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1. Introduction. Let K be an imaginary quadratic field and H the
Hilbert class field of K. Let E be an elliptic curve over H with complex
multiplication by K. We suppose that E is a K-curve, that is, for each
o € Gal(H/K), E? and E are H-isogenous. We denote by B = Ry /k (E)
the abelian variety over K which is obtained from F by restriction of scalars.
We will show that one of the following three cases holds (see Theorem 3):

(i) B is a simple CM-type abelian variety over K.
(ii) B is isogenous to a product A x ... x A of a simple non-CM abelian
variety A such that Endg A ® QQ is commutative.
(iii) B is isogenous to a product A x ... x A of a simple non-CM abelian
variety A such that Endx A ® Q is a division quaternion algebra.

Some examples of these cases are discussed in Section 4. In [B-Gr| and
[Gr], Q-curves are treated under the assumption that the class number h
of K is odd. Such a curve F is a K-curve satisfying the condition: E7 and
FE are H-isogenous, where 7 is the complex conjugation. In this case, it is
shown that B is a simple CM-type abelian variety (see [Gr], §15).

Throughout the paper elliptic curves have complex multiplication by K
and the following notation is used:

e K — an imaginary quadratic field,

o CI(K) — the ideal class group of K,

e h — the class number of K,

e H — the Hilbert class field of K,

e G(L/k) — the Galois group of a Galois extension L/k,

e [, C;, — the idele group and the idele class group of a number field k&,

® Ry (E) — the abelian variety over M which is obtained from an
elliptic curve E over k by restriction of scalars to M.
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2. K-curves and descending characters. Let M be a finite extension
of K and L be a finite Galois extension of M. Let E be an elliptic curve over
L with complex multiplication by K. Denote by J the set of 0 € G(L/M)
such that E7 is isogenous to E over L. Clearly J is a subgroup of G(L/M)
and we obtain (cf. [Gr]|, Chap. 4)

DEFINITION. 1. If J = G(L/M), then we call E an M-curve.

2. Let g be the Hecke character of an elliptic curve E over L. If there
exists a Hecke character ¢ of M such that g = ¢ o Ny /5 , we say that ¢p
descends to M or simply that F has an M-character ¢.

REMARK. 1. The following fact is well known: )5 descends to M if and
only if all the points of E of finite order are rational over M "L, where M?P
is the maximal abelian extension of M (see [S1], Theorem 7.44).

2. For an elliptic curve E over H there exists an elliptic curve Fqy over
H such that jg = jg, and Ey has a K-character (see [S2], Prop. 5, p. 525).

THEOREM 1. Let E, L, M be as above and assume that L is abelian
over M. Then the following conditions are equivalent:

(i) L(Etors) is an abelian extension of M.
(ii) The abelian variety B = Ry p(E) has complex multiplication over
M in the sense that

Endy B ® Q & HTi
i=1
where T; (i =1,...,7) are (CM) fields over K such that

> IT:: K] = [L: M] (= dim B).
(iii) E has an M -character.

In case K = M, the theorem is Théoreme 4.1 in [G-Sch| and since our
assertion is proved similarly, we omit its proof. If L = H, we have the
following;:

THEOREM 2. Let M be a subfield of H containing K. If E is an elliptic
curve over H with an M-character, then B = Ry (E) is a simple CM

type abelian variety over M, which means that Endy; B ® Q is a field over
K of degree [H : M].

Proof. Since R = Endx B ® Q is commutative by Theorem 1, it suffices
to show that R is a field of degree [H : M] over K. If M = K and h is odd,
the proof is given in [Gr], Chap. 4. Our proof proceeds similarly. Let Y be
the subgroup of C1(K) corresponding to M. Let a be an integral ideal in Y.
One can associate with a an M-endomorphism ¢(a) of B with the following
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property: If a” ~ 1, then t(a)” € K and a™ = (¢(a)™) (see [Gr], Chap. 4). For
a prime number p, let Y), be the p-Sylow subgroup of Y and put p” = |Y,,|. For
a set of independent generators ay,...,as for Yp, let X, be the subgroup of
K> /K*?" generated by {t(a;)?" | 1 <i < s}. Then Y, is isomorphic to X,,.
Let T, = K({t(a;) | 1 <i < s}). It suffices to show that T}, is a field over K
of degree p", because we then have dimg R = dimg Hp T,. Write u(p") for
the group of p"th roots of unity and put K’ = K(u(p”)). Now we use the
following lemma which follows from [W], Lemma 13.27.

LEMMA 1. If p is odd, then H(G(K'/K),u(p")) = (0). If p = 2, then
HY(G(K'/K(V=1)), u(p")) = (0).

If p is odd, then K*/K*P" — K'*/K'*P" is injective by Lemma 1. Since
K'T, is a Kummer extension of K’ corresponding to the subgroup X, it
follows that T}, is a field over K of degree p”. Now assume p = 2. It suffices
to consider the case when h > 1 and the exponent of the group Y5 is greater
than 2. Then K(v/—1) (= K; say) # K and p(4) = p(2")¢E/K) In the

restriction inflation sequence
0 — HY(G(K1/K), p(4)) (= 2/22) - K> [K*2 — K /K
the image of i corresponds to the extension K;/K. From this we see that

Ty is a field over K of degree 27, since K*/K* — K" /K'?" is injective
by Lemma 1. This completes the proof of Theorem 2. m

3. The abelian variety Ry x(E)

LEMMA 2. Let M be a subfield of H containing K. Let Eqy be an elliptic
curve over H with an M-character. Let E be a twist of Ey corresponding
to a quadratic extension k/H. Then

(i) E is an M-curve if and only if k/M is Galois.
(ii) E has an M-character if and only if k/M is abelian.

Proof. Let 19, 1 be Hecke characters of Ey, E, respectively. Then by
[Gr], Lemma 9.2.5, we have ¢ = 9g-x, where x : Iy — {£1} is the character
associated with the extension k/H.

(i) £ is an M-curve if and only if ¢7 = ¢ (o € G(H/M)) (see [Gr],
§11). Our assertion follows from the equivalence of the following assertions:
1)y =49 (0 € G(H/M)).

2) X7 = x (0 € G(H/M)).
3) Ker x is G(H/M)-stable.
4) k/M is Galois.

)

ii) If £ /M is abelian, our assertion is clear by Theorem 1, since Ry /s (Eo)

(
(
(
(
(i
Ry /am(E). Now assume that 1) descends to M. Then ¢ = ¢ o N /p; and

>~
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Yo = ¢o © Ng/nr, where ¢ and ¢g are characters of Ip;. As Ey and E are
isomorphic over k, ¢ and ¢¢ coincide on the norm subgroup P = Ny /s (Cr)
of Cyy. Since x is non-trivial, ¢ and ¢q differ on Py = Ny (Cr) (D Pr).
This implies that Py # Py, which shows that k/M is abelian. m

THEOREM 3. Let E be a K-curve over H and put B = Ry (E) and
R =Endg B® Q. If E has a K-character, R is a field of degree h over
K. If E has no K-characters, then the center Z of R is a field of degree hg
over K with h = 22™hg (m > 1) and one of the following two cases holds:

(i) R = Mam(Z). In this case, B is isogenous over K to a product of
A with itself 2™ times, where A is K-simple, 2™ hg-dimensional and Z =
EndK AR Q

(ii) R = Mym-1(D), where D is a division quaternion algebra over Z. In
this case, B is isogenous over K to a product of A with itself 2™ times,
where A is K-simple, 2™ hg-dimensional and D = Endg A ® Q.

Proof. Choose an elliptic curve Ey over H with a K-character such that
JjE = jg, (see Remark 2). If E' and Ej are isomorphic over H, our assertion
follows from Theorem 2. Assume that E and Egy are not isomorphic over H.
Since it suffices to consider the case h > 1, there exists a unique quadratic
extension k of H such that F and Ej are isomorphic over k. Then k/K is
Galois by Lemma 2 and we have an exact sequence

1—G(k/H) (2{£1}) - G(k/K) - G(H/K) (2CI(K)) — 1.
LEMMA 3. Let C be the center of G = G(k/K). Then C contains
G(k/H) and G/C is an elementary abelian group of order 2°™ (m > 0)
with 2m < dim Cl(K)®@Fs. If G is non-commutative, there exist x1, ..., Tm,

Y1y, Ym € G which induce a basis of G/C and satisfy the following com-
mutator relations:

oyl = =1, (w25 = [yi,yi] = [weys] =1 (0 #9).
Proof of Lemma 3. Since the commutator map
G xG>3(z,y) — [z,y] € {£1}
induces a non-degenerate alternating form on G/C x G/C, our assertion

follows easily. m

If £ has a K-character, then R = Endg(Ry/x(F)) ® Q is a field of
degree h over K by Theorem 2. Now we assume that F is a K-curve but has
no K-characters, which means that G is non-commutative by Lemma 2. Let
m > 1 be as in Lemma 3 and put hg = h/2*™ = |C/{£1}|. Write My and
M; for the subfields of H corresponding to C' and (x;,y;, C'), respectively.
As G(k/My) = C is commutative, we see that E has an My-character by
Lemma 2 and Z = Endys, (Rp/ v, (E)) ® Q is a field over K of degree ho
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by Theorem 2. On the other hand as G(k/M;) is non-commutative, E has
no M;-characters by Lemma 2. Then by taking L. = H in Theorem 1, we
see that D; = Endyy, (Rp/n, (F)) ® Q is not a direct product of fields. As
D; is semisimple, this means that D; is a non-commutative subring of R
containing Z. By the map G — G(H/K) = CIl(K), x; and y,; determine
elements of CI(K) and as in the proof of Theorem 2, they correspond to
elements s,t of D;. We see that D; = Z[s,t] and s?,t> € Z. According
to [Gr], p. 47, st and ts differ by a root of unity in K; we get st = —ts.
Therefore D; is a quaternion algebra over Z. For j # i, we also have

Dj = EIlde (RH/MJ (E)) X Q = Z[S/, tl]

where s’, t" are elements of D; corresponding to z;, y;, respectively. Let N be
the subfield of H corresponding to (z;,x;,C). Since (x;,z;,C) is commuta-
tive, E has an N-character by Lemma 2, so that D’ = Endn (Ry/n(E)) @ Q
is a field by Theorem 2. As s,s" € D' C R, we have ss’ = s’s. The same ar-
guments show that elements of D; commute with those of D;. Consequently,
D;-Dj=D; ®z Dj; in R and in particular
In the Brauer group, the class to which R belongs is a product of quaternion
algebras; this implies that R & Mom (Z) or R & Mym-1(D), where D is a
division quaternion algebra over Z. This completes the proof of Theorem 3. =

COROLLARY 1. If the 2-Sylow subgroup of CI(K) is cyclic, i.e., if the
discriminant of K is divisible by at most two distinct primes, then every
K-curve over H has a K-character.

Proof. The inequality 2m < dim Cl(K) ® Fy in Lemma 3 implies that
G(k/K) is commutative. Our assertion follows immediately from Lemma 2. m

4. Examples. We are going to discuss examples which show that both
cases (i) and (ii) of Theorem 3 are possible.
Let p1, p2 and q be three rational primes such that
pr=p2 =1mod4, ¢=3modA4.

The imaginary quadratic field K = Q(y/—p1p2¢q) has discriminant —p;paq.
Let q be the prime ideal of K with g% = (¢) and (%) denote the quadratic
residue symbol mod q. Let ¢y be a Hecke character of K such that for any
principal ideal (a) of K prime to q,

There are h such characters (see [S2], p. 527, Example 3). We assume that
(¥)  the 2-Sylow subgroup of CI(K) is isomorphic to Z/27Z x Z/27.
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Let Ky be the subfield of H over K such that G(H/Ky) = Z/2Z x Z]/2Z
and put K; = Ko(\/p;) (i = 1,2). Let k be a quadratic extension of H such
that k/K is Galois with non-commutative Galois group. Then G(k/Kj) is
of order 8 and is isomorphic to either the quaternion group or the dihedral
group. Let Ejy be an elliptic curve over H which corresponds to the Hecke
character 19 = ¢oo Ny k. We write E for a twist of Ey with respect to k/H,
so that the Hecke character of E over H is v = 1y-x, where Y is the character
defined as in the proof of Lemma 2. If we put D = Endg, (Ry/k,(E)) ® Q,
then we see that

R =FEndg(Ry/kx(F)) ® Q=2 ®k D,

where Z is the center of R. For the prime ideal p; of K with p? = (p;) (i =
1,2), choose prime ideals [; of K such that p; and [; belong to the same class
in CI(K) and the [; are unramified in k/K. Let £ be a prime ideal of H
lying over [;. The decomposition field Z; of £; is of index 2 in H. As k/Z;
is abelian, there exists a Z;-character 1 such that ¢ = o NH/Zl. Let £4
be the restriction of £; to Z;. Then (£1) = ¥1(£?) and

P(£1) = vo(L€1)x(£1) = do(1F)x(£1)

where x(£1) = +1 and ¢o(13) = (%)pla% with [ = a1p1 (a1 € K*). Now let
¥1(L1) be an element of Endz, (Ry /7, (E)) C D satisfying ¢1(£1)? = 1(£1).
A similar argument also holds for [5. Therefore D is a quaternion algebra
over K generated by t; and to with t? = p; = £p; (i = 1,2) and t1ty = —tat;.
This implies that the splitting of D is completely determined by the Hilbert
norm residue symbol (%). We easily get (@) =1 for a prime ideal p
of K prime to 2. Therefore if 2 does not split in K, we obtain D = My(K) by
the product formula of the norm residue symbol. From now on we suppose
that 2 splits in K. Let p be a prime ideal of K over 2. We seek a condition
for (%) = —1. Since the localization of K with respect to p is Qo, we
have (@) = —1lifand only if p; = —p; (i =1,2).

1) If G(k/K)y) is the quaternion group, then the G(k/K;) are cyclic and
this implies x(£;) = —1 (i = 1,2). Therefore if p; = —p;, then (%) =1(@G=
1,2), which contradicts the assumption (x) (see [R-R)).

2) If G(k/Ky) is dihedral, then G(k/Ky) has a unique cyclic subgroup
of order 4. Assume that the G(k/K;) (i = 1,2) are not cyclic. Then we have
x(£;) = 1. Consequently, (%) = —1 if and only if (%1) = (%2) = -1

Since (pl”fpz) = 1 for all places p of K, there exist a, b, ¢ (# 0) in K
satisfying

a® = p1b* + pac®.
Put x = /a+0b,/p1 and k = H(z). Then k/Ky is Galois, G(k/Kj) is
dihedral and G(k/Ko(\/p;)) (i = 1,2) is not cyclic (cf. [Se], 1.2). For exam-
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ple, take p1 = 5, po = 17, ¢ = 3. Then h = 12 and 2 splits in K. Since

q

(&) = —1 (i =1,2), we see that R is a division quaternion algebra over a

field Z of degree 3 over K.

[Se]
[S1]

[S2]

(W]

References

J. P. Buhler and B. H. Gross, Arithmetic on elliptic curves with complexr multi-
plication. II, Invent. Math. 79 (1985), 11-29.

C. Goldstein et N. Schappacher, Séries d’Eisenstein et fonctions L de courbes
elliptiques o multiplication complexe, J. Reine Angew. Math. 327 (1981), 184—
218.

B. H. Gross, Arithmetic on Elliptic Curves with Complex Multiplication, Lecture
Notes in Math. 776, Springer, 1980.

L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der
Klassengruppe eines beliebigen quadratischen Zahlkorpers, J. Reine Angew.
Math. 170 (1934), 69-74.

J.-P. Serre, Topics in Galois Theory, Jones and Bartlett, Boston, 1993.

G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions,
Iwanami Shoten and Princeton Univ. Press, 1971.

—, On the zeta function of an abelian variety with complex multiplication, Ann.
of Math. 94 (1971), 504-533.

L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1980.

Mathematical Institute

Tohoku University

Sendai 980-8578, Japan

E-mail: nakamura@math.tohoku.ac.jp

Received on 28.5.1999
and in revised form on 3.7.2000 (3608)



