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1. Introduction. Let O be the ring of integers of a number field F.
Let A be a finite Abelian group. We denote the 2-Sylow subgroup of A by
Aj, the 2-rank of A by r2(A), and the 4-rank of A by r4(A).

By [2, 5, 9], we have 2-rank and 4-rank formulas for K5Op. For quadratic
fields, Browkin and Schinzel [3] have given 2-rank formulas and forms of el-
ements of order 2 of KoOp; Qin [12, 13, 14] has obtained a method to
calculate 4-ranks of KoOp. Recently, Hurrelbrink and Kolster [8] have pre-
sented an effective way of computing 4-ranks of KoOp for relative quadratic
extensions via the determination of the Fy-ranks of certain matrices of local
Hilbert symbols. In [17] we have proved the following formula:

7’4(K20F) = a(F) + 7’4(C(E)),

where F = Q(V/d), E = Q(v/—d), a(F) = —1,0, or 1 is a constant deter-
mined effectively by the Rédei matrices of E, and C'(E) is the narrow class
group of E.

In the present paper, we concentrate on the structure of the 2-Sylow
subgroup of K>Op and use the method of [5, 9] to give the results of [12, 13,
14] and to express the forms of elements of order 4 of K2Op for quadratic
fields F', which are simpler. Using these forms we discuss whether elements
of order 4 of KoOp are contained in Hilbert kernel R F. Hence, we get the
relation between r4(K20p) and r4(R2F') and we get some quadratic fields
with elements of order 8 in KoOp. We also obtain the following result: if
F = Q(/p1p2), where p; and p, are primes with p; # p2, p1 = p2 = 5 mod 8,
then KoOp = Z/(2) @ Z/(2) © Z/(4) if and only if 16 | A(—p1p2), where
h(—pip2) is the class number of E = Q(y/—p1p2). For imaginary quadratic
fields, we add some values of the Tate kernel to the tables of [13].
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2. Elements of order 4 in the tame kernel. We use the method of
[5, 9] to investigate the elements of order 4 of K2Op for quadratic fields F'.
Now, we describe the notations of [5]:

e F=Q(Vd), E=Q(v/=d), M = F(i), d > 2 a squarefree integer.
e S5 is the set of infinite and dyadic places of F.

o Gp = {cl(b) € F*/F** | vp(b) = 0 mod 2 for all P ¢ S}.

e Hp = {cl(b) € Gp | b € Npyr(M™)}.

In [5], there are defined maps:

X1 X2 : Hp — Cs(F)/C3(F),
X1t cl(b) = [H P”P“’)/ﬂ, Xz : cl(b) — [H P”P(d)}

Pgs P¢s

where Cg(F) is the S-ideal class group of F', Ny;/p(a) = b for a € M, and
P is a place of M over P. Let x = x1X2. Then ker x is determined by the
elements of order 4 of K2Op and the elements a € F* with {—1,a} =1 (see
[5], Prop. 2.3, or [9], Prop. 1.5).

Browkin-Schinzel ([3], Theorem 2) gave the elements of order at most 2
of K5Oy for a real quadratic field F = Q(v/d):

{_17 m7]}7

where m is an odd divisor of d and v; = u; + Vd with u? — jw]2- = d,
uj,w; €N, j € Npg(F*)N{-1,£2}, 71 = 1. We denote Np,q(F*) by NF.

By Bass-Tate theorem [10], 8 € KoF, % = {—1,m~,} if and only if
my; € Npyp(M*). On the other hand, for all P ¢ S, the tame symbols
7p{—1,my;} equal 1, so the Hilbert symbols np({—1,m~y;}) are 1 by [2],
Theorem 2. By the Minkowski—Hasse theorem, we know that: if d #Z 1 mod 8,
then my; € Nyy/p(M*) if and only if m > 0 and j = 1,2; if d = 1 mod 8
and 2 ¢ NF, then my; € Npyp(M*) if and only if m > 0 and j = 1;
if d = 1mod8 and u? — 2w? = d, where u,w € N, w = 0 mod 4, then
my; € Npyp(M*) if and only if either j = 1, m > 0, and m = 1 mod 4, or
j=2,m>0,and m+ u =2 mod 4.

Suppose that § € K F and

(2.1) B = {-1,my;} € KyO.
We will find conditions sufficient for § € K205.

CASE 1: j =1 and m is an odd positive divisor of d in (2.1). Since m €
Nuryp(M*), there are X = z14+22Vd, Y = y1 +y2Vd € F and z1,22,y1, Y2
€ Q such that

m=X?+Y? = (aF +y}) + (23 + y3)d + 2(x122 + y12) Vd.
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Hence z1x5 + y1y2 = 0. First we assume that x1, 2, y1,y2 are all non-zero,
and put t = x1/y1 = —y2/x2. By the last equality, m = (1 + 2)(y? + x2d).
Therefore, there is a squarefree positive integer k, with each odd prime factor
p; = 1 mod 4, such that the Diophantine equation

(2.2) mkz? = 2% + dy?

is solvable in Z. If 1 = y; = 0, take k = d/m; if zo = y = 0, take k = m
ifzy =y, =0o0r zo =y =0, take k = 1.
When k > 2, there are g, h € N such that

(2.3) k=g®+h%

Take a relatively prime solution (x,y, z) = (a, b, ¢) of the equation (2.2) in
N. Put a1 = a+bv/—d, as = g+hi, and o = az. Then Nyyr(a) = mk2c?
and cl(m) = cl(mk?c?) € Hp. Below, we discuss the value of x(cl(m)). For
convenience, let p be an odd prime, P a place of F' over p, and P a place of
M over P, which we denote by P|p and P|P. Suppose p|mk?3c?.

(i) If ptk, p|m, then pla, ptd, ptc for the relatively prime solution
(2,9,2) = (a,b,¢) of (2.2) in N. Hence vp(mk3c?)/2 = vp(m)/2 = 1 and
vp(a) =vp(ar) +vp(ag) =140=1.

(ii) If ptk, p|c, then ptd, pfa, ptb. Hence vp(mk?c?)/2 = v,(c) and
vp(a) =0+ 0= 0mod 2.

(iii) If p| k, p|m, then p|la, p|b, pfc. Hence vp(mk3c?)/2 = 1 mod 2
and vp(a) =0+ 0 = 0 mod 2.

(iv) If p|k, ptm, p|d, then p|a, ptb, pfc. Hence vp(mk3c?)/2 =
vp(k) =0mod 2 and vp(a) =1+ 0= 1mod 2.

(v) If p|k, ptd, then pta, ptb in both cases p|c and pfc. Hence
vp(mk?c?)/2 = vp(k) + vp(c) = 1 + v,(c) mod 2. In this case, we inves-
tigate the value of vp(a).

There is a diagram of field extensions

/\\

F= (v=d)

\\/

Since p splits in E and L, p splits completely in M. Let Gal(M/Q) =
{1,0,0,00} be the Galois group of the finite extension M/Q, where o :
Vid— Vd, i— —iand 0 : Vd — —Vd, i — —i. Then pOy = P1P2P3Pa,
Py = 0Py, P3 = 0P1, Ps = 00P1, pPOr = P1Ps, PLOy = P1Pa, PoOy =
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P3P,. Hence we have, modulo 2,

{1)7)1(011) = vp, (1) =0, or {vpl(ozl) =vp,(a1) =1,
Up, (al) = ’1)734(041) =1, Up, (al) = '1}734(041) =0,
{ Up, (042) = Up, (Oéz) = 07 or { up, (042) = Up, (Oéz) =1
Up, (OQ) = Upg (042) =1, Up, (042) = Upy (042) =0.
Therefore
up, (Oé) = Up, (Oé) = 0’ vp, (Oé) = Up, (Oé) = 17
24 {UPS(Q) —vp(a)=1, {UPS(Q) = vpy(a) = 0.

Consequently, x(cl(m)) = [cI] = [I], where I = kOp, I a conjugate
ideal of I. Hence cl(m) € ker y if and only if [I] € C%(F). Let H(F) be the
narrow class group of F. Then, by the Gauss theorem, [J] € H?(F), where
J is an ideal of F, if and only if Np/g(J) € NF. On the other hand, let [A]

be the narrow class containing the ideal A = (v/d) and [B] the narrow class
containing B|2. Put Ho(F') = ([A], [B]), the group generated by [A], [B].
Then

Cs(F) = H(F)/Hy(F).
Therefore, we have
cl(m) = cl(mk?c?) € ker x
& [I] € C4(F), i.e., [I][X] € H*(F), where [X] € Hy(F)
& Npj(IX) € NF, ie., ke € NF, where € € {£1,4+2}
< the following equation is solvable in Z:
(2.5) ek2? = 2? — dy*.
By (2.2) and (2.5), we get:

THEOREM 2.1 ([14], Theorem 2.2). Let F = Q(\/d), d > 2 a squarefree
integer. Then, for every odd positive divisor m of d, there is B € KoOFp with
B% = {—1,m} if and only if there is ¢ € {£1,£2} such that

d —1
(2.6) <€ TZ ) = <?> =1 for any odd primes p|m, 1|dm™".

By [9], Prop. 1.5, and the preceding argument, we can find y € F'* such
that vp(Nyyp(a))/2 +vp(a) +vp(y) =0 mod 2 for all P ¢ S. Set

(27> /8 = trM/F({Z.?a}){_l?y}
= trar/r({i, 01 }) tragy e ({4, 2 }){—1,y}

_ {_@ ’“2”262}{_5, ;}{_1,c5}{—1,e+f\/&},




Elements of order 4 of the Hilbert kernel 299

where (z,y, 2) = (e, f,t) is a relatively prime solution of (2.5) in N and ¢ | k,
§ € N. Then 8 € K2Op and 32 = {—1,m}.

In particular, suppose that (m,e), € > 0, satisfies (2.6). Then take k = ¢
in (2.2) and set

(2.8)

—Vdb emc?
ﬁ = { a y a2 }{_176}7
where (z,v,2) = (a,b,c) is a relatively prime solution of emz? = 22 + dy?
in N. Then 8 € K2Op and 32 = {—1,m}.
CASE 2: j = 2 and m is an odd positive divisor of d in (2.1). Since
2 € NF, we have u? —2w? = d, u,w € N, and 7, =u++vd If d =1 mod 8,

we take w = 0 mod 4. Hence,
2.9) w? + (u+w+ Vd)* = 2(u+w)(u+ Vd),
' (u+2w)? +d=2(u+w)?

so d and u + w are relatively prime. We assume myz € Ny p(M*). Then
(u+w)m € Npyyp(M*) by (2.9). By the same method as in the first case,

there is a squarefree positive integer k, with each odd prime divisor p; =
1 mod 4, such that the Diophantine equation
(2.10) m(u+w)kz? =22 +dy?, k=g*+h? g heN,

is solvable in Z. Take a; = w+ (u+w + Vd)i, ay = a+bv/—d, ag = g+ hi,
a = ajagag, where (2,9, z) = (a, b, ¢) is a relatively prime solution of (2.10)
in N. Then Ny /p(a) = 2m(u + VA)k2(u + w)?c? and cl(m(u + Vd)) =
cl(Ny/r(a)) € Hp. We discuss the value of x(cl(m(u+ Vd))). For p an odd
prime, let Plp in F' and P|P in M. Suppose P |Ny; p(). There are the
following cases:

(i) If ptk, p|m, then ptutw, p|a, ptb, ptc, Ptu++/d for the relatively
prime solution (z,y,z) = (a,b,c) of (2.10) in N. Hence vp(Ny/p(a))/2 =
vp(m)/2 =1 and vp(a) = vp(az) = vp(a + bv/—d) = 1.

(ii) If ptk, P|u+ Vd, then pfu + w, pfd. Hence vp(Nyyr(a))/2 =
vp(u+Vd)/2 + vy(c) and

vp(@) = vp(ar) + 0= vp((u+ V)i + w(l + 1)) = vp(w)
vp(u+ Vd)/2 mod 2

by (2.9) and (u 4 vd)(u — Vd) = 2w?.
(iii) If ptk, p|u + w, then Pfu + /d, ptd. Without loss of generality,
assume pfa, ptb. Hence vp(Ny/p(a))/2 = vp(u 4+ w) + v,(c) and

vp(a) = vp(a1) + vp(az) = vp((u+w)i + (w+ vV=d)) + vp(as)
= vp((w + vV—=d)(a + bv/—=d)).
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(iv)Ifp|k, p|m, thenp|la, p|b, pfc. Hence vp(Nyyp(a))/2=vp(m)/2
+vp(k) =1 mod 2 and vp(a) = vp(az) + vp(asz) =0+ 0= 0mod 2.

(v) If p|k, p|d, ptm, then pla, ptb, p|c. Hence vp(Nyyp(a))/2 =
vp(k) = 0mod 2 and vp(a) = vp(az) + vp(az) =1+ 0= 1mod 2.

(vi) If p|k, pfd, then pfa, ptb. Hence we have vp(Nyyp(a))/2 =
vy (k) +vp(utw) +vp(ut+d)/2+v,(c). Suppose P |u++/d. Then vp(a) =
vp(utVd+w(l+1i)) = v,(w) = vp(u+Vd)/2 as (u+Vd)(u—Vd) = 2w
By the process of proving (v) in the first case, we can get the same result
for vp(agas) as in (2.4). Suppose p|u + w and, without loss of generality,
assume pfa, p{b. Then vp(aiaz) = vp((w +v/—d)(a+ by/—d)) by (iii). By
the process of proving (v) in Case 1, we can get the same result for vp(«)
as in (2.4). Suppose pfu 4+ w, Pfu + v/d. Then we can get the same result
for vp(a) as in (2.4).

Consequently, x(cl(m(u++/d))) = [cd11], where 61 | u +w from (iii) and
II = kOp, I a conjugate ideal of I. By the method of Case 1, we have
x(cl(m(u 4+ V/d))) € ker x if and only if the following equation is solvable
inZ, e € {£1}:

(2.11) ekz? = 2% — dy*.
By (2.10) and (2.11), we get

THEOREM 2.2 ([14], Theorem 3.3). Let F = Q(V/d), d > 2 a squarefree
integer. Suppose that d = u? — 2w? with u,w € N. Then, for every odd
positive divisor m of d, there is § € KoOp with 52 = {=1,m(u + Vd)} if
and only if there is € € {£1} such that

<€dm_1(u + w)

> =1  for every odd prime p|m,
p

(2.12)

(M) =1 for every odd prime 1| dm™!.

Suppose that (m,¢e) satisfies (2.12). Then, by [9], Prop. 1.5 and the pre-
ceding argument, we can find y € F* such that vp(Ny/p(a))/2 + vp(a) +
vp(y) =0mod 2 for all P ¢ S. Set

ﬁ:{_u+w+\/a 2(u+w)(u+\/3)}

w ’ w?

(2.13)

y {_b\iﬁj m(u+w)k02}

a2

y {_ﬁ ﬁ}{_1,65152<e+f¢é>},

9’ g?
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where 61 |u + w, 2|k, 0; € N, (z,y,2) = (a,b,c) is a relatively prime
solution of (2.10) in N, and (z,y, 2) = (e, f,t) is a relatively prime solution
of (2.11) in N. Then 8 € K2O0p and 8% = {—1,m(u + Vd)}.

In particular, e > 0. We can take k =1 in (2.10) and set

ﬁ:{_u+w+\/a 2(u+w)(u+\/3)}

2.14
(2.14) e

a ’ a?

y {_b\/a m(u + w)c? }{—1,05},

where ¢ |u+w, 0 € N, and (z,y, z) = (a,b, c) is a relatively prime solution
of (2.10) in N with & = 1. Then 8 € K20 and 8% = {—1,m(u + Vd)}.

With the preceding method, we can also discuss an imaginary quadratic
field E = Q(v/—d) to get results of [13] and the forms of elements of order
4 of KQOE

THEOREM 2.3 ([13], Theorems 3.10 and 3.13). Let F = Q(\d), E =
Q(V—d), d > 2 a squarefree integer, and m an odd positive divisor of d.

(1) There is B € KoOp with 3> = {—1,m} if and only if em € NF,
where € € {1,2}.

(2) If —d = u? —2w?, u,w € N, then there is 3 € K20 with 3* =
{=1,m(u+v/—d)} if and only zfm(u—l—w) € NF.

Similarly, suppose m |d, em € NF, and set

(2.15) 52{ b\/_d e }{ L c},

a

where (z,y,2) = (a,b,c) is a relatively prime solution of £2? = 22 — dy? in
N. Then 3 € K20 and 32 = {—1,m}.
Suppose m |d, —d = u? — 2w?, u,w € N, m(u+w) € NF, and set

5 {_u+w~|—\/—_d 2(u—|—w)(u+\/—_d)}

2.16 = )
( ) w w2

x{ b‘/_d,m(“w) }{ 1, e},

where § |u+w, 6 € N, and (z,y, 2) = (a, b, ¢) is a relatively prime solution of
m(u+w)z? = 22 —dy? in N. Then 8 € K;0p and 8% = {—1,m(u++v/—d)}.

3. Real quadratic fields. To investigate whether ¢ > 0 in (2.6) and
(2.12), we divide them into two cases.



302 Q. Yue

DEFINITION 3.1. Let F = Q(v/d), d > 2 a squarefree integer. Set
So = {m|m is an odd positive divisor of d},
S1 ={em | m € Sy and (m,¢), € > 0, satisfies (2.6) or (2.12)},
Sa = {lelm | m € Sy and (m,¢), € < 0, satisfies (2.6) or (2.12),
but m,2m ¢ S1}.

In [17], we give the relation between S; and C(E) (the narrow class
group of the field E = Q(v/—d)). In fact, if —1 or —2 is in NF, then Sy = (;
if d = —1 mod 8, then Sy = ) by the quadratic reciprocity law or by [17],
Lemma 3.4. Below, we explain why Sy # ().

LEMMA 3.1. Let m: B — (c) be a surjective homomorphism of a finite
Abelian p-group B. If b € B is an element of minimal order such that
m(b) = ¢, then there exists a subgroup B’ of B satisfying B = (b) x B’ and
m(B') C (cP).

Proof. Since B is Abelian, we have B = (by) X ... x (b;). From the
surjectivity of 7 it follows that (7(b;)) = (c) for some j. We assume that by
is an element of minimal order among all b; satisfying (7(b;)) = (c); we can
also assume that 7(b1) = ¢, because b; can be replaced by some power of by
if necessary.

For i > 2, if (x(b;)) = (c), i.e., w(b;) = ' with ptt, then we take
b, = 00 ;. If (m(b;)) # (c), ie., (m(b;)) C (¢P), then we take b; = b;. Then
the group B’ generated by b}, ..., b} satisfies B = (by) x B’ and 7(B’) C (cP).

Now let € B be an element of minimal order satisfying (x) = c. Then
x = bjb with ¥ € B’. Consequently, ¢ = n(z) = 7(b1)in(t/) = cIeP* for
some k € Z. Hence p13j.

From 1 = 2°@) = p°@p°@) we get 5°") € B, and hence b9 = 1.
Therefore 0(b1) < o(z). On the other hand, o(x) < o(b1), by the minimality
of o(z). It follows that o(x) = o(b1), and consequently B = (x) x B’.

THEOREM 3.1. Let F = Q(\/d), d > 2 squarefree.

(1) If d # +1 mod 8, then (K20Op)y = (a1) X (az) X H, where oy =
{=1,—-1}, H C RoF, and ay is an element of minimal order of (K2OF )2
with Hilbert symbol s, (a2) = (—=1)*, 0o; real places, i = 1,2.

(2) If d = 1 mod 8, then (K20p)2 = (1) X (a2) X (as) x H, where
ap = {=1,-1}, H C RoF, and as, as are elements of minimal order
Of KQOF Satisfying 7]001.(042) - (_1)i7 77<>oi(043) - 17 npi(a?)) - _17 PZ’2a
1 = 1,2; moreover, either as or ag is an element of order 2.

(3) If d = —1mod 8, then (K20p)s = (1) X (a2) x H, where a; =
{=1,—1} and ag is an element of minimal order of KoOp satisfying 1o, ()
= (=1)%, i =1,2. Moreover as is of order at least 8.
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Proof. By [2], Theorem 2, or [10], §15, we obtain the commutative dia-
gram with exact rows and columns:

0 0

0 Ro F KoF 1~ H Up —ph —=

P nonc

id l)\

0—> K>Op —> Ko F —— [ Fp ——0
P fin.

0

where the homomorphism A is defined as follows:

A H wp — H F},
P nonc P fin.
\ 1 if P is real,
(ap) = agp/(prl) if P is finite,

where pp is the group of roots of unity in the local completion field Fp,
ap € pp, mp = |pp|, Fp is the residue class field of the completion field
Fp,and NP = |Fp|.

By diagram chase, we get the exact sequence

0 — RoF — Ky0p - ImnNker A — 0.
Since the group K,OpF is finite, we obtain the exact sequence of their
2-Sylow subgroups
0— (ReF)y — (K20p)2 - (Imn Nker A)y — 0.

If d = -3 mod9, then mp = 3(NP — 1) for P a place over 3 and mp =
NP—1forall P ¢S and Pt{3; otherwise mp = NP—1 for P ¢ S. Therefore

(Imn Nker A)g = Im 7 N (ftoo, X frooy X [Ipjgitp’ 1)

(1) If d # +1 mod 8, then
(K20p)2/(RaF)2 & Tmn N (foo, X ooy X pp! 1) = L/(2) & Z/(2),

where P|2 and i, = pn" "t = {£1}. Since n(a;) = n({-1,-1}) = 1 =
(—=1,-1,1) and B2 = (—1,1,—1) are two generators of (Imn Nker\)s we
have (K20r)s = (a1) x n71(B2), so we get as by Lemma 3.1.
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(2) If d =1 mod 8, then

(K20p)2/(RoF)2 = Imn N (Koo, X flooy X fip, X KP,)
=Z/(2) ®Z/(2) & Z/(2),

where P; |2 and pp, = {£1}, i = 1,2. Since n(a1) = n({—-1,-1}) = 1 =
(-1,-1,-1,-1), By = (1,-1,1,-1), B3 = (1,1,—1,—1) are three gener-
ators of (Imn N ker \)a, we have (K2Op)s = (a1) x 5732, 33}, where
a1 = {—1, —1}.

Suppose —1 € NF. Take ay = {—1,u+ Vd}, where u®> + w? = d, u,w €
N. Hence n(ag) = P2, so we get az by Lemma 3.1.

Suppose —1 ¢ NF. There is a prime divisor p = 3 mod 4 of d. Take
as = {—1,p}, so we also get as by Lemma 3.1.

(3) If d = —1 mod 8, then

(K20r)2/(ReF)o = T O (ftoo, X fioo, X pip) = 2/(2) ® Z/(4),

where pp = {£1,+i} and P|2. Asn(aq) =n({-1,—-1}) = p1 = (—-1,—-1,1)
and (B = (—1,1,14) are two generators of (ImnNker ), we have (K30p )2 =
(1) x n7(32). By [3], Theorem 2, we know that ro( K2Op) — ro(ReF) =1
and ay = {—1,—1} € Ry F. Therefore, we get as by Lemma 3.1, which is of
order at least 8.

In Theorem 3.1, if ay and a3 are elements of minimal order of KoOp,
then there are also direct decompositions for KoOp.

COROLLARY 3.1. Let F = Q(\/E), d > 2 a squarefree integer.

(1) If So # 0, then ay must be of order 4 in Theorem 3.1 and r4(K2O0p)
= T4(%2F) + 1.

(2) If Sy = 0 and —1,—2 ¢ NF, then there is an 8-order element in
K>OF.

Proof. (1) Since Sy # () and —1,—2 ¢ NF, we have d # —1 mod 8
and o(az) > 2 in Theorem 3.1 by [3], Theorem 2. Also So # 0 implies
that o(ag) < 4 by (2.7) or (2.13). Therefore, oy must be of order 4 and
T4(K20F) == T‘4(%2F) + 1.

(2) Since —1,—2 ¢ NF, we have o(az) > 2 by [3], Theorem 2. Since
Sy =, also o(ag) > 4 by (2.8) or (2.14). Therefore, as is of order at least 8.

THEOREM 3.2. Let F' = Q(\/d), d > 2 a squarefree integer, d = 1 mod 8,
—1€ NF, and2 ¢ NF. Then o(as) = 4 in Theorem 3.1 if and only if there
is an equation emz? = x? + dy?® with m € So, m # 1,d, and € € {1,2},
which has a relatively prime solution (x,y, z) = (a,b,c) in N such that either
m =1mod 8 and ¢ =3 mod 4, or m =5 mod 8 and ¢ =1 mod 4.

Proof. Since —1 € NF and 2 ¢ NF, we have o(as) > 2. Suppose that

em € S;, m # 1,d, € € {1,2}, i.e., the Diophantine equation emz? =
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2?2 + dy? has a relatively prime solution (x,y, 2) = (a,b,c) in N. Then 3 =
{—baﬁ, 5’2—2‘32}{—1,0} € KyOp and 82 = {—1,m}. Now, we discuss whether
np,(3) = —1, P;|2, i = 1,2. Since d = 1 mod 8, the local field Q2(v/d) =
QQ.\}? thezl}ocal field @2, we compute the value of the Hilbert symbols
[_b_ emc 5

a ’ a?
(i) If ¢ = 2 and m = 1 mod 8, then a, b, ¢ are odd and —bv/d/a is a
solution of the equation

(3.17) X? =emc?/a® - 1.

Since emc? /a®>~1=1 mod 16, the equation (3.17) has two solutions y=1 or 7
mod 8 by the Hensel lemma. By the table in [16], p. 250, [-bv/d/a, emc? /a?],
= [’Ya 2}2 =1

(ii) If e = 2 and m = 5 mod 8, then a, b, c are all odd, so emc?/a® —1 =
9 mod 16. Hence the equation (3.17) has two solutions v = 3 or 5 mod 8
by the Hensel lemma. By the table in [16], p. 250, [~bV/d/a,emc?/a?]y =
[7a 2}2 =-L

(iii) If e = 1, m = 1 mod 8 and emc?/a® € Q3, then [~bVd/a,emc?/a?],
=1.

(iv) If e =1, m =5 mod 8, then a or b = 2 mod 4, and c is odd. Hence,
by the table in [16], p. 250, [-bv/d/a,emc?/a?)y = [y, 5]2 = —1, where v = 2
or 6 mod 8.

Therefore

_b\/a emc? _{1 if m =1 mod 8,
a ' a? |, =1 ifm=>5modS3.
By the same table,
-1, :{1 if c =1 mod 4,
» o2 —1 if ¢ =3 mod 4.
In Theorem 3.1, ag = 3, i.e., np,(8) = —1, P; |2, i = 1,2, if and only if
either m =1 mod 8 and ¢ = 3 mod 4, or m = 5 mod 8 and ¢ = 1 mod 4.

Suppose that (x,y,z) = (a’,¥, ') is another relatively prime solution of
the equation emz? = 22 + dy? in N with ¢ = ¢ + 2 mod 4. We can also get
B by (2.7). But np,(8) = —np, ('), ie., np,(B6') = -1, P; |2, i = 1,2. So
a3 = 36" must be of order 2 in K5O in contradiction with the assumption.
Hence we obtain

COROLLARY 3.2. Let d=p;...pr+s =1 mod 8, with each prime p; =1
mod 4, r, s > 1, and some prime p; = 5 mod 8. If the Diophantine equation
emz? = 2% +dy?, ¢ € {1,2}, m = p1...p,, has a non-trivial solution in Z,
then for every relatively prime solution (z,y,z) = (a,b,c) of this equation
i N we have ¢ =1 or 3 mod 4.
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Ifd =pi...p, =1 mod 8, with each prime p; = 1 mod 8, and v’ —2w? =
d, u,w € N, w=0mod 4, u =1 mod 4, we can also get a result similar to
Corollary 3.2.

Next, we investigate the property of ¢ = 1 or 3 mod 4. In particular, if
F = Q(v/d), d = p1ps, with each prime p; = 5 mod 8, we get:

LEMMA 3.2. Let F = Q(\/pip2), E = Q(v/—p1p2), with each prime
p; = b mod 8. By the Legendre theorem the Diophantine equation

(3.18) 22+ pipoy? =epr2?, e € {1,2},

has a relatively prime solution (z,y,z) = (a,b,c) in N. Then ¢ = 1 mod 4
if and only if 16| h(—p1p2), which is the class number of the field E =
Q(v/=p1p2); in other words, ¢ = 3 mod 4 if and only if 8| h(—p1p2).

Proof. By genus theory, ro(C(E)) = 2, where C(E) is the class group of
E.If (]’;—f) = 1, the Diophantine equation 22 + p;poy? = p122 is solvable in

Z; if (%) = —1, the Diophantine equation 2 + pip2y? = 2p12? is solvable
in Z.

Let P be an ideal of E with P? = ep;Og. Since (3.18) has a relatively
prime solution (z,y, z) = (a,b,c) in N, we have (a + b\/—p1p2)Or = PC?,
where CC = cOg, C a conjugate ideal of C. Hence [P] = [C]? € C?(E), so
8| h(—pip2) by genus theory. It is clear that

(=2)-(R)E)E)-
c c P1 b2
by (3.18).
Assume that ¢ = 1 mod 4, i.e.,
()
— ) =1
c
> ()G 6)- ()
P b2 P P2

< the Diophantine equation &’cz? = 22 + pi1poy?, €’ € {1,2}, is solvable
in Z

& Npg(P'C) € NF, where P’ is an ideal of E such that P"? = ¢'Op,
by the Gauss theorem

& [P'C] € C*(E), ie., [C])* € C*E)

< 16| h(—p1p2).

Hence, Lemma 3.2 follows.
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THEOREM 3.3. Let F' = Q(\/pip2), E = Q(\/—p1p2), with each prime
p; = bmod8. Then (Ky0p)s = 7Z/(2) x Z/(2) x Z/(4) if and only if
16 | h(—p1p2); in other words, KoOp has an element of order 8 if and only
if 8[| h(=p1p2).

Proof. This follows from Lemma 3.2 and Theorem 3.2.

EXAMPLE 1: F = Q(+/5-13). Since the Diophantine equation z? +
5 - 13y? = 1022 has a solution (z,y,2) = (5,1,3), we have 8| h(—5 - 13)
and KoOp has an element of order 8 by Lemma 3.2 and Theorem 3.2.

EXAMPLE 2: F = Q(+v/5-37). Since the Diophantine equation x? +
5 - 37y?> = 1022 has a solution (z,y,z) = (25,1,9), we have (K;0p)s =
Z/(2)®Z/(2)®Z/(4) and 16| h(—5 - 37).

THEOREM 3.4. Let F:Q(\/a), d>2 a squarefree integer, d=—1 mod 8,
and 2 ¢ NF. Then

_fra(ReF)+1 if em e S, m=+£3modS8,
ra(K20r) = {r4(§R2F) otherwise.

Moreover, in the second case, there is an element of order 16 in KoOp.

Proof. Since d = —1 mod 8, we have Sy = () by [17], Lemma 3.4. If
em € Si, then f = {—M 8mc2}{—1,c} € KyOp and 32 = {-1,m},

a ' a?
where (z,v,2) = (a,b,c) is a relatively prime solution of emz? = 2?2 + dy?
in N.
In the completion field Fp = Q2(i), P|2, we have np{—1,c} =[-1,c]p
= 1 by the Artin-Hasse theorem [11]. Let § = —bv/d/a, emb?/a® = 1 + &,
Then

np(B) = [6,1+ 6% p[~1,clp =[5, (1 +i0)(1 —id)]p
=[1+6%i]p[l +i0,—1]p = [em,i]pla + bivVd, —1]p.

Since d = —1 mod 8, we have a + biv/d € Q5. By the Artin-Hasse theorem,
[—1,a + bivd]p = 1 and
1 if m = +1 mod 8,

. 1 _ (m2-1)/4 _ {

[, 2mlp = [i,m]p = —1 if m = +3 mod 8.
Therefore, 8 € Ro F' if and only if m = £1 mod 8. By Theorem 3.1, we get
the assertion of Theorem 3.4.

By Theorem 3.4, we get the following result: if F' = Q(v/d), d = pq, p, ¢
prime, p = —q = 3 mod 8, then (K2Op)2 = Z/(2) & Z/(8), which is proved
in another way in [4]. On the other hand, we can generalize it.

THEOREM 3.5. Let F = Q(v/d), d > 2 a squarefree integer, d = —1 mod

8, and 2 ¢ NF. Suppose that d = pqr, where p, q, r are primes, i.e.,
(p,q,7) = (1,3,5) or (7,5,5) or (7,3,3) mod 8.
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If (2) = (L) =1, then (K2Op)2 = Z/(2") © Z/(27) & Z/(2), where
1> 3 ] > 2.
If (3) = (5) = =1, then (K>0p)> = Z/(2') ® Z/(2) ® Z/(2), where
1> 4
(%) # (%), then (K20p)2 = 7Z/(8) ®Z/(2) ®Z/(2).
Proof (1) If (%) = (—) =1, r4(K20p) = 2 by the tables of [14]. We get
the result by Theore

( ) = (%) —1 then r4(K20p) = 1 by the tables of [14]. In fact,
if (p, q, r) = (1,3,5) or (7,5,5) mod 8, then (m,e) = (p,2) satisfies (2.6); if
(p,q,7) = (7,3,3) mod 8, then (m, ) = (p, 1) satisfies (2.6). By Theorem 3.4,
we get 7’4(K OF) =r4(ReF) =1 and o(az) > 16 in Theorem 3.1.

(3) If ( ) # ( ) then r4(K2Op) = 1 by the tables of [14]. There is
(m,e) with m = :t3 mod 8 and ¢ € {1, 2} satisfying (2.6). By Theorem 3.4,
we get 74(K20p) = 14(R2F) +1 =1 and o(az) = 8 in Theorem 3.1.

4. Imaginary quadratic fields. In this section, we consider imaginary
quadratic fields E = Q(v/—d), d > 2 a squarefree integer. By [15], we have
[A: E*] =4, where A = {z € E* | {—1,z} = 1} is called the Tate kernel.
Since 2 € A, we have

A=E*2U2E*2 USE*2 U26E*2.

Below, we find such elements § € A for some imaginary quadratic fields.
From [2], we know the following relation between K2Op and R2FE (the
Hilbert kernel of E):

0 if d # £1 mod 8,
(K2Op/RoE) 2 < Z/(2) if d=—1mod 8§,
Z/(2) ifd=1mod 8.

If d = —1 mod 8, then there is a prime divisor p of d with p = 3 mod 4.
Hence o = {—1,p} € K20p, but a € R F, so (K20g)2 = () x (R2E)a by
Lemma 3.1.

If d = 1 mod 8, then r2(K20g) = r2(R2E) by [3], Theorem 4. Hence,
by Lemma 3.1, (K2Og)2 = (o) x H, where np(a) = —1, P|2, o(a) > 4,
and H C (R2FE)a. Therefore, 74(K20g) = r4(R2E) + 1 if o(a)) = 4, and
T‘4(K20E) = T4(§R2E) if o(a) Z 8.

THEOREM 4.1. Let E = Q(v/—d), F = Q(Vd), d > 2 a squarefree
integer, d = 1mod 8, and 2 ¢ NE. Then r4(K2Op) = r4(ReFE) + 1 if
and only if there is an odd positive divisor m = £3 mod 8 of d such that
em € NF, e € {1,2}.

Proof. By the preceding argument, Lemma 3.1, and (2 15), r4(K20Eg) =
r4(R2E) + 1 if and only if there is 3 = {— b\/_d, emc? H-1,c} ¢ RE
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where m | d is positive and (z,y,2) = (a,b, c) is a relatively prime solution
of emz? = 2% —dy?, ¢ € {1,2}, in N. By the process of proving Theorem 3.4,
we know that 8 € RoE, i.e., np(8) = —1, P |2, if and only if m = +3 mod 8.

By Theorem 4.1, we add some values to the tables in [13]:

Table 1
E p,qmod 8 | rq | 78 0
3,3 1 10| -1
v—d )
o ) 5,5 110 ]| -1
Table 2
E p,q,7 mod 8 | The Legendre symbols | r4 | rg
Py — (2 110
753 () =) p
otherwise 1 0| —p
(H=()=1 |2
(&) # (3 IEE
GH=)=1 |2
ay — (ry— _
(&) # (3) IEE

Proof. 1. For Table 1, we need to consider the case (p,q) = (5,5) mod 8.
If (%) =1, then p,pq € NF; if (%) = —1, then 2p,pq € NF'. By the tables
of [13] and Theorem 4.1, r4(K20g) = r4(ReE) +1 =1 and {—1,pq} = 1,
ie., {—1,-1} = 1.

2. For Table 2

The case (p,q,r) = (7,5,3) mod 8. By the tables of [13], r4(K20pg) = 1.
Suppose (%) = (%) =1 (smularly for (%) = (%) = —1). If (f) =1,

then q,p € NF; if (g) = —1, then 2¢,p € NF'. Hence, by Theorem 4.1,
7“4(K20E) = 7’4(%2 )—|- 1=1and { 1 p} =1.

Suppose (%) = —(2) =1 (similarly for (%) =—(&)=-1).1f (f) =1,
then q,qr € NF; if (g) = —1, then 2¢q,qr € NF. Hence, by Theorem 4.1,
r4(K20g) =r4(R2E) +1=1and {-1,qr} =1, e, {-1,—p} =1.

The case (p,q,7) = (1, ) mod 8. If (p) (]—3) =1, then r4(K20g) = 2
by the tables of [13].

If (%) = (%) = —1 then r4(K20g) = 1 by the tables of [13] and 2p, pgr €
NF. Hence r4(K20g) = ry(R2FE) = 1 and rg(K20g) = 1 by Theorem 4.1.
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Suppose (1) = —(%) 1 (similarly for (%) = —(%) =-1). If (1) =1,
then q,pgr € NF}; if (g) = 1, then 2q,pqr € NF. Hence, by the tables
of [13] and Theorem 4.1, r4(K20g) = r4(R2E) + 1 =1 and {—1,pgr} =1,
ie, {—1,-1} = 1.

The case (p,q,7) = (1,3,3) mod 8. If (%) = (%) =1, then r4y(K20p) = 2
by the tables of [13].

If (%) = (%) = —1, then r4(K20g) = 1 by the tables of [13] and

2p,2pgr € NF. Hence, by Theorem 4.1, r4(K20pg) = r4(ReE) = 1 and

TS(KQOE) =1.
Suppose (%) = —(%) =1 (similarly for (%) = —(%) =—1). If (2) =1,

then 2q,2pqr € NF; if (%) = —1, then q,2pqr € NF'. Hence, by the tables
of [13] and Theorem 4.1, 74(K20g) = r4(R2F) +1 =1 and {—1,2pgr} =1,
ie, {-1,-1} =1.
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