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On abelian varieties associated with elliptic curves
with complex multiplication
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Tetsuo Nakamura (Sendai)

1. Introduction. Let K be an imaginary quadratic field and H the
Hilbert class field of K. Let E be an elliptic curve over H with complex
multiplication by K. We suppose that E is a K-curve, that is, for each
σ ∈ Gal(H/K), Eσ and E are H-isogenous. We denote by B = RH/K(E)
the abelian variety over K which is obtained from E by restriction of scalars.
We will show that one of the following three cases holds (see Theorem 3):

(i) B is a simple CM-type abelian variety over K.
(ii) B is isogenous to a product A× . . .×A of a simple non-CM abelian

variety A such that EndKA⊗Q is commutative.
(iii) B is isogenous to a product A× . . .×A of a simple non-CM abelian

variety A such that EndKA⊗Q is a division quaternion algebra.

Some examples of these cases are discussed in Section 4. In [B-Gr] and
[Gr], Q-curves are treated under the assumption that the class number h
of K is odd. Such a curve E is a K-curve satisfying the condition: Eτ and
E are H-isogenous, where τ is the complex conjugation. In this case, it is
shown that B is a simple CM-type abelian variety (see [Gr], § 15).

Throughout the paper elliptic curves have complex multiplication by K
and the following notation is used:

• K — an imaginary quadratic field,
• Cl(K) — the ideal class group of K,
• h — the class number of K,
• H — the Hilbert class field of K,
• G(L/k) — the Galois group of a Galois extension L/k,
• Ik, Ck — the idele group and the idele class group of a number field k,
• Rk/M (E) — the abelian variety over M which is obtained from an

elliptic curve E over k by restriction of scalars to M .
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2. K-curves and descending characters. LetM be a finite extension
of K and L be a finite Galois extension of M . Let E be an elliptic curve over
L with complex multiplication by K. Denote by J the set of σ ∈ G(L/M)
such that Eσ is isogenous to E over L. Clearly J is a subgroup of G(L/M)
and we obtain (cf. [Gr], Chap. 4)

dimK EndMRL/M (E)⊗Q = |J |.
Definition. 1. If J = G(L/M), then we call E an M -curve.
2. Let ψE be the Hecke character of an elliptic curve E over L. If there

exists a Hecke character φ of M such that ψE = φ ◦NL/M , we say that ψE
descends to M or simply that E has an M -character φ.

Remark. 1. The following fact is well known: ψE descends to M if and
only if all the points of E of finite order are rational over M abL, where Mab

is the maximal abelian extension of M (see [S1], Theorem 7.44).
2. For an elliptic curve E over H there exists an elliptic curve E0 over

H such that jE = jE0 and E0 has a K-character (see [S2], Prop. 5, p. 525).

Theorem 1. Let E, L, M be as above and assume that L is abelian
over M . Then the following conditions are equivalent :

(i) L(Etors) is an abelian extension of M .
(ii) The abelian variety B = RL/M (E) has complex multiplication over

M in the sense that

EndMB ⊗Q ∼=
r∏

i=1

Ti

where Ti (i = 1, . . . , r) are (CM) fields over K such that
∑

i

[Ti : K] = [L : M ] (= dimB).

(iii) E has an M -character.

In case K = M , the theorem is Théorème 4.1 in [G-Sch] and since our
assertion is proved similarly, we omit its proof. If L = H, we have the
following:

Theorem 2. Let M be a subfield of H containing K. If E is an elliptic
curve over H with an M -character , then B = RH/M (E) is a simple CM
type abelian variety over M , which means that EndM B ⊗ Q is a field over
K of degree [H : M ].

Proof. Since R = EndK B ⊗Q is commutative by Theorem 1, it suffices
to show that R is a field of degree [H : M ] over K. If M = K and h is odd,
the proof is given in [Gr], Chap. 4. Our proof proceeds similarly. Let Y be
the subgroup of Cl(K) corresponding to M . Let a be an integral ideal in Y .
One can associate with a an M -endomorphism t(a) of B with the following
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property: If an ∼ 1, then t(a)n ∈ K and an = (t(a)n) (see [Gr], Chap. 4). For
a prime number p, let Yp be the p-Sylow subgroup of Y and put pr = |Yp|. For
a set of independent generators a1, . . . , as for Yp, let Xp be the subgroup of
K×/K×p

r

generated by {t(ai)p
r | 1 ≤ i ≤ s}. Then Yp is isomorphic to Xp.

Let Tp = K({t(ai) | 1 ≤ i ≤ s}). It suffices to show that Tp is a field over K
of degree pr, because we then have dimK R = dimK

∏
p Tp. Write µ(pr) for

the group of prth roots of unity and put K ′ = K(µ(pr)). Now we use the
following lemma which follows from [W], Lemma 13.27.

Lemma 1. If p is odd , then H1(G(K ′/K), µ(pr)) = (0). If p = 2, then
H1(G(K ′/K(

√
−1)), µ(pr)) = (0).

If p is odd, then K×/K×p
r → K ′×/K ′×p

r

is injective by Lemma 1. Since
K ′ Tp is a Kummer extension of K ′ corresponding to the subgroup Xp, it
follows that Tp is a field over K of degree pr. Now assume p = 2. It suffices
to consider the case when h > 1 and the exponent of the group Y2 is greater
than 2. Then K(

√
−1) (= K1 say) 6= K and µ(4) = µ(2r)G(K/K1). In the

restriction inflation sequence

0→ H1(G(K1/K), µ(4)) (∼= Z/2Z) i→ K×/K×2r → K×1 /K
×2r
1

the image of i corresponds to the extension K1/K. From this we see that
T2 is a field over K of degree 2r, since K×1 /K

×2r
1 → K ′×/K ′×2r is injective

by Lemma 1. This completes the proof of Theorem 2.

3. The abelian variety RH/K(E)

Lemma 2. Let M be a subfield of H containing K. Let E0 be an elliptic
curve over H with an M -character. Let E be a twist of E0 corresponding
to a quadratic extension k/H. Then

(i) E is an M -curve if and only if k/M is Galois.
(ii) E has an M -character if and only if k/M is abelian.

Proof. Let ψ0, ψ be Hecke characters of E0, E, respectively. Then by
[Gr], Lemma 9.2.5, we have ψ = ψ0 ·χ, where χ : IH → {±1} is the character
associated with the extension k/H.

(i) E is an M -curve if and only if ψσ = ψ (σ ∈ G(H/M)) (see [Gr],
§11). Our assertion follows from the equivalence of the following assertions:

(1) ψσ = ψ (σ ∈ G(H/M)).
(2) χσ = χ (σ ∈ G(H/M)).
(3) Kerχ is G(H/M)-stable.
(4) k/M is Galois.

(ii) If k/M is abelian, our assertion is clear by Theorem 1, sinceRk/M (E0)
∼= Rk/M (E). Now assume that ψ descends to M . Then ψ = φ ◦NH/M and
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ψ0 = φ0 ◦ NH/M , where φ and φ0 are characters of IM . As E0 and E are
isomorphic over k, φ and φ0 coincide on the norm subgroup Pk = Nk/M (Ck)
of CM . Since χ is non-trivial, φ and φ0 differ on PH = NH/M (CH) (⊃ Pk).
This implies that PH 6= Pk, which shows that k/M is abelian.

Theorem 3. Let E be a K-curve over H and put B = RH/K(E) and
R = EndK B ⊗ Q. If E has a K-character , R is a field of degree h over
K. If E has no K-characters, then the center Z of R is a field of degree h0

over K with h = 22mh0 (m ≥ 1) and one of the following two cases holds:

(i) R ∼= M2m(Z). In this case, B is isogenous over K to a product of
A with itself 2m times, where A is K-simple, 2mh0-dimensional and Z =
EndK A⊗Q.

(ii) R ∼= M2m−1(D), where D is a division quaternion algebra over Z. In
this case, B is isogenous over K to a product of A with itself 2m−1 times,
where A is K-simple, 2m+1h0-dimensional and D = EndK A⊗Q.

Proof. Choose an elliptic curve E0 over H with a K-character such that
jE = jE0 (see Remark 2). If E and E0 are isomorphic over H, our assertion
follows from Theorem 2. Assume that E and E0 are not isomorphic over H.
Since it suffices to consider the case h > 1, there exists a unique quadratic
extension k of H such that E and E0 are isomorphic over k. Then k/K is
Galois by Lemma 2 and we have an exact sequence

1→ G(k/H) (∼= {±1})→ G(k/K)→ G(H/K) (∼= Cl(K))→ 1.

Lemma 3. Let C be the center of G = G(k/K). Then C contains
G(k/H) and G/C is an elementary abelian group of order 22m (m ≥ 0)
with 2m ≤ dimCl(K)⊗F2. If G is non-commutative, there exist x1, . . . , xm,
y1, . . . , ym ∈ G which induce a basis of G/C and satisfy the following com-
mutator relations:

[xi, yi] = −1, [xi, xj ] = [yi, yj ] = [xi, yj ] = 1 (i 6= j).

Proof of Lemma 3. Since the commutator map

G×G 3 (x, y)→ [x, y] ∈ {±1}
induces a non-degenerate alternating form on G/C × G/C, our assertion
follows easily.

If E has a K-character, then R = EndK(RH/K(E)) ⊗ Q is a field of
degree h over K by Theorem 2. Now we assume that E is a K-curve but has
no K-characters, which means that G is non-commutative by Lemma 2. Let
m ≥ 1 be as in Lemma 3 and put h0 = h/22m = |C/{±1}|. Write M0 and
Mi for the subfields of H corresponding to C and 〈xi, yi, C〉, respectively.
As G(k/M0) = C is commutative, we see that E has an M0-character by
Lemma 2 and Z = EndM0(RH/M0(E)) ⊗ Q is a field over K of degree h0
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by Theorem 2. On the other hand as G(k/Mi) is non-commutative, E has
no Mi-characters by Lemma 2. Then by taking L = H in Theorem 1, we
see that Di = EndMi(RH/Mi

(E)) ⊗ Q is not a direct product of fields. As
Di is semisimple, this means that Di is a non-commutative subring of R
containing Z. By the map G → G(H/K) ∼= Cl(K), xi and yi determine
elements of Cl(K) and as in the proof of Theorem 2, they correspond to
elements s, t of Di. We see that Di = Z[s, t] and s2, t2 ∈ Z. According
to [Gr], p. 47, st and ts differ by a root of unity in K; we get st = −ts.
Therefore Di is a quaternion algebra over Z. For j 6= i, we also have

Dj = EndMj (RH/Mj
(E))⊗Q = Z[s′, t′]

where s′, t′ are elements ofDj corresponding to xj , yj , respectively. LetN be
the subfield of H corresponding to 〈xi, xj , C〉. Since 〈xi, xj , C〉 is commuta-
tive, E has an N -character by Lemma 2, so that D′ = EndN (RH/N (E))⊗Q
is a field by Theorem 2. As s, s′ ∈ D′ ⊂ R, we have ss′ = s′s. The same ar-
guments show that elements of Di commute with those of Dj . Consequently,
Di ·Dj = Di ⊗Z Dj in R and in particular

R = D1 ⊗Z . . .⊗Z Dm.

In the Brauer group, the class to which R belongs is a product of quaternion
algebras; this implies that R ∼= M2m(Z) or R ∼= M2m−1(D), where D is a
division quaternion algebra over Z. This completes the proof of Theorem 3.

Corollary 1. If the 2-Sylow subgroup of Cl(K) is cyclic, i.e., if the
discriminant of K is divisible by at most two distinct primes, then every
K-curve over H has a K-character.

Proof. The inequality 2m ≤ dimCl(K) ⊗ F2 in Lemma 3 implies that
G(k/K) is commutative. Our assertion follows immediately from Lemma 2.

4. Examples. We are going to discuss examples which show that both
cases (i) and (ii) of Theorem 3 are possible.

Let p1, p2 and q be three rational primes such that

p1 ≡ p2 ≡ 1 mod 4, q ≡ 3 mod 4.

The imaginary quadratic field K = Q(
√−p1p2q) has discriminant −p1p2q.

Let q be the prime ideal of K with q2 = (q) and
(
α
q

)
denote the quadratic

residue symbol mod q. Let φ0 be a Hecke character of K such that for any
principal ideal (α) of K prime to q,

φ0((α)) =
(
α

q

)
α.

There are h such characters (see [S2], p. 527, Example 3). We assume that

(∗) the 2-Sylow subgroup of Cl(K) is isomorphic to Z/2Z× Z/2Z.
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Let K0 be the subfield of H over K such that G(H/K0) ∼= Z/2Z × Z/2Z
and put Ki = K0(

√
pi) (i = 1, 2). Let k be a quadratic extension of H such

that k/K is Galois with non-commutative Galois group. Then G(k/K0) is
of order 8 and is isomorphic to either the quaternion group or the dihedral
group. Let E0 be an elliptic curve over H which corresponds to the Hecke
character ψ0 = φ0◦NH/K . We write E for a twist of E0 with respect to k/H,
so that the Hecke character of E overH is ψ = ψ0·χ, where χ is the character
defined as in the proof of Lemma 2. If we put D = EndK0(RH/K0(E))⊗Q,
then we see that

R = EndK(RH/K(E))⊗Q = Z ⊗K D,

where Z is the center of R. For the prime ideal pi of K with p2
i = (pi) (i =

1, 2), choose prime ideals li of K such that pi and li belong to the same class
in Cl(K) and the li are unramified in k/K. Let L1 be a prime ideal of H
lying over l1. The decomposition field Z1 of L1 is of index 2 in H. As k/Z1

is abelian, there exists a Z1-character ψ1 such that ψ = ψ1 ◦NH/Z1 . Let L1

be the restriction of L1 to Z1. Then ψ(L1) = ψ1(L2
1) and

ψ(L1) = ψ0(L1)χ(L1) = φ0(l21)χ(L1)

where χ(L1) = ±1 and φ0(l21) =
(
p1
q

)
p1a

2
1 with l1 = a1p1 (a1 ∈ K×). Now let

ψ1(L1) be an element of EndZ1(RH/Z1(E)) ⊂ D satisfying ψ1(L1)2 = ψ(L1).
A similar argument also holds for l2. Therefore D is a quaternion algebra
over K generated by t1 and t2 with t2i = p̂i = ±pi (i = 1, 2) and t1t2 = −t2t1.
This implies that the splitting of D is completely determined by the Hilbert
norm residue symbol

(
p̂1, p̂2

p

)
. We easily get

(
p̂1, p̂2

p

)
= 1 for a prime ideal p

of K prime to 2. Therefore if 2 does not split in K, we obtain D ∼= M2(K) by
the product formula of the norm residue symbol. From now on we suppose
that 2 splits in K. Let p be a prime ideal of K over 2. We seek a condition
for

(
p̂1, p̂2

p

)
= −1. Since the localization of K with respect to p is Q2, we

have
(
p̂1, p̂2

p

)
= −1 if and only if p̂i = −pi (i = 1, 2).

1) If G(k/K0) is the quaternion group, then the G(k/Ki) are cyclic and
this implies χ(Li) = −1 (i = 1, 2). Therefore if p̂i = −pi, then

(
pi
q

)
= 1 (i =

1, 2), which contradicts the assumption (∗) (see [R-R]).
2) If G(k/K0) is dihedral, then G(k/K0) has a unique cyclic subgroup

of order 4. Assume that the G(k/Ki) (i = 1, 2) are not cyclic. Then we have
χ(Li) = 1. Consequently,

(
p̂1, p̂2

p

)
= −1 if and only if

(
p1
q

)
=
(
p2
q

)
= −1.

Since
(
p1, p2

p

)
= 1 for all places p of K, there exist a, b, c (6= 0) in K

satisfying
a2 = p1b

2 + p2c
2.

Put x =
√
a+ b

√
p1 and k = H(x). Then k/K0 is Galois, G(k/K0) is

dihedral and G(k/K0(
√
pi)) (i = 1, 2) is not cyclic (cf. [Se], 1.2). For exam-
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ple, take p1 = 5, p2 = 17, q = 3. Then h = 12 and 2 splits in K. Since(
pi
q

)
= −1 (i = 1, 2), we see that R is a division quaternion algebra over a

field Z of degree 3 over K.
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