h
g
,
k

g2

}
{−1, cδ1δ2(e+ f

√
d)},
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where δ1 |u + w, δ2 | k, δi ∈ N, (x, y, z) = (a, b, c) is a relatively prime
solution of (2.10) in N, and (x, y, z) = (e, f, t) is a relatively prime solution
of (2.11) in N. Then β ∈ K2OF and β2 = {−1,m(u+

√
d)}.

In particular, ε > 0. We can take k = 1 in (2.10) and set

β =
{
−u+ w +

√
d

w
,

2(u+ w)(u+
√
d)

w2

}
(2.14)

×
{
−b
√
d

a
,
m(u+ w)c2

a2

}
{−1, cδ},

where δ |u+ w, δ ∈ N, and (x, y, z) = (a, b, c) is a relatively prime solution
of (2.10) in N with k = 1. Then β ∈ K2OF and β2 = {−1,m(u+

√
d)}.

With the preceding method, we can also discuss an imaginary quadratic
field E = Q(

√
−d) to get results of [13] and the forms of elements of order

4 of K2OE.

Theorem 2.3 ([13], Theorems 3.10 and 3.13). Let F = Q(
√
d), E =

Q(
√
−d), d > 2 a squarefree integer , and m an odd positive divisor of d.

(1) There is β ∈ K2OE with β2 = {−1,m} if and only if εm ∈ NF ,
where ε ∈ {1, 2}.

(2) If −d = u2 − 2w2, u, w ∈ N, then there is β ∈ K2OE with β2 =
{−1,m(u+

√
−d)} if and only if m(u+ w) ∈ NF .

Similarly, suppose m | d, εm ∈ NF , and set

(2.15) β =
{
−b
√
−d
a

,
εmc2

a2

}
{−1, c},

where (x, y, z) = (a, b, c) is a relatively prime solution of εz2 = x2 − dy2 in
N. Then β ∈ K2OE and β2 = {−1,m}.

Suppose m | d, −d = u2 − 2w2, u, w ∈ N, m(u+ w) ∈ NF , and set

β =
{
−u+ w +

√
−d

w
,

2(u+ w)(u+
√
−d)

w2

}
(2.16)

×
{
−b
√
−d
a

,
m(u+ w)c2

a2

}
{−1, cδ},

where δ |u+w, δ ∈ N, and (x, y, z) = (a, b, c) is a relatively prime solution of
m(u+w)z2 = x2−dy2 in N. Then β ∈ K2OE and β2 = {−1,m(u+

√
−d)}.

3. Real quadratic fields. To investigate whether ε > 0 in (2.6) and
(2.12), we divide them into two cases.



302 Q. Yue

Definition 3.1. Let F = Q(
√
d), d > 2 a squarefree integer. Set

S0 = {m |m is an odd positive divisor of d},
S1 = {εm | m ∈ S0 and (m, ε), ε > 0, satisfies (2.6) or (2.12)},
S2 = {|ε|m | m ∈ S0 and (m, ε), ε < 0, satisfies (2.6) or (2.12),

but m, 2m 6∈ S1}.
In [17], we give the relation between S1 and C(E) (the narrow class

group of the field E = Q(
√
−d)). In fact, if −1 or −2 is in NF , then S2 = ∅;

if d ≡ −1 mod 8, then S2 = ∅ by the quadratic reciprocity law or by [17],
Lemma 3.4. Below, we explain why S2 6= ∅.

Lemma 3.1. Let π : B → (c) be a surjective homomorphism of a finite
Abelian p-group B. If b ∈ B is an element of minimal order such that
π(b) = c, then there exists a subgroup B′ of B satisfying B = (b)× B′ and
π(B′) ⊂ (cp).

Proof. Since B is Abelian, we have B = (b1) × . . . × (bt). From the
surjectivity of π it follows that (π(bj)) = (c) for some j. We assume that b1
is an element of minimal order among all bj satisfying (π(bj)) = (c); we can
also assume that π(b1) = c, because b1 can be replaced by some power of b1
if necessary.

For i ≥ 2, if (π(bi)) = (c), i.e., π(bi) = ct with p - t, then we take
b′i = bp−t1 bi. If (π(bi)) 6= (c), i.e., (π(bi)) ⊂ (cp), then we take b′i = bi. Then
the group B′ generated by b′2, . . . , b

′
t satisfies B = (b1)×B′ and π(B′) ⊂ (cp).

Now let x ∈ B be an element of minimal order satisfying π(x) = c. Then
x = bj1b

′ with b′ ∈ B′. Consequently, c = π(x) = π(b1)jπ(b′) = cjcpk for
some k ∈ Z. Hence p - j.

From 1 = xo(x) = b
jo(x)
1 b′o(x), we get bjo(x)

1 ∈ B′, and hence bo(x)
1 = 1.

Therefore o(b1) ≤ o(x). On the other hand, o(x) ≤ o(b1), by the minimality
of o(x). It follows that o(x) = o(b1), and consequently B = (x)×B′.

Theorem 3.1. Let F = Q(
√
d), d > 2 squarefree.

(1) If d 6≡ ±1 mod 8, then (K2OF )2 = (α1) × (α2) × H, where α1 =
{−1,−1}, H ⊂ <2F , and α2 is an element of minimal order of (K2OF )2

with Hilbert symbol η∞i(α2) = (−1)i, ∞i real places, i = 1, 2.
(2) If d ≡ 1 mod 8, then (K2OF )2 = (α1) × (α2) × (α3) × H, where

α1 = {−1,−1}, H ⊂ <2F , and α2, α3 are elements of minimal order
of K2OF satisfying η∞i(α2) = (−1)i, η∞i(α3) = 1, ηPi(α3) = −1, Pi | 2,
i = 1, 2; moreover , either α2 or α3 is an element of order 2.

(3) If d ≡ −1 mod 8, then (K2OF )2 = (α1) × (α2) × H, where α1 =
{−1,−1} and α2 is an element of minimal order of K2OF satisfying η∞i(α)
= (−1)i, i = 1, 2. Moreover α2 is of order at least 8.
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Proof. By [2], Theorem 2, or [10], §15, we obtain the commutative dia-
gram with exact rows and columns:

0 0

0 <2F K2F
∐

P nonc

µP µ 0

0 K2OF K2F
∐

P fin.

F ∗P 0

0

�� ��
//

��

//

id

��

η //

λ

��

// //

// //

��

τ // //

where the homomorphism λ is defined as follows:

λ :
∐

P nonc

µP →
∐

P fin.

F ∗P ,

λ(aP ) =
{

1 if P is real,
a
mP /(NP−1)
P if P is finite,

where µP is the group of roots of unity in the local completion field FP ,
aP ∈ µP , mP = |µP |, FP is the residue class field of the completion field
FP , and NP = |FP |.

By diagram chase, we get the exact sequence

0→ <2F → K2OF
η→ Im η ∩ kerλ→ 0.

Since the group K2OF is finite, we obtain the exact sequence of their
2-Sylow subgroups

0→ (<2F )2 → (K2OF )2
η→ (Im η ∩ kerλ)2 → 0.

If d ≡ −3 mod 9, then mP = 3(NP − 1) for P a place over 3 and mP =
NP−1 for all P 6∈ S and P - 3; otherwise mP = NP−1 for P 6∈ S. Therefore
(Im η ∩ kerλ)2 = Im η ∩ (µ∞1 × µ∞2 ×

∐
P |2 µ

NP−1
P ).

(1) If d 6≡ ±1 mod 8, then

(K2OF )2/(<2F )2
∼= Im η ∩ (µ∞1 × µ∞2 × µNP−1

P ) ∼= Z/(2)⊕ Z/(2),

where P | 2 and µ∞i = µNP−1
P = {±1}. Since η(α1) = η({−1,−1}) = β1 =

(−1,−1, 1) and β2 = (−1, 1,−1) are two generators of (Im η ∩ kerλ)2 we
have (K2OF )2 = (α1)× η−1(β2), so we get α2 by Lemma 3.1.
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(2) If d ≡ 1 mod 8, then

(K2OF )2/(<2F )2
∼= Im η ∩ (µ∞1 × µ∞2 × µP1 × µP2)
∼= Z/(2)⊕ Z/(2)⊕ Z/(2),

where Pi | 2 and µPi = {±1}, i = 1, 2. Since η(α1) = η({−1,−1}) = β1 =
(−1,−1,−1,−1), β2 = (1,−1, 1,−1), β3 = (1, 1,−1,−1) are three gener-
ators of (Im η ∩ kerλ)2, we have (K2OF )2 = (α1) × η−1{β2, β3}, where
α1 = {−1,−1}.

Suppose −1 ∈ NF . Take α2 = {−1, u+
√
d}, where u2 +w2 = d, u, w ∈

N. Hence η(α2) = β2, so we get α3 by Lemma 3.1.
Suppose −1 6∈ NF . There is a prime divisor p ≡ 3 mod 4 of d. Take

α3 = {−1, p}, so we also get α2 by Lemma 3.1.
(3) If d ≡ −1 mod 8, then

(K2OF )2/(<2F )2
∼= Im η ∩ (µ∞1 × µ∞2 × µP ) ∼= Z/(2)⊕ Z/(4),

where µP = {±1,±i} and P | 2. As η(α1) = η({−1,−1}) = β1 = (−1,−1, 1)
and β2 = (−1, 1, i) are two generators of (Im η∩kerλ)2, we have (K2OF )2 =
(α1)× η−1(β2). By [3], Theorem 2, we know that r2(K2OF )− r2(<2F ) = 1
and α1 = {−1,−1} 6∈ <2F . Therefore, we get α2 by Lemma 3.1, which is of
order at least 8.

In Theorem 3.1, if α2 and α3 are elements of minimal order of K2OF ,
then there are also direct decompositions for K2OF .

Corollary 3.1. Let F = Q(
√
d), d > 2 a squarefree integer.

(1) If S2 6= ∅, then α2 must be of order 4 in Theorem 3.1 and r4(K2OF )
= r4(<2F ) + 1.

(2) If S2 = ∅ and −1,−2 6∈ NF , then there is an 8-order element in
K2OF .

Proof. (1) Since S2 6= ∅ and −1,−2 6∈ NF , we have d 6≡ −1 mod 8
and o(α2) > 2 in Theorem 3.1 by [3], Theorem 2. Also S2 6= ∅ implies
that o(α2) ≤ 4 by (2.7) or (2.13). Therefore, α2 must be of order 4 and
r4(K2OF ) = r4(<2F ) + 1.

(2) Since −1,−2 6∈ NF , we have o(α2) > 2 by [3], Theorem 2. Since
S2 = ∅, also o(α2) > 4 by (2.8) or (2.14). Therefore, α2 is of order at least 8.

Theorem 3.2. Let F = Q(
√
d), d > 2 a squarefree integer , d ≡ 1 mod 8,

−1 ∈ NF , and 2 6∈ NF . Then o(α3) = 4 in Theorem 3.1 if and only if there
is an equation εmz2 = x2 + dy2 with m ∈ S0, m 6= 1, d, and ε ∈ {1, 2},
which has a relatively prime solution (x, y, z) = (a, b, c) in N such that either
m ≡ 1 mod 8 and c ≡ 3 mod 4, or m ≡ 5 mod 8 and c ≡ 1 mod 4.

Proof. Since −1 ∈ NF and 2 6∈ NF , we have o(α3) > 2. Suppose that
εm ∈ S1, m 6= 1, d, ε ∈ {1, 2}, i.e., the Diophantine equation εmz2 =
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x2 + dy2 has a relatively prime solution (x, y, z) = (a, b, c) in N. Then β ={
− b
√
d
a , εmc

2

a2

}
{−1, c} ∈ K2OF and β2 = {−1,m}. Now, we discuss whether

ηPi(β) = −1, Pi | 2, i = 1, 2. Since d ≡ 1 mod 8, the local field Q2(
√
d) ∼=

Q2. In the local field Q2, we compute the value of the Hilbert symbols[
− b
√
d
a , εmc

2

a2

]
2.

(i) If ε = 2 and m ≡ 1 mod 8, then a, b, c are odd and −b
√
d/a is a

solution of the equation

(3.17) X2 = εmc2/a2 − 1.

Since εmc2/a2−1≡1 mod 16, the equation (3.17) has two solutions γ≡1 or 7
mod 8 by the Hensel lemma. By the table in [16], p. 250, [−b

√
d/a, εmc2/a2]2

= [γ, 2]2 = 1.
(ii) If ε = 2 and m ≡ 5 mod 8, then a, b, c are all odd, so εmc2/a2− 1 ≡

9 mod 16. Hence the equation (3.17) has two solutions γ ≡ 3 or 5 mod 8
by the Hensel lemma. By the table in [16], p. 250, [−b

√
d/a, εmc2/a2]2 =

[γ, 2]2 = −1.
(iii) If ε = 1, m ≡ 1 mod 8 and εmc2/a2 ∈ Q2

2, then [−b
√
d/a, εmc2/a2]2

= 1.
(iv) If ε = 1, m ≡ 5 mod 8, then a or b ≡ 2 mod 4, and c is odd. Hence,

by the table in [16], p. 250, [−b
√
d/a, εmc2/a2]2 = [γ, 5]2 = −1, where γ ≡ 2

or 6 mod 8.
Therefore

[
−b
√
d

a
,
εmc2

a2

]

2
=
{ 1 if m ≡ 1 mod 8,
−1 if m ≡ 5 mod 8.

By the same table,

[−1, c]2 =
{ 1 if c ≡ 1 mod 4,
−1 if c ≡ 3 mod 4.

In Theorem 3.1, α3 = β, i.e., ηPi(β) = −1, Pi | 2, i = 1, 2, if and only if
either m ≡ 1 mod 8 and c ≡ 3 mod 4, or m ≡ 5 mod 8 and c ≡ 1 mod 4.

Suppose that (x, y, z) = (a′, b′, c′) is another relatively prime solution of
the equation εmz2 = x2 + dy2 in N with c′ ≡ c+ 2 mod 4. We can also get
β′ by (2.7). But ηPi(β) = −ηPi(β′), i.e., ηPi(ββ

′) = −1, Pi | 2, i = 1, 2. So
α3 = ββ′ must be of order 2 in K2OF in contradiction with the assumption.
Hence we obtain

Corollary 3.2. Let d = p1 . . . pr+s ≡ 1 mod 8, with each prime pi ≡ 1
mod 4, r, s ≥ 1, and some prime pi ≡ 5 mod 8. If the Diophantine equation
εmz2 = x2 + dy2, ε ∈ {1, 2}, m = p1 . . . pr, has a non-trivial solution in Z,
then for every relatively prime solution (x, y, z) = (a, b, c) of this equation
in N we have c ≡ 1 or 3 mod 4.
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If d = p1 . . . pr ≡ 1 mod 8, with each prime pi ≡ 1 mod 8, and u2−2w2 =
d, u, w ∈ N, w ≡ 0 mod 4, u ≡ 1 mod 4, we can also get a result similar to
Corollary 3.2.

Next, we investigate the property of c ≡ 1 or 3 mod 4. In particular, if
F = Q(

√
d), d = p1p2, with each prime pi ≡ 5 mod 8, we get:

Lemma 3.2. Let F = Q(
√
p1p2), E = Q(

√−p1p2), with each prime
pi ≡ 5 mod 8. By the Legendre theorem the Diophantine equation

(3.18) x2 + p1p2y
2 = εp1z

2, ε ∈ {1, 2},

has a relatively prime solution (x, y, z) = (a, b, c) in N. Then c ≡ 1 mod 4
if and only if 16 |h(−p1p2), which is the class number of the field E =
Q(
√−p1p2); in other words, c ≡ 3 mod 4 if and only if 8 ‖h(−p1p2).

Proof. By genus theory, r2(C(E)) = 2, where C(E) is the class group of
E. If

(
p2
p1

)
= 1, the Diophantine equation x2 + p1p2y

2 = p1z
2 is solvable in

Z; if
(
p2
p1

)
= −1, the Diophantine equation x2 + p1p2y

2 = 2p1z
2 is solvable

in Z.
Let P be an ideal of E with P 2 = εp1OE . Since (3.18) has a relatively

prime solution (x, y, z) = (a, b, c) in N, we have (a + b
√−p1p2)OE = PC2,

where CC = cOE, C a conjugate ideal of C. Hence [P ] = [C]2 ∈ C2(E), so
8 |h(−p1p2) by genus theory. It is clear that

(−p1p2

c

)
=
(−1
c

)(
c

p1

)(
c

p2

)
= 1

by (3.18).
Assume that c ≡ 1 mod 4, i.e.,

(−1
c

)
= 1

⇔
(
c

p1

)(
c

p2

)
= 1, i.e.,

(
c

p1

)
=
(
c

p2

)

⇔ the Diophantine equation ε′cz2 = x2 + p1p2y
2, ε′ ∈ {1, 2}, is solvable

in Z

⇔ NF/Q(P ′C) ∈ NF, where P ′ is an ideal of E such that P ′2 = ε′OE,

by the Gauss theorem

⇔ [P ′C] ∈ C2(E), i.e., [C]2 ∈ C4(E)

⇔ 16 |h(−p1p2).

Hence, Lemma 3.2 follows.
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Theorem 3.3. Let F = Q(
√
p1p2), E = Q(

√−p1p2), with each prime
pi ≡ 5 mod 8. Then (K2OF )2

∼= Z/(2) × Z/(2) × Z/(4) if and only if
16 |h(−p1p2); in other words, K2OF has an element of order 8 if and only
if 8 ‖h(−p1p2).

Proof. This follows from Lemma 3.2 and Theorem 3.2.

Example 1: F = Q(
√

5 · 13). Since the Diophantine equation x2 +
5 · 13y2 = 10z2 has a solution (x, y, z) = (5, 1, 3), we have 8 ‖h(−5 · 13)
and K2OF has an element of order 8 by Lemma 3.2 and Theorem 3.2.

Example 2: F = Q(
√

5 · 37). Since the Diophantine equation x2 +
5 · 37y2 = 10z2 has a solution (x, y, z) = (25, 1, 9), we have (K2OF )2

∼=
Z/(2)⊕ Z/(2)⊕ Z/(4) and 16 |h(−5 · 37).

Theorem 3.4. Let F =Q(
√
d), d>2 a squarefree integer , d≡−1 mod 8,

and 2 6∈ NF . Then

r4(K2OF ) =
{
r4(<2F ) + 1 if εm ∈ S1, m ≡ ±3 mod 8,
r4(<2F ) otherwise.

Moreover , in the second case, there is an element of order 16 in K2OF .

Proof. Since d ≡ −1 mod 8, we have S2 = ∅ by [17], Lemma 3.4. If
εm ∈ S1, then β =

{
− b
√
d
a , εmc

2

a2

}
{−1, c} ∈ K2OF and β2 = {−1,m},

where (x, y, z) = (a, b, c) is a relatively prime solution of εmz2 = x2 + dy2

in N.
In the completion field FP ∼= Q2(i), P | 2, we have ηP {−1, c} = [−1, c]P

= 1 by the Artin–Hasse theorem [11]. Let δ = −b
√
d/a, εmb2/a2 = 1 + δ2.

Then
ηP (β) = [δ, 1 + δ2]P [−1, c]P = [δ, (1 + iδ)(1− iδ)]P

= [1 + δ2, i]P [1 + iδ,−1]P = [εm, i]P [a+ bi
√
d,−1]P .

Since d ≡ −1 mod 8, we have a+ bi
√
d ∈ Q2. By the Artin–Hasse theorem,

[−1, a+ bi
√
d]P = 1 and

[i, 2m]P = [i,m]P = i(m
2−1)/4 =

{ 1 if m ≡ ±1 mod 8,
−1 if m ≡ ±3 mod 8.

Therefore, β ∈ <2F if and only if m ≡ ±1 mod 8. By Theorem 3.1, we get
the assertion of Theorem 3.4.

By Theorem 3.4, we get the following result: if F = Q(
√
d), d = pq, p, q

prime, p ≡ −q ≡ 3 mod 8, then (K2OF )2
∼= Z/(2)⊕ Z/(8), which is proved

in another way in [4]. On the other hand, we can generalize it.

Theorem 3.5. Let F = Q(
√
d), d > 2 a squarefree integer , d ≡ −1 mod

8, and 2 6∈ NF . Suppose that d = pqr, where p, q, r are primes, i.e.,
(p, q, r) ≡ (1, 3, 5) or (7, 5, 5) or (7, 3, 3) mod 8.
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(1) If
(
q
p

)
=
(
r
p

)
= 1, then (K2OF )2

∼= Z/(2i)⊕ Z/(2j) ⊕ Z/(2), where
i ≥ 3, j ≥ 2.

(2) If
(
q
p

)
=
(
r
p

)
= −1, then (K2OF )2

∼= Z/(2i)⊕ Z/(2)⊕ Z/(2), where
i ≥ 4.

(3) If
(
q
p

)
6=
(
r
p

)
, then (K2OF )2

∼= Z/(8)⊕ Z/(2)⊕ Z/(2).

Proof. (1) If
(
q
p

)
=
(
r
p

)
= 1, r4(K2OF ) = 2 by the tables of [14]. We get

the result by Theorem 3.1.
(2) If

(
q
p

)
=
(
r
p

)
= −1, then r4(K2OF ) = 1 by the tables of [14]. In fact,

if (p, q, r) ≡ (1, 3, 5) or (7, 5, 5) mod 8, then (m, ε) = (p, 2) satisfies (2.6); if
(p, q, r) ≡ (7, 3, 3) mod 8, then (m, ε) = (p, 1) satisfies (2.6). By Theorem 3.4,
we get r4(K2OF ) = r4(<2F ) = 1 and o(α2) ≥ 16 in Theorem 3.1.

(3) If
(
q
p

)
6=
(
r
p

)
, then r4(K2OF ) = 1 by the tables of [14]. There is

(m, ε) with m ≡ ±3 mod 8 and ε ∈ {1, 2} satisfying (2.6). By Theorem 3.4,
we get r4(K2OF ) = r4(<2F ) + 1 = 1 and o(α2) = 8 in Theorem 3.1.

4. Imaginary quadratic fields. In this section, we consider imaginary
quadratic fields E = Q(

√
−d), d > 2 a squarefree integer. By [15], we have

[∆ : E∗] = 4, where ∆ = {z ∈ E∗ | {−1, z} = 1} is called the Tate kernel.
Since 2 ∈ ∆, we have

∆ = E∗2 ∪ 2E∗2 ∪ δE∗2 ∪ 2δE∗2.

Below, we find such elements δ ∈ ∆ for some imaginary quadratic fields.
From [2], we know the following relation between K2OE and <2E (the

Hilbert kernel of E):

(K2OE/<2E)2
∼=





0 if d 6≡ ±1 mod 8,
Z/(2) if d ≡ −1 mod 8,
Z/(2) if d ≡ 1 mod 8.

If d ≡ −1 mod 8, then there is a prime divisor p of d with p ≡ 3 mod 4.
Hence α = {−1, p} ∈ K2OE, but α 6∈ <2E, so (K2OE)2

∼= (α)× (<2E)2 by
Lemma 3.1.

If d ≡ 1 mod 8, then r2(K2OE) = r2(<2E) by [3], Theorem 4. Hence,
by Lemma 3.1, (K2OE)2

∼= (α) × H, where ηP (α) = −1, P | 2, o(α) ≥ 4,
and H ⊂ (<2E)2. Therefore, r4(K2OE) = r4(<2E) + 1 if o(α) = 4, and
r4(K2OE) = r4(<2E) if o(α) ≥ 8.

Theorem 4.1. Let E = Q(
√
−d), F = Q(

√
d), d > 2 a squarefree

integer , d ≡ 1 mod 8, and 2 6∈ NE. Then r4(K2OE) = r4(<2E) + 1 if
and only if there is an odd positive divisor m ≡ ±3 mod 8 of d such that
εm ∈ NF , ε ∈ {1, 2}.

Proof. By the preceding argument, Lemma 3.1, and (2.15), r4(K2OE) =
r4(<2E) + 1 if and only if there is β =

{
− b
√
−d
a , εmc

2

a2

}
{−1, c} 6∈ <2E,
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where m | d is positive and (x, y, z) = (a, b, c) is a relatively prime solution
of εmz2 = x2−dy2, ε ∈ {1, 2}, in N. By the process of proving Theorem 3.4,
we know that β 6∈ <2E, i.e., ηP (β) = −1, P | 2, if and only if m ≡ ±3 mod 8.

By Theorem 4.1, we add some values to the tables in [13]:

Table 1

E p, q mod 8 r4 r8 δ

3, 3 1 0 −1Q(
√
−d)

5, 5 1 0 −1

Table 2

E p, q, r mod 8 The Legendre symbols r4 r8 δ

( pq ) = ( pr ) 1 0 p
7, 5, 3

otherwise 1 0 −p
( qp ) = ( rp ) = 1 2

Q(
√−pqr) 1, 5, 5 ( qp ) = ( rp ) = −1 1 1

( qp ) 6= ( rp ) 1 0 −1

( qp ) = ( rp ) = 1 2

1, 3, 3 ( qp ) = ( rp ) = −1 1 1

( qp ) 6= ( rp ) 1 0 −1

Proof. 1. For Table 1, we need to consider the case (p, q) ≡ (5, 5) mod 8.
If
(
q
p

)
= 1, then p, pq ∈ NF ; if

(
q
p

)
= −1, then 2p, pq ∈ NF . By the tables

of [13] and Theorem 4.1, r4(K2OE) = r4(<2E) + 1 = 1 and {−1, pq} = 1,
i.e., {−1,−1} = 1.

2. For Table 2:
The case (p, q, r) ≡ (7, 5, 3) mod 8. By the tables of [13], r4(K2OE) = 1.

Suppose
(
p
q

)
=
(
p
r

)
= 1 (similarly for

(
p
q

)
=
(
p
r

)
= −1). If

(
r
q

)
= 1,

then q, p ∈ NF ; if
(
r
q

)
= −1, then 2q, p ∈ NF . Hence, by Theorem 4.1,

r4(K2OE) = r4(<2E) + 1 = 1 and {−1, p} = 1.
Suppose

(
p
q

)
= −

(
p
r

)
= 1 (similarly for

(
p
q

)
= −

(
p
r

)
= −1). If

(
r
q

)
= 1,

then q, qr ∈ NF ; if
(
r
q

)
= −1, then 2q, qr ∈ NF . Hence, by Theorem 4.1,

r4(K2OE) = r4(<2E) + 1 = 1 and {−1, qr} = 1, i.e., {−1,−p} = 1.
The case (p, q, r) ≡ (1, 5, 5) mod 8. If

(
q
p

)
=
(
r
p

)
= 1, then r4(K2OE) = 2

by the tables of [13].
If
(
q
p

)
=
(
r
p

)
= −1 then r4(K2OE) = 1 by the tables of [13] and 2p, pqr ∈

NF . Hence r4(K2OE) = r4(<2E) = 1 and r8(K2OE) = 1 by Theorem 4.1.
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Suppose
(
q
p

)
= −

(
r
p

)
= 1 (similarly for

(
q
p

)
= −

(
r
p

)
= −1). If

(
r
q

)
= 1,

then q, pqr ∈ NF ; if
(
r
q

)
= 1, then 2q, pqr ∈ NF . Hence, by the tables

of [13] and Theorem 4.1, r4(K2OE) = r4(<2E) + 1 = 1 and {−1, pqr} = 1,
i.e., {−1,−1} = 1.

The case (p, q, r) ≡ (1, 3, 3) mod 8. If
(
q
p

)
=
(
r
p

)
= 1, then r4(K2OE) = 2

by the tables of [13].
If
(
q
p

)
=
(
r
p

)
= −1, then r4(K2OE) = 1 by the tables of [13] and

2p, 2pqr ∈ NF . Hence, by Theorem 4.1, r4(K2OE) = r4(<2E) = 1 and
r8(K2OE) = 1.

Suppose
(
q
p

)
= −

(
r
p

)
= 1 (similarly for

(
q
p

)
= −

(
r
p

)
= −1). If

(
q
r

)
= 1,

then 2q, 2pqr ∈ NF ; if
(
q
r

)
= −1, then q, 2pqr ∈ NF . Hence, by the tables

of [13] and Theorem 4.1, r4(K2OE) = r4(<2E) + 1 = 1 and {−1, 2pqr} = 1,
i.e., {−1,−1} = 1.
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