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1. Introduction. Integers whose prime factors are relatively small arise
naturally in various areas of number theory. Specifically, if P (n) denotes the
largest prime divisor of an integer n > 1, with P (1) = 1, then positive
integers n with P (n) ≤ y for a number y are of special interest. The well
known counting function of integers not exceeding x with prime factors at
most y is

Ψ(x, y) :=
∑

n≤x
P (n)≤y

1,

the summatory function of the multiplicative function defined by the relation

h(n) =
{

0, P (n) > y,
1, P (n) ≤ y.

The behavior of Ψ(x, y) has been the subject of numerous studies. It has
been documented in the survey papers of Norton [N], Moree [M], and most
recently Hildebrand and Tenenbaum [HT]. There is also a comprehensive
introduction and overview of main results on the asymptotic behavior of
Ψ(x, y) in Tenenbaum [Tn] (Chapter III.5). All this work goes back to the
following result due to Dickman [Di]. He showed, with u = log x/log y, that

Ψ(x, y) ∼ x%(u), x→∞,
where %(u) satisfies

u%′(u) = −%(u− 1), u > 1,

subject to the initial conditions

%(u) = 0, u < 0,

%(u) = 1, 0 ≤ u ≤ 1.
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The function % is now known as Dickman’s function. Later, de Bruijn [dB]
obtained results implying that for any fixed ε > 0,

(1.1) Ψ(x, y) = x%(u)
{

1 +O

(
log(u+ 1)

log y

)}

uniformly within the range

1 ≤ u ≤ (log x)3/8−ε

as x→∞. De Bruijn used the so-called Buchstab identity,

(1.2) Ψ(x, y) = Ψ(x, z) +
∑

y<p≤z
Ψ

(
x

p
, p

)
, 1 ≤ z ≤ y ≤ x.

However, an inductive argument of Hildebrand [Hi] has turned out to be
more effective. He showed that (1.1) holds uniformly for

(1.3) x ≥ 3, 1 ≤ u ≤ log x/(log log x)5/3+ε

using a Chebyshev-type functional equation for Ψ(x, y), namely,

(1.4) Ψ(x, y) log x =
x�

1

Ψ(t, y)
dt

t
+
∑

pk≤x
p≤y

Ψ

(
x

pk
, y

)
log p, 1 ≤ y < x;

the advantage of (1.4) over the Buchstab identity is that the second argu-
ment is the same for all the Ψ functions. Our goal in the present paper is
to prove an asymptotic estimate for an incomplete sum of a general class
of nonnegative multiplicative functions over integers without large prime
factors by use of an analog of this identity.

Let M denote the class of nonnegative multiplicative functions h satis-
fying the following conditions:

There exist constants δ, 0 < δ < 1, and κ > 0 such that

(Ω1)
∑

p≤z

h(p)
p

log p = κ log z +O((log z)1−δ), z ≥ 2,

and
there exists a constant b > 0 such that

(Ω2)
∑

p, k≥2

h(pk)
pk

log pk ≤ b.

Define

m0(x, y) :=
∑

n≤x
P (n)≤y

h(n)
n

, V (y) :=
∏

p≤y

(
1 +

∞∑

k=1

h(pk)
pk

)
.
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Clearly, we have

m0(x, y) ≤
∑

P (n)≤y

h(n)
n

= V (y).

Also, for the real parameter κ occurring in (Ω1), define jκ to be the contin-
uous solution of the differential difference equation (DDE)

uj′κ(u) = κjκ(u)− κjκ(u− 1), u > 1,(1.5)

and

jκ(u) =
{

0, u ≤ 0,
Bκu

κ, 0 < u ≤ 1,(1.6)

where Bκ = e−γκ/Γ (κ+ 1), with γ Euler’s constant, and Γ Euler’s Gamma
function. We note that Dickman’s function satisfies

%(u) = eγj′1(u).

Main Theorem. Suppose h ∈ M. Then for all sufficiently large y,

(1.7) m0(x, y) = V (y)
{
jκ(u) +O

(
log(u+ 1)

(log y)δ

)}

uniformly for

1 ≤ u ≤ exp
(

1
c

(log y)δ
)

for a suitable constant c.

The conditions onM restrict the size of h on prime powers and condition
(Ω1) asserts h is, on average, about κ on prime numbers (see Section 3). The
main result can be viewed as a quantitative version of a result of de Bruijn
and van Lint [dBvL]; it can be easily seen that the conditions on M imply
those of [dBvL]. Under those similar, but weaker, conditions, de Bruijn and
van Lint [dBvL] proved results implying

(1.8)
∑

n≤x
P (n)≤y

h(n)
n
∼ (log y)κL(log y),

uniformly for 0 < δ ≤ u ≤ U as y → ∞, for any bounded U , where L is
a slowly oscillating function. This result is reflected in (1.7) once we show
that

V (y) ∼ A(log y)κ,

with a suitable constant A, for the class of multiplicative functionsM.
Using the technique of [HR], Chapter 5, Halberstam has given mean value

estimates of h satisfying the conditions ofM in an unpublished manuscript.
In 1990, Odoni [Od] proved similar results using a Tauberian theorem with
essentially the same hypotheses. Halberstam’s proofs are elementary and his
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results slightly stronger. He also gave results providing a starting point from
which m0(x, y) can be estimated. We state and prove these results below.

Theorem A. Let h ∈ M. Then for all sufficiently large x,

(1.9) m(x) :=
∑

n≤x

h(n)
n

= Cκ(log x)κ +O((logx)κ−δ),

where

Cκ =
1

Γ (κ+ 1)
lim
s→1+

∏

p

(
1 +

∞∑

k=1

h(pk)
pks

)(
1− 1

ps

)κ
.

When u ≤ 1, we have m0(x, y) = m(x). Theorem A is a quantitative
version of a result of Wirsing’s [W]; the classical Wirsing condition on h,

h(pk) ≤ γ0γ
k
1 , k ≥ 2, 0 < γ1 < 2,

implies (Ω2), and the proof is based on ideas in [W].
A result on m0(x, y) using the technique in [HR] is the following:

Theorem B. Suppose h ∈M. Then for all sufficiently large y,

(1.10) m0(x, y) = V (y)
{
jκ(u) +O

(
u2κ log(u+ 1)

(log y)δ

)}

for u > 1.

Theorem B will be used to prove the Main Theorem for u ≤ κ+ 2. The
proof of the Main Theorem for u > κ + 2 is completed in Section 5 using
the approach of [Hi].

2. Some results about jκ(·). We state the following lemma that is
needed in the proof of the Main Theorem.

Lemma 1. For κ ≥ 0,

(a) jκ(u) is strictly increasing and positive for all u > 0, and converges
to 1 as u→∞,

(b) jκ(κ) ≥ 1/2.

Following pioneering work of Ankeny and Onishi [AO], the properties
of jκ(u) and j′κ(u) have been studied by many others. The proof of part
(a) of the lemma can be found, for example, in [dBvL]. Proof of part (b)
is given in Grupp and Richert [GR], Theorem 4, and the Ph.D. thesis of
F. Wheeler [Wh].

Also, using the definition of jκ and the relation

(2.1) (ujκ(u))′ = κ(jκ(u)− jκ(u− 1)) + jκ(u)
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we obtain

jκ(u) =
κ

u

u�

u−1

jκ(t) dt+
1
u

u�

0

jκ(t) dt(2.2)

=
κ

u

u�

u−1

jκ(t) dt+
1
u

u�

1

jκ(t) dt+
Bκ

(κ+ 1)u
, u ≥ 1.

As simple as its derivation is, this identity plays an important role in the
proof of the main result: it serves as a continuous analog of the functional
equation of the sum m0(x, y). It is the use of this identity in the proof of the
Main Theorem that improves on the approach in the proof of Theorem B.

3. Preliminary lemma. Before embarking on the proofs of Theorems
A, B and the Main Theorem, we shall establish a useful relation involving
m0(x, y). First, we remark that the condition (Ω1) implies not only that
h(p) is, on average, equal to κ but also that it cannot be too large for a
given prime. In particular, we obtain

(3.1) h(p)� p(log p)−δ

for h ∈ M, from summing the right side of (Ω1) to p and p− 1 respectively
and taking the difference. By Abel summation based on (Ω1) we deduce that

(3.2)
∑

p≤z

h(p)
p

(log p)1−δ � (log z)1−δ

and

(3.3)
∑

p>z

h(p)
p(log p)δ

� (log z)−δ.

We see from (3.3) that

(3.4)
∑

p

h(p)
p(log p)δ

<∞.

Next, starting from an identity for m0(x, y) analogous to (1.4), namely

(3.5) m0(x, y) logx = T0(x, y) +
∑

mpk≤x
P (mp)≤y
p-m

h(m)
m
· h(pk)
pk

log pk,

where

T0(x, y) :=
x�

1

m0(t, y)
t

dt,

we shall derive Lemma 2 below and use it as a springboard for the proofs
of first Theorem B and then the Main Theorem.
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Lemma 2. Suppose h ∈ M. Then

m0(x, y) log x = T0(x, y) +
∑

m≤x
P (m)≤y

h(m)
m

∑

p≤min(x/m,y)

h(p)
p

log p(3.6)

+O(m0(x, y)(log y)1−δ), 1 < y ≤ x.

Proof. We deduce from (3.5) the inequality

(3.7)
∣∣∣∣m0(x, y) logx− T0(x, y)−

∑

m≤x
P (m)≤y

h(m)
m

∑

p≤min(x/m,y)

h(p)
p

log p
∣∣∣∣

≤
∑

p, k≥1
p≤y

m0

(
x

pk+1 , y

)
h(pk)
pk

· h(p)
p

log p+ bm0(x, y),

where b is the constant in (Ω2). Indeed, if we take the terms corresponding
to k = 1 from the sum on the right of (3.5), they contribute

(3.8)
∑

mp≤x
P (mp)≤y
p-m

h(m)
m
· h(p)
p

log p

=
∑

mp≤x
P (mp)≤y

h(m)
m
· h(p)
p

log p−
∑

mp≤x
p|m

P (mp)≤y

h(m)
m
· h(p)
p

log p

=
∑

m≤x
P (m)≤y

h(m)
m

∑

p≤min(x/m,y)

h(p)
p

log p−
∑

lpk+1≤x
p-l, k≥1
P (lp)≤y

h(l)
l
· h(pk)
pk

· h(p)
p

log p,

whereas the remaining terms, those corresponding to k ≥ 2, of the same
sum on the right of (3.5) contribute at most

(3.9)
∑

p, k≥2

m0

(
x

pk
, y

)
h(pk)
pk

log pk ≤ bm0(x, y)

by (Ω2). Thus, with (3.8) and (3.9) applied in (3.5), we have
∣∣∣∣m0(x, y) log x− T0(x, y)−

∑

m≤x
P (m)≤y

h(m)
m

∑

p≤min(x/m,y)

h(p)
p

log p
∣∣∣∣
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≤
∑

lpk+1≤x
p-l, k≥1
P (lp)≤y

h(l)
l
· h(pk)
pk

· h(p)
p

log p+ bm0(x, y)

≤
∑

pk+1≤x
p≤y, k≥1

m0

(
x

pk+1 , y

)
h(pk)
pk

· h(p)
p

log p+ bm0(x, y).

This proves (3.7).
The double sum on the right of (3.7) is at most

m0(x, y)
∑

pk+1≤x
p≤y

h(pk)
pk

· h(p)
p

log p

� m0(x, y)
{ ∑

p≤min(
√
x,y)

h(p)
p

(log p)1−δ +
∑

p, k≥2
p≤y

h(pk)
pk

(log p)1−δ
}
,

by (3.1), after separating terms corresponding to k = 1 and k ≥ 2. The
expression on the right is of order

m0(x, y)(log y)1−δ, 1 < y ≤ x,
by (3.2) and (Ω2).

We also remark that if 1 ≤ x ≤ y, we take y = x in the above lemma to
obtain

(3.10) m(x) log x−
x�

1

m(t)
dt

t
−
∑

m≤x

h(m)
m

∑

p≤x/m

h(p)
p

log p

� m(x)(logx)1−δ,

a relation that is needed in the proof of Theorem A.

4. Proofs of Theorems A and B. In this section we employ a tech-
nique similar to that used in [HR], Lemmas 5.4 and 6.1, to prove Theorems A
and B. In order to prove Theorem A, we consider the approximate functional
equation (3.10) for m(x): we may rewrite it as

(4.1) m(x) logx

= T (x) +
∑

m≤x

h(m)
m

∑

p≤x/m

h(p)
p

log p+O(m(x)(logx)1−δ),

with the notation

(4.2) T (x) :=
∑

m≤x

h(m)
m

log
x

m
=
x�

1

m(t)
t

dt.
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The sum on the right side of (4.1) is equal to

∑

m≤x

h(m)
m

{
κ log

x

m
+O

((
log

x

m

)1−δ)}
= κT (x) +O(m(x)(logx)1−δ)

by (Ω1), whence

m(x) =
κ+ 1
log x

T (x) +m(x)ε(x),

where

(4.3) ε(x)� (log x)−δ.

If x is large enough, say x ≥ x0, then

(4.4) |ε(x)| ≤ 1/2,

and we have the useful expression

(4.5) m(x) =
1

1− ε(x)
· κ+ 1

log x
T (x), x ≥ x0.

Let

E(z) := log
(

κ+ 1
(log z)κ+1 T (z)

)
,

and note that, by (4.2) and (4.5),

(4.6) E′(z) =
κ+ 1
z log z

· ε(z)
1− ε(z)

� 1
z(log z)1+δ , z ≥ x0,

after appeal to (4.3) and (4.4). Hence

E0 :=
∞�

1

E′(z) dz

converges absolutely, and therefore
∞�

x

E′(z) dz = E0 − E(x), x ≥ x0.

On writing C = exp(E0), we obtain

κ+ 1
(logx)κ+1 T (x) = exp(E(x)) = C exp

(
−
∞�

x

E′(z) dz
)

= C(1 +O((logx)−δ)).

When we substitute this in (4.5) and use (4.3) we obtain the result in The-
orem A, except that we need to find C.
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To determine C we argue as follows: if s > 1 we have
∏

p

(
1 +

∞∑

k=1

h(pk)
pks

)
=

∞∑

m=1

h(n)
ns

= (s− 1)
∞�

1

m(x)
xs

dx

= (s− 1)
∞�

1

C
(log x)κ +O((logx)κ−δ)

xs
dx

= C
Γ (κ+ 1)
(s− 1)κ

+O

(
1

(s− 1)κ−δ

)
,

whence

C =
1

Γ (κ+ 1)
lim

s→1+0

∏

p

(
1 +

∞∑

k=1

h(pk)
pks

)
(s− 1)κ.

On the other hand,
lim

s→1+0
(s− 1)ζ(s) = 1

with

ζ(s) :=
∞∑

n=1

1
ns

=
∏

p

(
1− 1

ps

)−1

, s > 1.

Hence

Cκ = C =
1

Γ (κ+ 1)
lim

s→1+0

∏

p

(
1 +

∞∑

k=1

h(pk)
pks

)(
1− 1

ps

)κ
.

This proves Theorem A.

Now we go on to prove Theorem B. First, we derive an asymptotic for-
mula for the product V (y) defined in the introduction:

V (y) :=
∏

p≤y

(
1 +

∞∑

k=1

h(pk)
pk

)
.

Let

Hp(s) :=
∞∑

k=2

h(pk)
pks

, Hp = Hp(1),

so that

(4.7) V (y) =
∏

p≤y

(
1 +

h(p)
p

+Hp

)
.

Lemma 3. Suppose h ∈ M. Then

(4.8)
∑

y<p≤z

h(p)
ps
− κ

ps
= O((log y)−δ), z > y,

uniformly in s ≥ 1.
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Proof. Let

L(t) :=
∑

y<p≤t

h(p)− κ
p

log p.

Then L(t) = 0 when t ≤ y, and

L(t) = O((log t)1−δ), t > y,

by (Ω1) and Mertens’ prime number estimate. Hence the expression in the
statement of the lemma is equal to

z�

y

dL(t)
ts−1 log t

=
L(z)

zs−1 log z
+
z�

y

L(t)
ts log t

(
s− 1 +

1
log t

)
dt

� 1
zs−1 (log z)−δ +

z�

y

(s− 1)(log t)−δ
dt

ts
+
z�

y

dt

ts(log t)1+δ

≤ 1
zs−1(log z)δ

+
s− 1

(log y)δ

∞�

log y

e−(s−1)v dv +
∞�

y

dt

t(log t)1+δ

=
1

zs−1(log z)δ
+

1
ys−1(log y)δ

+
1

δ(log y)δ
� (log y)−δ

uniformly in s ≥ 1.

Consider the product

(4.9)
∏

y<p≤z

(
1 +

h(p)
ps

+Hp(s)
)(

1− 1
ps

)κ

= exp
{ ∑

y<p≤z
log
(

1 +
h(p)
ps

+Hp(s)
)

+ κ log
(

1− 1
ps

)}
, s ≥ 1.

Since
x− 1

2x
2 ≤ log(1 + x) ≤ x,

we have

log
(

1 +
h(p)
ps

+Hp(s)
)

=
h(p)
ps

+Hp(s) +O

(
h2(p)
p2s +H2

p (s)
)

=
h(p)
ps

+O

(
Hp +

h(p)
p(log p)δ

)
, s ≥ 1,

by (3.1) and (Ω2). Also, for s ≥ 1,

0 ≥ log
(

1− 1
ps

)
+

1
ps

= −
∞∑

k=2

1
kpks

≥ −1
2

∞∑

k=2

1
pk

= − 1
2p(p− 1)

≥ − 1
p2
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so that the product (4.9) equals

exp
{ ∑

y<p≤z

h(p)− κ
ps

+O

(∑

p>y

(
Hp +

h(p)
p(log p)δ

+
1
p2

))}

= exp{O((log y)−δ)} = 1 +O((log y)−δ)

uniformly in s ≥ 1, z ≥ y, by Lemma 3, (3.3), and (Ω2). By the definition
of V (y) and Cκ in Theorem 1, we get

Γ (κ+ 1)Cκ =
∏

p≤y

(
1 +

h(p)
p

+Hp

)(
1− 1

p

)κ
{1 +O((log y)−δ)}

= V (y)
∏

p≤y

(
1− 1

p

)κ
{1 +O((log y)−δ)}

= V (y)
e−γκ

(log y)κ
{1 +O((log y)−1)}{1 +O((log y)−δ)}

by the well known Mertens formula. Referring to the definition of the con-
stant Bκ in Section 1, we conclude that

(4.10) V (y) =
Cκ
Bκ

(log y)κ{1 +O((log y)−δ)},

for all sufficiently large y.
Now we are ready to prove Theorem B. On writing

u =
log x
log y

,

we first note that from Theorem A it follows that if u ≤ 1 then

m0(x, y) = m(x) = Cκ(log x)κ{1 +O((log x)−δ)}
= Cκu

κ(log y)κ{1 +O(u−δ(log y)−δ)}
= Bκu

κV (y){1 +O((log y)−δ)}{1 +O(u−δ(log y)−δ)}
by (4.10). Hence,

(4.11) m0(x, y) = V (y)
{
jκ(u) +O

(
uκ−δ

(log y)δ

)}
, 0 < u ≤ 1.

From now on, assume u > 1. The double sum on the right of (3.6) is equal
to

∑

m≤x/y
P (m)≤y

h(m)
m

∑

p≤y

h(p)
p

log p+
∑

x/y<m≤x
P (m)≤y

h(m)
m

∑

p≤x/m

h(p)
p

log p

= κT0(x, y)− κT0(x/y, y) +O(m0(x, y)(log y)1−δ)
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by (Ω1) and partial summation; hence we obtain

(4.12) m0(x, y) log x

= (κ+ 1)T0(x, y)− κT0(x/y, y) +O(V (y)(log y)1−δ), u > 1.

We have

∂

∂x

(
T0(x, y)

(log x)κ+1

)
=
m0(x, y) logx− (κ+ 1)T0(x, y)

x(log x)κ+2

= −κT0(x/y, y)
x(log x)κ+2 +O

(
V (y)(log y)1−δ

x(log x)κ+2

)

by (4.12) and using the definition of T0(x, y), and when we integrate this
relation with respect to x from ω to ξ we obtain the approximate integral
equation

T0(ξ, y)
(log ξ)κ+1 =

T0(ω, y)
(logω)κ+1 − κ

ξ�

ω

T0(x/y, y)
x(logx)κ+2 dx(4.13)

+O

(
V (y)(log y)1−δ

(logω)κ+1

)
, y ≤ ω ≤ ξ.

With an eye on (4.13), and also by (1.5) it is plausible that T0(ξ, y) is
approximable by

ξ�

1

V (y)jκ

(
log t
log y

)
dt

t
= V (y)(log y)

log ξ/log y�

0

jκ(v) dv.

Define

Jκ(u) =
u�

0

jκ(v) dv,

so that by (1.6) and (2.2),

(4.14)




Jκ(u) =

1
κ+ 1

Bκu
κ+1, 0 < u ≤ 1,

ujκ(u) = uJ ′κ(u) = (κ+ 1)Jκ(u)− κJκ(u− 1), u > 1,

and, in particular,

(4.15)
Jκ(τ)
τκ+1 =

Jk(ω)
ωκ+1 − κ

τ�

ω

Jκ(v − 1)
vκ+2 dv.

We find that when we put

(4.16) T0(ξ, y) = Jκ(τ)V (y) log y +R(ξ, y), τ = log ξ/log y,
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and substitute in (4.13), we arrive at

R(ξ, y)
(log ξ)κ+1 =

R(ω, y)
(logω)κ+1 − κ

ξ�

ω

R(x/y, y)
x(logx)κ+2 dx(4.17)

+O

(
V (y)(log y)1−δ

(logω)κ+1

)
, y ≤ ω ≤ ξ,

by (4.14) and (4.15). This is a relation linking just the remainders R(·, y).
Since the second argument of the remainders is the same, it is possible to
estimate the size of R by means of an inductive argument involving τ =
log ξ/log y. Suppose first that ξ ≤ y, or τ ≤ 1. Then by (4.11),

T0(ξ, y) = V (y)(log y)
{
Jκ(τ) +O

(
τκ+1−δ

(log y)δ

)}
, τ ≤ 1,

which agrees with (4.16) when τ ≤ 1 and

(4.18) |R(ξ, y)| ≤ D1
V (y) log y
(log y)δ

, τ ≤ 1,

with the constant D1 at least as large as the constant in (4.11). Suppose
next that y < ξ ≤ y2, i.e. 1 < τ ≤ 2. Let D0 denote the O-constant in (4.17)
and apply (4.17) with ω = y. On the right of (4.17),

R(ω, y) = R(y, y)

and in the integral we have x/y ≤ ξ/y ≤ y; hence (4.18) applies to each
remainder R(·, y) on the right of (4.17), and therefore

|R(ξ, y)|
(log ξ)κ+1 ≤ D1

V (y) log y
(log y)δ

×
{

1
(log y)κ+1 + κ

y2�

y

dx

x(log x)κ+2 +
D0

D1
· 1

(log y)κ+1

}

≤ D1
V (y)

(log y)κ+δ

(
1 +

κ

κ+ 2
+
D0

D1

)

≤ 2D1
V (y)

(log y)κ+δ , y < ξ ≤ y2,

provided that D1 ≥ (κ + 1)D0. We proceed inductively. Suppose that for
ν = 1, 2, . . . there exists a constant D∗ independent of ν such that

(4.19)
∣∣∣∣
R(ξ, y)

(log ξ)κ+1

∣∣∣∣ ≤ D∗η0(ν)
V (y)

(log y)κ+δ , yν < ξ ≤ yν+1,

where
η0(ν) = νκ log(ν + 1).
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We have proven (4.19) to be true for ν = 1 provided

D∗ ≥ 2D1/log 2,

so we may assume ν ≥ 2. Set ω = yν in (4.17). Applying the induction
hypothesis (4.19) to each of the remainders in (4.17) we get

(4.20)
|R(ξ, y)|

(log ξ)κ+1 ≤ D
∗ V (y)

(log y)κ+δ

×
{
η0(ν − 1) + κη0(ν − 1)

yν+1�

yν

(logx− log y)κ+1

x(log x)κ+2 dx+
D0

D∗νκ+1

}
.

The integral on the right is equal to
ν+1�

ν

(t− 1)κ+1

tκ+2 dt ≤
ν+1�

ν

dt

t
= log

(
1 +

1
ν

)
≤ 1
ν
,

whence
|R(ξ, y)|

(log ξ)κ+1 ≤ D
∗ V (y)

(log y)κ+δ

{(
1 +

κ

ν

)
η0(ν − 1) +

D0

D∗ν

}

≤ D∗η0(ν)
V (y)

(log y)κ+δ

if (
1 +

κ

ν

)
η0(ν − 1) +

D0

D∗ν
≤ η0(ν).

But

η0(ν)−
(

1 +
κ

ν

)
η0(ν − 1)

= νκ log
(

1 +
1
ν

)
+ (ν − 1)κ

{(
1 +

1
ν − 1

)κ
− 1− κ

ν

}
log ν

> νκ log
(

1 +
1
ν

)
> νκ−1

(
1− 1

2ν

)
≥ 3

4
νκ−1 ≥ D0

D∗
ν−1

if D∗ ≥ 4D0/3. This proves (4.19) for all ν ≥ 1, and we conclude that

|R(ξ, y)| ≤ D∗τ2κ+1 log(τ + 1)
V (y) log y
(log y)δ

, τ > 1.

By (4.16), we then obtain

T0(ξ, y) =
{
Jκ(τ) +O

(
τ2κ+1 log(τ + 1)

(log y)δ

)}
V (y) log y, τ > 1,

which, when substituted in (4.12), once with ξ = x and once with ξ = x/y,
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gives

m0(x, y) logx = V (y)(log y)
{

((κ+ 1)Jκ(u)− κJκ(u− 1))

+O

(
u2κ+1 log(u+ 1) + 1

(log y)δ

)}
, u > 1.

Dividing by log x = u log y, we get, by (4.14),

m0(x, y) = V (y)
{
jκ(u) +O

(
u2κ log(u+ 1)

(log y)δ

)}
, u > 1,

which is the statement of Theorem B.

5. Proof of Main Theorem. By switching the order of summation we
may restate (3.6) as

m0(x, y) logx =
x�

1

m0(t, y)
dt

t
+
∑

p≤y
m0

(
x

p
, y

)
h(p)
p

log p(5.1)

+O(m0(x, y)(log y)1−δ).

We need two additional lemmas to elucidate the right hand side of (5.1).
First, we restate Theorem A: for h ∈ M, there exist constants K and x0

such that

(5.2) |m(z)− Cκ(log z)κ| ≤ K(log z)κ−δ

for all z ≥ x0.

Lemma 4. Suppose h ∈ M. Then

(5.3)
y�

1

m(t, y)
dt

t
=

Bκ
κ+ 1

V (y)(log y){1 +O((log y)−δ)}

for y ≥ y1, with y1 the least value of y satisfying

(5.4) (log y)κ+1−δ ≥ (log x0)κ+1,

where x0 satisfies (5.2).

Proof. Since m(t, y) = m(t) ≤ V (x0) when 1 ≤ t ≤ x0 ≤ y, we have for
y ≥ y1,

y�

1

m(t)
dt

t
=

x0�

1

m(t)
dt

t
+

y�

x0

{m(t)− Cκ(log t)κ}dt
t

+
Cκ
κ+ 1

{(log y)κ+1 − (log x0)κ+1}
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whence

(5.5)
∣∣∣∣
y�

1

m(t)
dt

t
− Cκ
κ+ 1

(log y)κ+1

∣∣∣∣

≤ V (x0) log x0 +K

y�

x0

(log t)κ−δ
dt

t
+

Cκ
k + 1

(log x0)κ+1.

We have, by (4.10),

V (x0) log x0

V (y) log y
�
(

log x0

log y

)κ+1

≤ (log y)−δ

by (5.4). The integral on the right of (5.5) is obviously O((log y)κ+1−δ), and
the third expression on the right is of the same order of magnitude, also by
(5.4). Finally, by (4.10),

Cκ
κ+ 1

(log y)κ+1 =
Bκ
κ+ 1

V (y)(log y){1 +O((log y)−δ)}.

This proves the lemma.

Lemma 5. Suppose h ∈ M. Let θ be a fixed number such that 1/2 ≤
θ ≤ 1. Then

(5.6)
∑

p≤yθ
jκ

(
u− log p

log y

)
h(p)
p

log p

= κ(log y)
θ�

0

jκ(u− v) dv +O((log y)1−δ)

for y ≥ 2, u ≥ 2.

Proof. Let s(z) denote the sum
∑
p≤z

h(p)
p log p. By (Ω1) we have

s(z)− κ log z = r(z),

where
|r(z)| ≤ A(log z)1−δ, z ≥ 2,

for a suitable constant A. The sum on the left hand side of (5.6) is equal to

(5.7)
∑

p≤yθ
jκ

(
u− log p

log y

)
h(p)
p

log p

=
yθ�

1

jκ

(
u− log t

log y

)
d{s(t)− κ log t}+ κ

yθ�

1

jκ

(
u− log t

log y

)
dt

t

= κ

yθ�

1

jκ

(
u− log t

log y

)
dt

t
+
yθ�

1

jκ

(
u− log t

log y

)
dr(t)
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where the second integral is at most of order

jκ(u− θ)|r(yθ)| −
yθ�

1

r(t)
d

dt
jκ

(
u− log t

log y

)
dt

= jκ(u− θ)|r(yθ)|+O

(
(log y)1−δ

yθ�

1

j′κ

(
u− log t

log y

)
dt

)

= jκ(u− θ)|r(yθ)|+O(jκ(u− θ)(log y)1−δ)

� (log y)1−δ.

With the change of variable v = log t/log y, from (5.7) we obtain

(5.8)
∑

p≤yθ
jκ

(
u− log p

log y

)
h(p)
p

log p

= κ(log y)
θ�

0

jκ(u− v) dv +O((log y)1−δ).

Now we are in a position to prove the Main Theorem. First, we note
that the theorem is already proved for u in some bounded range by virtue
of Theorem B, let us say for y ≥ y0 and 1 ≤ u ≤ κ+ 2. Thus,

(5.9) m0(x, y) = V (y){jκ(u) +R(y, u)}, u > 1,

where

(5.10) |R(y, u)| � (log y)−δ,

if 1 < u ≤ κ+ 2. If u > κ, then we have

(5.11) m0(x, y) = V (y)jκ(u)
{

1 +
R(y, u)
jκ(u)

}
= V (y)jκ(u){1 +∆(y, u)},

where ∆(y, u) ≤ 2R(y, u), by Lemma 1(b). Let

∆∗(y, u) = sup
κ≤u′≤u

|∆(y, u′)|.

Then we have

(5.12) ∆∗(y, u)� (log y)−δ, κ < u ≤ κ+ 2,

by (5.10), and now it suffices to show that

(5.13) ∆∗(y, u)� log u
(log y)δ

uniformly for u ≥ κ+ 2, and for all sufficiently large y in order to prove the
theorem.
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We first consider the integral in (5.1), namely

x�

1

m0(t, y)
dt

t
=
y�

1

m(t)
dt

t
+
x�

y

m0(t, y)
dt

t
.

The first integral on the right is

Bκ
κ+ 1

V (y)(log y){1 +O((log y)−δ)}

by Lemma 4. The portion of the second integral that corresponds to y ≤
t ≤ yκ+2 is, by (5.9) and (5.10),

V (y)
yκ+2�

y

jκ

(
log t
log y

)
dt

t
+Oκ(V (y)(log y)1−δ)

= V (y)(log y)
κ+2�

1

jκ(v) dv +Oκ(V (y)(log y)1−δ),

and the remaining portion contributes, with the notation of (5.11),

V (y)
x�

yκ+2

jκ

(
log t
log y

){
1 +∆

(
y,

log t
log y

)}
dt

t

= V (y)(log y)
u�

κ+2

jκ(v){1 +∆(y, v)} dv.

Hence
x�

1

m0(t, y)
dt

t
= V (y)(log y)

Bκ
κ+ 1

(5.14)

+ V (y)(log y)
{ u�

1

jκ(v) dv +
u�

κ+2

jκ(v)∆(y, v) dv
}

+O(V (y)(log y)1−δ), y ≥ y0, u ≥ κ+ 2.

Next we turn to the second expression on the right of (5.1). By (5.11), for
u > κ+ 2, we have

(5.15)
∑

p≤y
m0

(
x

p
, y

)
h(p)
p

log p

= V (y)
∑

p≤y
jκ

(
u− log p

log y

)
h(p)
p

(log p)
{

1 +∆

(
y, u− log p

log y

)}
.
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By Lemma 5, this is equal to

V (y)κ(log y)
1�

0

jκ(u− t) dt+O(V (y)(log y)1−δ)

+V (y)
∑

p≤y
jκ

(
u− log p

log y

)
h(p)
p

(log p)∆
(
y, u− log p

log y

)
.

Dividing both sides of the equation (5.1) by V (y)jκ(u) log x, we get, by
(5.14) and (5.15),

1+∆(y, u) =
Bκ

(κ+ 1)ujκ(u)
+

1
ujκ(u)

u�

1

jκ(v) dv+
κ

ujκ(u)

1�

0

jκ(u− v) dv

+
1

ujκ(u) log y

∑

p≤y
jκ

(
u− log p

log y

)
h(p)
p

(log p)∆
(
y, u− log p

log y

)

+
1

ujκ(u)

u�

κ+2

jκ(v)∆(y, v) dv

+O

(
1

ujκ(u)(log y)δ

)
, u > κ+ 2.

Hence, by (2.2),

(5.16) ∆(y, u)

=
1

ujκ(u) log y

∑

p≤y
jκ

(
u− log p

log y

)
h(p)
p

(log p)∆
(
y, u− log p

log y

)

+
1

ujκ(u)

u�

κ+2

jκ(v)∆(y, v) dv

+Oκ

(
1

ujκ(u)(log y)δ

)
.

The terms in the sum on the right of (5.16) that correspond to p ≤ y1/2

contribute at most

∆∗(y, u)
∑

p≤y1/2

jκ

(
u− log p

log y

)
h(p)
p

log p

= ∆∗(y, u)
(
κ(log y)

1/2�

0

jκ(u− t) dt+O((log y)−δ)
)
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and the remaining terms contribute at most

∆∗(y, u− 1/2)
∑

y1/2<p≤y
jκ

(
u− log p

log y

)
h(p)
p

log p

= ∆∗(u, y − 1/2)
(
κ(log y)

1�

1/2

jκ(u− t) dt+O((log y)−δ)
)

by Lemma 5. The integral on the right of (5.16) is at most

∆∗(y, u− 1)
u−1�

1

jκ(v) dv +∆∗(y, u)
u�

u−1

jκ(v) dv,

and thus

|∆(y, u)| ≤ ∆∗(y, u)
{
α(u) +

1
ujκ(u)

u�

u−1

jκ(v) dv
}

(5.17)

+∆∗(y, u− 1/2)
{
β(u) +

1
ujκ(u)

u−1�

1

jκ(v) dv
}

+O

(
1 +∆∗(y, u)
u(log y)δ

)
,

where

α(u) =
κ

ujκ(u)

1/2�

0

jκ(u− v) dv, β(u) =
κ

ujκ(u)

1�

1/2

jκ(u− v) dv.

We note that
α(u), β(u) ≤ κ/(2u), u > 1.

Introduce

α1(u) = α(u) +
1

ujκ(u)

u�

u−1

jκ(v) dv

and note, by (2.2), that

β(u) +
1

ujκ(u)

u−1�

1

jκ(v) dv = 1− α1(u)− Bκ
(κ+ 1)ujκ(u)

≤ 1− α1(u);

hence (5.17) simplifies to

|∆(y, u)| ≤ ∆∗(y, u)α1(u) +∆∗(y, u− 1/2)(1− α1(u))(5.18)

+O

(
1 +∆∗(y, u)
u(log y)δ

)
, u ≥ κ+ 2.
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We next claim that, by (5.18),

(5.19) |∆(y, u)| ≤ 1
2

(∆∗(y, u) +∆∗(y, u− 1/2)) +O

(
1 +∆∗(y, u)
u(log y)δ

)

uniformly for u ≥ κ+ 2 and if y is sufficiently large. Indeed,
1
2

(∆∗(y, u) +∆∗(y, u− 1/2))− (∆∗(y, u)α1(u) +∆∗(y, u− 1/2)(1− α1(u)))

=
(

1
2
− α1(u)

)
(∆∗(y, u)−∆∗(y, u− 1/2)),

and this quantity is nonnegative for we have

(∆∗(y, u)−∆∗(y, u− 1/2)) ≥ 0

by the monotonicity of ∆∗, and

α1(u) = α(u) +
1

ujκ(u)

u�

u−1

jκ(v) dv

≤ κ

2u
+

1
u

=
κ+ 2

2u
≤ 1

2
, u ≥ κ+ 2.

This proves (5.19).
In order to show that (5.13) holds for u ≥ κ + 2, first suppose that

u−1/2 ≤ u′ ≤ u. LetA denote theO-constant in (5.19). By the monotonicity
of ∆∗,

|∆(y, u′)| ≤ 1
2

(∆∗(y, u′) +∆∗(y, u′ − 1/2)) + A

(
1 +∆∗(y, u′)
u′(log y)δ

)

≤ 1
2

(∆∗(y, u) +∆∗(y, u− 1/2)) +
2A
3

(
1 +∆∗(y, u)
u(log y)δ

)
.

Now, if κ+ 2 ≤ u′ ≤ u− 1/2, then

|∆(y, u′)| ≤ ∆∗(y, u− 1/2) ≤ 1
2

(∆∗(y, u)−∆∗(y, u− 1/2)),

and it follows, by taking the supremum on the right of (5.19), that, uniformly
for u ≥ κ+ 2,

∆∗(y, u) ≤ 1
2

(∆∗(y, u) +∆∗(y, u− 1/2)) +
2A
3

(
1 +∆∗(y, u)
u(log y)δ

)
.

After rearranging terms we arrive at the inequality

(5.20) ∆∗(y, u) ≤ ∆∗(y, u− 1/2) +
4A
3

(
1 +∆∗(y, u)
u(log y)δ

)
,

which we iterate to get

∆∗(y, u) ≤ ∆∗(y, u0) +
4A
3

(
1 +∆∗(y, u)

(log y)δ
log u

)
,
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where
κ+ 3/2 ≤ u0 ≤ κ+ 2.

By (5.12) we have

∆∗(y, u0) ≤ A1
1

(log y)δ
,

where A1 is an appropriate constant, and thus

(5.21) ∆∗(y, u) ≤ A∗
(

(1 +∆∗(y, u))
log u

(log y)δ

)
, u ≥ κ+ 2,

where A∗ = max(4A/3, A1). This proves the theorem.
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