On abelian varieties associated with elliptic curves with complex multiplication

by
Tetsuo Nakamura (Sendai)

1. Introduction. Let K be an imaginary quadratic field and H the Hilbert class field of K. Let E be an elliptic curve over H with complex multiplication by K. We suppose that E is a K-curve, that is, for each $\sigma \in \operatorname{Gal}(H / K), E^{\sigma}$ and E are H-isogenous. We denote by $B=R_{H / K}(E)$ the abelian variety over K which is obtained from E by restriction of scalars. We will show that one of the following three cases holds (see Theorem 3):
(i) B is a simple CM-type abelian variety over K.
(ii) B is isogenous to a product $A \times \ldots \times A$ of a simple non-CM abelian variety A such that $\operatorname{End}_{K} A \otimes \mathbb{Q}$ is commutative.
(iii) B is isogenous to a product $A \times \ldots \times A$ of a simple non-CM abelian variety A such that $\operatorname{End}_{K} A \otimes \mathbb{Q}$ is a division quaternion algebra.

Some examples of these cases are discussed in Section 4. In [B-Gr] and [Gr], \mathbb{Q}-curves are treated under the assumption that the class number h of K is odd. Such a curve E is a K-curve satisfying the condition: E^{τ} and E are H-isogenous, where τ is the complex conjugation. In this case, it is shown that B is a simple CM-type abelian variety (see [Gr], $\S 15$).

Throughout the paper elliptic curves have complex multiplication by K and the following notation is used:

- K - an imaginary quadratic field,
- $C l(K)$ - the ideal class group of K,
- h - the class number of K,
- H - the Hilbert class field of K,
- $G(L / k)$ - the Galois group of a Galois extension L / k,
- I_{k}, C_{k} - the idele group and the idele class group of a number field k,
- $R_{k / M}(E)$ - the abelian variety over M which is obtained from an elliptic curve E over k by restriction of scalars to M.

[^0]2. K-curves and descending characters. Let M be a finite extension of K and L be a finite Galois extension of M. Let E be an elliptic curve over L with complex multiplication by K. Denote by J the set of $\sigma \in G(L / M)$ such that E^{σ} is isogenous to E over L. Clearly J is a subgroup of $G(L / M)$ and we obtain (cf. [Gr], Chap. 4)
$$
\operatorname{dim}_{K} \operatorname{End}_{M} R_{L / M}(E) \otimes \mathbb{Q}=|J|
$$

Definition. 1. If $J=G(L / M)$, then we call E an M-curve.
2. Let ψ_{E} be the Hecke character of an elliptic curve E over L. If there exists a Hecke character ϕ of M such that $\psi_{E}=\phi \circ N_{L / M}$, we say that ψ_{E} descends to M or simply that E has an M-character ϕ.

Remark. 1. The following fact is well known: ψ_{E} descends to M if and only if all the points of E of finite order are rational over $M^{\mathrm{ab}} L$, where $M^{\text {ab }}$ is the maximal abelian extension of M (see [S1], Theorem 7.44).
2. For an elliptic curve E over H there exists an elliptic curve E_{0} over H such that $j_{E}=j_{E_{0}}$ and E_{0} has a K-character (see [S2], Prop. 5, p. 525).

Theorem 1. Let E, L, M be as above and assume that L is abelian over M. Then the following conditions are equivalent:
(i) $L\left(E_{\text {tors }}\right)$ is an abelian extension of M.
(ii) The abelian variety $B=R_{L / M}(E)$ has complex multiplication over M in the sense that

$$
\operatorname{End}_{M} B \otimes \mathbb{Q} \cong \prod_{i=1}^{r} T_{i}
$$

where $T_{i}(i=1, \ldots, r)$ are $(C M)$ fields over K such that

$$
\sum_{i}\left[T_{i}: K\right]=[L: M](=\operatorname{dim} B)
$$

(iii) E has an M-character.

In case $K=M$, the theorem is Théorème 4.1 in [G-Sch] and since our assertion is proved similarly, we omit its proof. If $L=H$, we have the following:

Theorem 2. Let M be a subfield of H containing K. If E is an elliptic curve over H with an M-character, then $B=R_{H / M}(E)$ is a simple $C M$ type abelian variety over M, which means that $\operatorname{End}_{M} B \otimes \mathbb{Q}$ is a field over K of degree $[H: M]$.

Proof. Since $R=\operatorname{End}_{K} B \otimes \mathbb{Q}$ is commutative by Theorem 1, it suffices to show that R is a field of degree $[H: M]$ over K. If $M=K$ and h is odd, the proof is given in [Gr], Chap. 4. Our proof proceeds similarly. Let Y be the subgroup of $C l(K)$ corresponding to M. Let \mathfrak{a} be an integral ideal in Y. One can associate with \mathfrak{a} an M-endomorphism $t(\mathfrak{a})$ of B with the following
property: If $\mathfrak{a}^{n} \sim 1$, then $t(\mathfrak{a})^{n} \in K$ and $\mathfrak{a}^{n}=\left(t(\mathfrak{a})^{n}\right)$ (see [Gr], Chap. 4). For a prime number p, let Y_{p} be the p-Sylow subgroup of Y and put $p^{r}=\left|Y_{p}\right|$. For a set of independent generators $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{s}$ for Y_{p}, let X_{p} be the subgroup of $K^{\times} / K^{\times p^{r}}$ generated by $\left\{t\left(\mathfrak{a}_{i}\right)^{p^{r}} \mid 1 \leq i \leq s\right\}$. Then Y_{p} is isomorphic to X_{p}. Let $T_{p}=K\left(\left\{t\left(\mathfrak{a}_{i}\right) \mid 1 \leq i \leq s\right\}\right)$. It suffices to show that T_{p} is a field over K of degree p^{r}, because we then have $\operatorname{dim}_{K} R=\operatorname{dim}_{K} \prod_{p} T_{p}$. Write $\mu\left(p^{r}\right)$ for the group of p^{r} th roots of unity and put $K^{\prime}=K\left(\mu\left(p^{r}\right)\right)$. Now we use the following lemma which follows from [W], Lemma 13.27.

Lemma 1. If p is odd, then $H^{1}\left(G\left(K^{\prime} / K\right), \mu\left(p^{r}\right)\right)=(0)$. If $p=2$, then $H^{1}\left(G\left(K^{\prime} / K(\sqrt{-1})\right), \mu\left(p^{r}\right)\right)=(0)$.

If p is odd, then $K^{\times} / K^{\times p^{r}} \rightarrow K^{\prime \times} / K^{\prime \times p^{r}}$ is injective by Lemma 1. Since $K^{\prime} T_{p}$ is a Kummer extension of K^{\prime} corresponding to the subgroup X_{p}, it follows that T_{p} is a field over K of degree p^{r}. Now assume $p=2$. It suffices to consider the case when $h>1$ and the exponent of the group Y_{2} is greater than 2. Then $K(\sqrt{-1})\left(=K_{1}\right.$ say $) \neq K$ and $\mu(4)=\mu\left(2^{r}\right)^{G\left(\bar{K} / K_{1}\right)}$. In the restriction inflation sequence

$$
0 \rightarrow H^{1}\left(G\left(K_{1} / K\right), \mu(4)\right)(\cong \mathbb{Z} / 2 \mathbb{Z}) \xrightarrow{i} K^{\times} / K^{\times 2^{r}} \rightarrow K_{1}^{\times} / K_{1}^{\times 2^{r}}
$$

the image of i corresponds to the extension K_{1} / K. From this we see that T_{2} is a field over K of degree 2^{r}, since $K_{1}^{\times} / K_{1}^{\times 2^{r}} \rightarrow K^{\prime \times} / K^{\prime \times 2^{r}}$ is injective by Lemma 1 . This completes the proof of Theorem 2.

3. The abelian variety $R_{H / K}(E)$

Lemma 2. Let M be a subfield of H containing K. Let E_{0} be an elliptic curve over H with an M-character. Let E be a twist of E_{0} corresponding to a quadratic extension k / H. Then
(i) E is an M-curve if and only if k / M is Galois.
(ii) E has an M-character if and only if k / M is abelian.

Proof. Let ψ_{0}, ψ be Hecke characters of E_{0}, E, respectively. Then by [Gr], Lemma 9.2.5, we have $\psi=\psi_{0} \cdot \chi$, where $\chi: I_{H} \rightarrow\{ \pm 1\}$ is the character associated with the extension k / H.
(i) E is an M-curve if and only if $\psi^{\sigma}=\psi(\sigma \in G(H / M))$ (see [Gr], §11). Our assertion follows from the equivalence of the following assertions:
(1) $\psi^{\sigma}=\psi(\sigma \in G(H / M))$.
(2) $\chi^{\sigma}=\chi(\sigma \in G(H / M))$.
(3) $\operatorname{Ker} \chi$ is $G(H / M)$-stable.
(4) k / M is Galois.
(ii) If k / M is abelian, our assertion is clear by Theorem 1 , since $R_{k / M}\left(E_{0}\right)$ $\cong R_{k / M}(E)$. Now assume that ψ descends to M. Then $\psi=\phi \circ N_{H / M}$ and
$\psi_{0}=\phi_{0} \circ N_{H / M}$, where ϕ and ϕ_{0} are characters of I_{M}. As E_{0} and E are isomorphic over k, ϕ and ϕ_{0} coincide on the norm subgroup $P_{k}=N_{k / M}\left(C_{k}\right)$ of C_{M}. Since χ is non-trivial, ϕ and ϕ_{0} differ on $P_{H}=N_{H / M}\left(C_{H}\right)\left(\supset P_{k}\right)$. This implies that $P_{H} \neq P_{k}$, which shows that k / M is abelian.

Theorem 3. Let E be a K-curve over H and put $B=R_{H / K}(E)$ and $R=\operatorname{End}_{K} B \otimes \mathbb{Q}$. If E has a K-character, R is a field of degree h over K. If E has no K-characters, then the center Z of R is a field of degree h_{0} over K with $h=2^{2 m} h_{0}(m \geq 1)$ and one of the following two cases holds:
(i) $R \cong \mathrm{M}_{2^{m}}(Z)$. In this case, B is isogenous over K to a product of A with itself 2^{m} times, where A is K-simple, $2^{m} h_{0}$-dimensional and $Z=$ $\operatorname{End}_{K} A \otimes \mathbb{Q}$.
(ii) $R \cong \mathrm{M}_{2^{m-1}}(D)$, where D is a division quaternion algebra over Z. In this case, B is isogenous over K to a product of A with itself 2^{m-1} times, where A is K-simple, $2^{m+1} h_{0}$-dimensional and $D=\operatorname{End}_{K} A \otimes \mathbb{Q}$.

Proof. Choose an elliptic curve E_{0} over H with a K-character such that $j_{E}=j_{E_{0}}$ (see Remark 2). If E and E_{0} are isomorphic over H, our assertion follows from Theorem 2. Assume that E and E_{0} are not isomorphic over H. Since it suffices to consider the case $h>1$, there exists a unique quadratic extension k of H such that E and E_{0} are isomorphic over k. Then k / K is Galois by Lemma 2 and we have an exact sequence

$$
1 \rightarrow G(k / H)(\cong\{ \pm 1\}) \rightarrow G(k / K) \rightarrow G(H / K)(\cong C l(K)) \rightarrow 1 .
$$

Lemma 3. Let C be the center of $G=G(k / K)$. Then C contains $G(k / H)$ and G / C is an elementary abelian group of order $2^{2 m}(m \geq 0)$ with $2 m \leq \operatorname{dim} C l(K) \otimes \mathbb{F}_{2}$. If G is non-commutative, there exist x_{1}, \ldots, x_{m}, $y_{1}, \ldots, y_{m} \in G$ which induce a basis of G / C and satisfy the following commutator relations:

$$
\left[x_{i}, y_{i}\right]=-1, \quad\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=\left[x_{i}, y_{j}\right]=1 \quad(i \neq j) .
$$

Proof of Lemma 3. Since the commutator map

$$
G \times G \ni(x, y) \rightarrow[x, y] \in\{ \pm 1\}
$$

induces a non-degenerate alternating form on $G / C \times G / C$, our assertion follows easily.

If E has a K-character, then $R=\operatorname{End}_{K}\left(R_{H / K}(E)\right) \otimes \mathbb{Q}$ is a field of degree h over K by Theorem 2 . Now we assume that E is a K-curve but has no K-characters, which means that G is non-commutative by Lemma 2 . Let $m \geq 1$ be as in Lemma 3 and put $h_{0}=h / 2^{2 m}=|C /\{ \pm 1\}|$. Write M_{0} and M_{i} for the subfields of H corresponding to C and $\left\langle x_{i}, y_{i}, C\right\rangle$, respectively. As $G\left(k / M_{0}\right)=C$ is commutative, we see that E has an M_{0}-character by Lemma 2 and $Z=\operatorname{End}_{M_{0}}\left(R_{H / M_{0}}(E)\right) \otimes \mathbb{Q}$ is a field over K of degree h_{0}
by Theorem 2. On the other hand as $G\left(k / M_{i}\right)$ is non-commutative, E has no M_{i}-characters by Lemma 2 . Then by taking $L=H$ in Theorem 1, we see that $D_{i}=\operatorname{End}_{M_{i}}\left(R_{H / M_{i}}(E)\right) \otimes \mathbb{Q}$ is not a direct product of fields. As D_{i} is semisimple, this means that D_{i} is a non-commutative subring of R containing Z. By the map $G \rightarrow G(H / K) \cong C l(K), x_{i}$ and y_{i} determine elements of $C l(K)$ and as in the proof of Theorem 2, they correspond to elements s, t of D_{i}. We see that $D_{i}=Z[s, t]$ and $s^{2}, t^{2} \in Z$. According to $[\mathrm{Gr}]$, p. 47 , st and $t s$ differ by a root of unity in K; we get $s t=-t s$. Therefore D_{i} is a quaternion algebra over Z. For $j \neq i$, we also have

$$
D_{j}=\operatorname{End}_{M_{j}}\left(R_{H / M_{j}}(E)\right) \otimes \mathbb{Q}=Z\left[s^{\prime}, t^{\prime}\right]
$$

where s^{\prime}, t^{\prime} are elements of D_{j} corresponding to x_{j}, y_{j}, respectively. Let N be the subfield of H corresponding to $\left\langle x_{i}, x_{j}, C\right\rangle$. Since $\left\langle x_{i}, x_{j}, C\right\rangle$ is commutative, E has an N-character by Lemma 2 , so that $D^{\prime}=\operatorname{End}_{N}\left(R_{H / N}(E)\right) \otimes \mathbb{Q}$ is a field by Theorem 2. As $s, s^{\prime} \in D^{\prime} \subset R$, we have $s s^{\prime}=s^{\prime} s$. The same arguments show that elements of D_{i} commute with those of D_{j}. Consequently, $D_{i} \cdot D_{j}=D_{i} \otimes_{Z} D_{j}$ in R and in particular

$$
R=D_{1} \otimes_{Z} \cdots \otimes_{Z} D_{m} .
$$

In the Brauer group, the class to which R belongs is a product of quaternion algebras; this implies that $R \cong \mathrm{M}_{2^{m}}(Z)$ or $R \cong \mathrm{M}_{2^{m-1}}(D)$, where D is a division quaternion algebra over Z. This completes the proof of Theorem 3.

Corollary 1. If the 2-Sylow subgroup of $\mathrm{Cl}(\mathrm{K})$ is cyclic, i.e., if the discriminant of K is divisible by at most two distinct primes, then every K-curve over H has a K-character.

Proof. The inequality $2 m \leq \operatorname{dim} C l(K) \otimes \mathbb{F}_{2}$ in Lemma 3 implies that $G(k / K)$ is commutative. Our assertion follows immediately from Lemma 2.
4. Examples. We are going to discuss examples which show that both cases (i) and (ii) of Theorem 3 are possible.

Let p_{1}, p_{2} and q be three rational primes such that

$$
p_{1} \equiv p_{2} \equiv 1 \bmod 4, \quad q \equiv 3 \bmod 4
$$

The imaginary quadratic field $K=\mathbb{Q}\left(\sqrt{-p_{1} p_{2} q}\right)$ has discriminant $-p_{1} p_{2} q$. Let \mathfrak{q} be the prime ideal of K with $\mathfrak{q}^{2}=(q)$ and $\left(\frac{\alpha}{\mathfrak{q}}\right)$ denote the quadratic residue symbol $\bmod \mathfrak{q}$. Let ϕ_{0} be a Hecke character of K such that for any principal ideal (α) of K prime to \mathfrak{q},

$$
\phi_{0}((\alpha))=\left(\frac{\alpha}{\mathfrak{q}}\right) \alpha .
$$

There are h such characters (see [S2], p. 527, Example 3). We assume that
$(*)$ the 2-Sylow subgroup of $C l(K)$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Let K_{0} be the subfield of H over K such that $G\left(H / K_{0}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and put $K_{i}=K_{0}\left(\sqrt{p_{i}}\right)(i=1,2)$. Let k be a quadratic extension of H such that k / K is Galois with non-commutative Galois group. Then $G\left(k / K_{0}\right)$ is of order 8 and is isomorphic to either the quaternion group or the dihedral group. Let E_{0} be an elliptic curve over H which corresponds to the Hecke character $\psi_{0}=\phi_{0} \circ N_{H / K}$. We write E for a twist of E_{0} with respect to k / H, so that the Hecke character of E over H is $\psi=\psi_{0} \cdot \chi$, where χ is the character defined as in the proof of Lemma 2. If we put $D=\operatorname{End}_{K_{0}}\left(R_{H / K_{0}}(E)\right) \otimes \mathbb{Q}$, then we see that

$$
R=\operatorname{End}_{K}\left(R_{H / K}(E)\right) \otimes \mathbb{Q}=Z \otimes_{K} D
$$

where Z is the center of R. For the prime ideal \mathfrak{p}_{i} of K with $\mathfrak{p}_{i}^{2}=\left(p_{i}\right)(i=$ $1,2)$, choose prime ideals \mathfrak{l}_{i} of K such that \mathfrak{p}_{i} and \mathfrak{l}_{i} belong to the same class in $C l(K)$ and the \mathfrak{l}_{i} are unramified in k / K. Let \mathfrak{L}_{1} be a prime ideal of H lying over \mathfrak{l}_{1}. The decomposition field Z_{1} of \mathfrak{L}_{1} is of index 2 in H. As k / Z_{1} is abelian, there exists a Z_{1}-character ψ_{1} such that $\psi=\psi_{1} \circ N_{H / Z_{1}}$. Let \mathcal{L}_{1} be the restriction of \mathfrak{L}_{1} to Z_{1}. Then $\psi\left(\mathfrak{L}_{1}\right)=\psi_{1}\left(\mathcal{L}_{1}^{2}\right)$ and

$$
\psi\left(\mathfrak{L}_{1}\right)=\psi_{0}\left(\mathfrak{L}_{1}\right) \chi\left(\mathfrak{L}_{1}\right)=\phi_{0}\left(\mathfrak{l}_{1}^{2}\right) \chi\left(\mathfrak{L}_{1}\right)
$$

where $\chi\left(\mathfrak{L}_{1}\right)= \pm 1$ and $\phi_{0}\left(\mathfrak{l}_{1}^{2}\right)=\left(\frac{p_{1}}{q}\right) p_{1} a_{1}^{2}$ with $\mathfrak{l}_{1}=a_{1} \mathfrak{p}_{1}\left(a_{1} \in K^{\times}\right)$. Now let $\psi_{1}\left(\mathcal{L}_{1}\right)$ be an element of $\operatorname{End}_{Z_{1}}\left(R_{H / Z_{1}}(E)\right) \subset D$ satisfying $\psi_{1}\left(\mathcal{L}_{1}\right)^{2}=\psi\left(\mathfrak{L}_{1}\right)$. A similar argument also holds for \mathfrak{l}_{2}. Therefore D is a quaternion algebra over K generated by t_{1} and t_{2} with $t_{i}^{2}=\widehat{p}_{i}= \pm p_{i}(i=1,2)$ and $t_{1} t_{2}=-t_{2} t_{1}$. This implies that the splitting of D is completely determined by the Hilbert norm residue symbol $\left(\frac{\widehat{p}_{1}, \widehat{p}_{2}}{\mathfrak{p}}\right)$. We easily get $\left(\frac{\widehat{p}_{1}, \widehat{p}_{2}}{\mathfrak{p}}\right)=1$ for a prime ideal \mathfrak{p} of K prime to 2 . Therefore if 2 does not split in K, we obtain $D \cong \mathrm{M}_{2}(K)$ by the product formula of the norm residue symbol. From now on we suppose that 2 splits in K. Let \mathfrak{p} be a prime ideal of K over 2 . We seek a condition for $\left(\frac{\widehat{p}_{1}, \widehat{p}_{2}}{\mathfrak{p}}\right)=-1$. Since the localization of K with respect to \mathfrak{p} is \mathbb{Q}_{2}, we have $\left(\frac{\widehat{p}_{1}, \widehat{p}_{2}}{\mathfrak{p}}\right)=-1$ if and only if $\widehat{p}_{i}=-p_{i}(i=1,2)$.

1) If $G\left(k / K_{0}\right)$ is the quaternion group, then the $G\left(k / K_{i}\right)$ are cyclic and this implies $\chi\left(\mathfrak{L}_{i}\right)=-1(i=1,2)$. Therefore if $\widehat{p}_{i}=-p_{i}$, then $\left(\frac{p_{i}}{q}\right)=1(i=$ $1,2)$, which contradicts the assumption $(*)$ (see $[\mathrm{R}-\mathrm{R}]$).
2) If $G\left(k / K_{0}\right)$ is dihedral, then $G\left(k / K_{0}\right)$ has a unique cyclic subgroup of order 4 . Assume that the $G\left(k / K_{i}\right)(i=1,2)$ are not cyclic. Then we have $\chi\left(\mathfrak{L}_{i}\right)=1$. Consequently, $\left(\frac{\widehat{p}_{1}, \widehat{p}_{2}}{\mathfrak{p}}\right)=-1$ if and only if $\left(\frac{p_{1}}{q}\right)=\left(\frac{p_{2}}{q}\right)=-1$.

Since $\left(\frac{p_{1}, p_{2}}{\mathfrak{p}}\right)=1$ for all places \mathfrak{p} of K, there exist $a, b, c(\neq 0)$ in K satisfying

$$
a^{2}=p_{1} b^{2}+p_{2} c^{2}
$$

Put $x=\sqrt{a+b \sqrt{p_{1}}}$ and $k=H(x)$. Then k / K_{0} is Galois, $G\left(k / K_{0}\right)$ is dihedral and $G\left(k / K_{0}\left(\sqrt{p_{i}}\right)\right)(i=1,2)$ is not cyclic (cf. [Se], 1.2). For exam-
ple, take $p_{1}=5, p_{2}=17, q=3$. Then $h=12$ and 2 splits in K. Since $\left(\frac{p_{i}}{q}\right)=-1(i=1,2)$, we see that R is a division quaternion algebra over a field Z of degree 3 over K.

References

[B-Gr] J. P. Buhler and B. H. Gross, Arithmetic on elliptic curves with complex multiplication. II, Invent. Math. 79 (1985), 11-29.
[G-Sch] C. Goldstein et N. Schappacher, Séries d'Eisenstein et fonctions L de courbes elliptiques à multiplication complexe, J. Reine Angew. Math. 327 (1981), 184218.
[Gr] B. H. Gross, Arithmetic on Elliptic Curves with Complex Multiplication, Lecture Notes in Math. 776, Springer, 1980.
[R-R] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1934), 69-74.
[Se] J.-P. Serre, Topics in Galois Theory, Jones and Bartlett, Boston, 1993.
[S1] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971.
[S2] -, On the zeta function of an abelian variety with complex multiplication, Ann. of Math. 94 (1971), 504-533.
[W] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1980.
Mathematical Institute
Tohoku University
Sendai 980-8578, Japan
E-mail: nakamura@math.tohoku.ac.jp

[^0]: 2000 Mathematics Subject Classification: 11G05, 11G10, 11G15.

