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Iwasawa λ3-invariants of certain cubic fields
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Manabu Ozaki (Matsue) and Gen Yamamoto (Tokyo)

1. Introduction. Let l be a prime number and k a finite extension of
Q. We denote by λl(k) (resp. µl(k)) the Iwasawa λ (resp. µ)-invariant of
the cyclotomic Zl-extension k∞/k. If k/Q is an abelian extension, then it
was shown by Ferrero and Washington [FW] that µl(k) = 0 for any prime l.
In [G1], Greenberg conjectured that λl(k) = µl(k) = 0 for any totally real
number field k. For a cyclic l-extension of Q, one can deduce the following
result from [I1] and [I3]:

Theorem A. Let l be an odd prime number and p a prime number which
is congruent to 1 modulo l. Denote by Q(l)(p) the unique subfield of Q(ζp)
with [Q(l)(p) : Q] = l, where ζp is a primitive pth root of unity. If either

l(p−1)/l 6≡ 1 (mod p) or p 6≡ 1 (mod l2),

then λl(Q(l)(p)) = µl(Q(l)(p)) = 0.

The authors of [FKOT] considered the case where l = 3 and both of
the conditions of Theorem A are not satisfied. Put k = Q(3)(p). They have
shown that λ3(k) = µ3(k) = 0 if (EQ1 : Nk1/Q1Ek1) = 9, where k1 (resp. Q1)
is the first layer of the cyclotomic Z3-extension of k (resp. Q), Ek1 (resp.
EQ1) is the unit group of k1 (resp. Q1) and Nk1/Q1 is the norm map from
k1 to Q1.

Recently, Komatsu investigated the field k = Q(3)(73) and proved that
λ3(k) = µ3(k) = 0 (see [K]). (Note that 3(73−1)/3 ≡ 1 (mod 73), 73 ≡ 1
(mod 32) and (EQ1 : Nk1/Q1Ek1) = 3.)

In the present paper, we give simple sufficient conditions on p for
λ3(Q(3)(p)) = µ3(Q(3)(p)) = 0 and verify λ3 = µ3 = 0 for many Q(3)(p)’s
including the case where (EQ1 : Nk1/Q1Ek1) < 9. Specifically, we show that
λ3(Q(3)(p)) = µ3(Q(3)(p)) = 0 for all p < 10000 with p ≡ 1 (mod 3) except
for p = 3907, 7219, 8011, 8677.
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2. Results. Our main criterion for λ3(Q(3)(p)) = µ3(Q(3)(p)) = 0 is the
following:

Theorem 1. Let k = Q(3)(p) be a cubic field with conductor p, where p
is a prime number such that (a) 3(p−1)/3 ≡ 1 (mod p) and (b) p ≡ 1 (mod 9).
Put z = g(p−1)/9 for a primitive root g modulo p. If

(∗)
(

(z2 − 1)(z−2 − 1)
(z − 1)(z−1 − 1)

)(p−1)/3

6≡ 1 (mod p),

then λ3(k) = µ3(k) = 0.

Proof. First, we note that condition (a) holds if and only if 3 is de-
composed in k and that condition (b) holds if and only if p is decomposed
in Q1. Let Q1(p) be the mod p ray class field of Q1 and Q1(p)(3) be the
maximal subextension of Q1(p)/Q1 whose Galois group over Q1 is an ele-
mentary abelian 3-group. Then k1 ⊆ Q1(p)(3) and Q1(p)(3)/k1 is unramified,
because a prime of Q1 lying over p ramifies in k1 and its ramification in-
dex in Q1(p)(3)/Q1 is 3. Denote by Lab(k1) the maximal unramified abelian
3-extension field of k1 which is abelian over Q1. Then Q1(p)(3) ⊆ Lab(k1).
Since Q1 has class number prime to 3 and the ramification index of every
ramified prime in Lab(k1)/Q1 is 3, Lab(k1)/Q1 has no cyclic subextension of
degree 9. Hence Lab(k1)/Q1 is an elementary abelian 3-extension of conduc-
tor p. Therefore Q1(p)(3) = Lab(k1). We put F := Q1(p)(3) = Lab(k1) for
simplicity. For a generator σ of Gal(k1/Q1), Gal(F/k1) ' A(k1)/A(k1)σ−1

by class field theory, where A(k1) stands for the 3-Sylow subgroup of the
ideal class group of k1. Also by class field theory,

(1) Gal(F/Q1) ' (Ip/Sp)/(Ip/Sp)3,

where Ip is the group of the fractional ideals of Q1 which are prime to p, and
Sp = {αOQ1 | α ∈ Q×1 , α ≡ 1 (mod p)} ⊆ Ip, OQ1 being the integer ring of
Q1. Since the class number of Q1 is prime to 3, we get the exact sequence

(2) EQ1 → (OQ1/p)
×/((OQ1/p)

×)3 → (Ip/Sp)/(Ip/Sp)3 → 0,

where EQ1 stands for the unit group of Q1. Because

(OQ1/p)
× '

⊕

p|p
(OQ1/p)× ' (Z/(p− 1)Z)⊕3,

we get the isomorphism

(3) (OQ1/p)
×/((OQ1/p)

×)3
(p−1)/3
∼−→ (OQ1/p)

×(p−1)/3.

Therefore it follows from (1)–(3) that

(4) Gal(F/Q1) ' Coker(EQ1

(p−1)/3−→ (OQ1/p)
×(p−1)/3).
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Since (OQ1/p)
×(p−1)/3 ' ⊕p|p(OQ1/p)×(p−1)/3 ' (Z/3Z)⊕3 we obtain 3-

rank(A(k1)/A(k1)σ−1) = 3-rank(Gal(F/k1)) ≤ 2 by (4).
Let ζ = ζ9 be a primitive 9th root of unity. We put π = (ζ−1)(ζ−1−1).

Then π ∈ Q1 and 3OQ1 = π3OQ1 in Q1. Now we choose γ ∈ Gal(Q1/Q)
such that πγ = (ζ2 − 1)(ζ−2 − 1). If we put

C = 〈πγ−1, πγ(γ−1), πγ
2(γ−1)〉 ⊆ EQ1 ,

then C is a subgroup of the cyclotomic units of Q1 = Q(ζ9)+ whose index is
prime to 3. Since the class number of Q1 is prime to 3, we have 3 - [EQ1 : C].
Therefore

Gal(F/Q1) ' Coker(C
(p−1)/3−→ (OQ1/p)

×(p−1)/3)(5)

= Coker(〈η, ηγ , ηγ2〉 ϕ−→ (OQ1/p)
×(p−1)/3),

by (4), where η = (πγ−1)(p−1)/3 and ϕ is the natural projection map.
From the above isomorphism, we find that 3-rank(A(k1)/A(k1)σ−1) ≤ 1

if and only if Im(ϕ) 6= 0. Also, since π(p−1)/3 · π(p−1)γ/3 · π(p−1)γ2/3 =
3(p−1)/3 ≡ 1 (mod p) from assumption (a), we obtain ηγ = (πγ

2−γ)(p−1)/3 ≡
(π(p−1)/3 ·π(p−1)γ/3)−1 · (π(p−1)γ/3)−1 ≡ (π(p−1)/3)−2γ−1 ≡ (π(p−1)/3)γ−1 =
η (mod p). Hence

(6) ϕ(η) = ϕ(ηγ) = ϕ(ηγ
2
).

We deduce from (5) and (6) that Im(ϕ) 6= 0 is equivalent to η 6≡ 1 (mod p),
and that A(k1)/A(k1)σ−1 6= 0. For z ∈ Z in the statement of the theorem,
there exists a prime ideal P of Q(ζ9) lying above p such that ζ9 ≡ z (mod P).
We denote by p the prime ideal of Q1 below P. Then η 6≡ 1 (mod p) if and
only if condition (∗) holds. If η ≡ 1 (mod p), then η ≡ ηγi ≡ 1 (mod pγ

i

) for
i = 1, 2 by (6), hence η ≡ 1 (mod p). Therefore Im(ϕ) 6= 0 is equivalent to
η 6≡ 1 (mod p), which in turn is equivalent to condition (∗). Consequently,
the three statements: 3-rank(A(k1)/A(k1)σ−1) = 1, Im(ϕ) = 〈η mod p〉 6= 0,
and condition (∗), are equivalent.

Next we show that if (∗) is satisfied, then the natural map D(k1) →
A(k1)/A(k1)σ−1 is a non-zero map, where D(k1) is the subgroup of A(k1)
consisting of the ideal classes which contain a product of prime ideals lying
over 3. One can see that D(k1) → A(k1)/A(k1)σ−1 is a non-zero map if
and only if πOQ1 is not totally decomposed in F/Q1 by the canonical iso-
morphism Gal(F/k1) ' A(k1)/A(k1)σ−1 and the fact that the prime πOQ1

splits in k1. This is equivalent to

π(p−1)/3 mod p 6∈ Im(ϕ),

which in turn is equivalent to

π(p−1)/3 6≡ ηa (mod p) for any a ∈ Z,
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because Im(ϕ) = 〈η mod p〉 by (6). Now we assume that π(p−1)/3 ≡ ηa

(mod p) for some a ∈ Z. Then π(p−1)γ/3 ≡ ηaγ ≡ ηa ≡ π(p−1)/3 (mod p) by
(6), hence

η = π(p−1)(γ−1)/3 ≡ 1 (mod p).

But this contradicts the fact that Im(ϕ) 6= 0, which is equivalent to
assumption (∗). Hence assumption (∗) implies that the map D(k1) →
A(k1)/A(k1)σ−1 is non-zero. Also if condition (∗) holds, thenA(k1)/A(k1)σ−1

' Z/3Z. Hence D(k1) → A(k1)/A(k1)σ−1 is surjective. Since D(k1) is a
Gal(k1/Q1)-submodule of A(k1), the above surjection shows that A(k1) =
D(k1) by Nakayama’s lemma. D(k1) capitulates in kn for sufficiently large
n, since Leopoldt’s conjecture is valid for an abelian number field k (see
[G1] and [B]). Therefore, λ3(k) = µ3(k) = 0 by [O, Theorem], since A(k1)
capitulates in k∞.

Remark. From the above proof, one can find that condition (∗) holds
if and only if A(k1) = D(k1) under assumptions (a) and (b).

In the case where condition (∗) does not hold, we give the following
sufficient condition on p for λ3(Q(3)(p)) = µ3(Q(3)(p)) = 0:

Theorem 2. Let k = Q(3)(p) be a cyclic cubic field with conductor p,
where p is a prime number such that p ≡ 1 (mod 9) and 3(p−1)/3 ≡ 1 (mod p).
Denote by χ a 3-adic Dirichlet character associated with k. Assume that
(

(z2 − 1)(z−2 − 1)
(z − 1)(z−1 − 1)

)(p−1)/3

≡ 1 (mod p),

((z − 1)(z−1 − 1))(p−1)/3 6≡ 1 (mod p),

and that f(T, χ) is irreducible in Z3[χ(Gal(k/Q))][[T ]], where z is as in the
statement of Theorem 1 and f(T, χ) is the Iwasawa power series associated
with the 3-adic L-function L3(s, χ), namely , f(4s − 1, χ) = L3(s, χ) for
s ∈ Z3. Then λ3(k) = µ3(k) = 0.

Proof. Let k∞/k be the cyclotomic Z3-extension, and kn the nth layer
of k∞/k. Denote by A(kn) the 3-Sylow subgroup of the ideal class group
of kn. Put G = Gal(k/Q), Λ = Z3[[Gal(k∞/k)]], X = Gal(L(k∞)/k∞) and
X = Gal(M(k∞)/k∞), where L(k∞)/k∞ and M(k∞)/k∞ are the maximal
unramified pro-3 abelian extension and the maximal 3-ramified pro-3 abelian
extension, respectively. Then X and X are finitely generated torsion Λ[G]-
modules (see [I2]). Let γ̃ ∈ Gal(k∞(ζ3)/k(ζ3)) be such that ζ γ̃ = ζ4 for any
3-power-th root of unity ζ, where ζ3 is a primitive 3rd root of unity, and put
γ = γ̃|k∞ ∈ Gal(k∞/k). In what follows we identify Λ with Z3[[T ]] via the



Iwasawa λ3-invariants 391

correspondence γ ↔ 1 + T . For any Z3[G]-module M , we put

Mχ = M
⊗

Z3[G]

Z3[χ(G)],

where G acts on Z3[χ(G)] via χ.
We now show that Xχ ' X and Xχ ' X. Since the kernel of the map

Z3[G]→ Z3[χ(G)],
∑

agg 7→
∑

agχ(g),

is NGZ3[G] (NG :=
∑
g∈G g), we have Mχ = M/NGM for any Z3[G]-module

M . Because the class number of the nth layer of the cyclotomic Z3-extension
Q∞/Q is prime to 3, NGA(kn) = 0. Hence it follows from X ' lim←−A(kn)
that Xχ ' X (as Λ[G]-modules), where the projective limit is taken with
respect to the norm map. Next we show Xχ ' X. It is enough to prove
XG = 0 since NGX ⊆ XG. Let σ be a generator of G. Then X/(σ − 1)X '
Gal(M(k∞)ab/k∞), where M(k∞)ab is the maximal intermediate field of
M(k∞)/Q∞ which is abelian over Q∞. Let P be a prime of Q∞ lying above
p and IP the inertia subgroup of Gal(M(k∞)ab/Q∞) for P. Then IP ' Z/3Z
and

∑
P|p IP = Gal(M(k∞)ab/Q∞) because Q∞ has no proper 3-ramified

pro-3 abelian extension. Since the number of primes of Q∞ lying above p is
finite, X/Xσ−1 ' Gal(M(k∞)ab/k∞) is finite. From the exact sequence of
Λ-modules

0→ XG → X
σ−1−→ X→ X/Xσ−1 → 0,

it follows that charΛ(XG) = charΛ(X/Xσ−1) = Λ, where charΛ(M) denotes
the characteristic ideal of M for any finitely generated torsion Λ-module M .
Hence XG is finite. Because X does not have non-trivial finite Λ-submodules
([G2]), we obtain XG = 0. Thus Xχ ' X.

From the Mazur–Wiles theorem ([MW, p. 214, Theorem])

charΛ[G]χ(Xχ) = f(4(1 + T )−1 − 1, χ)Λ[G]χ

and the surjection Xχ → Xχ, it follows that

charΛ[G]χ(Xχ) ⊇ f(4(1 + T )−1 − 1, χ)Λ[G]χ.

Now assume that Xχ is infinite. Since f(4(1 +T )−1− 1, χ) is irreducible
in Λ[G]χ = Z3[χ(G)][[T ]] by assumption, we see that

charΛ[G]χ(Xχ) = charΛ[G]χ(Xχ),

and Ker(Xχ → Xχ) is finite. Since Xχ ' X and X does not have non-
trivial finite Λ-submodules, Ker(Xχ → Xχ) = 0, which implies X ' Xχ '
Xχ ' X. From the assumptions

( (z2−1)(z−2−1)
(z−1)(z−1−1)

)(p−1)/3 ≡ 1 (mod p) and

((z − 1)(z−1 − 1))(p−1)/3 6≡ 1 (mod p), we can see that D(k1) 6= 0 as in
the proof of Theorem 1, since Im(ϕ) = 0 from the first assumption, and
π(p−1)/3 6≡ 1 (mod p), i.e., π(p−1)/3 mod p 6∈ Im(ϕ) = 0 from the second
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(notations as in the proof of Theorem 1). We write D(kn) for the subgroup
of A(kn) consisting of the ideal classes which contain a product of prime
ideals of kn lying above 3. Because Leopoldt’s conjecture is valid for k (see
[B]), #D(kn) is bounded (see [G1, Proposition 1]). Hence lim←−D(kn) is a non-
trivial finite Λ-submodule of lim←−A(kn) ' X ' X, because the norm map
D(km)→ D(kn) is surjective for m ≥ n ≥ 0 and D(k1) 6= 0. This contradicts
the fact that X does not have non-trivial finite Λ-submodules. Thus we have
shown that X ' Xχ is finite, which is equivalent to λ3(k) = µ3(k) = 0.

We obtain the following corollary to Theorem 2:

Corollary 3. Let p be a prime number such that p ≡ 1 (mod 9) and
3(p−1)/3 ≡ 1 (mod p). Assume that
(

(z2 − 1)(z−2 − 1)
(z − 1)(z−1 − 1)

)(p−1)/3

≡ 1 (mod p),

((z − 1)(z−1 − 1))(p−1)/3 6≡ 1 (mod p),

where z is as in the statement of Theorem 1. Denote by χ and ω a 3-adic
Dirichlet character corresponding to Q(3)(p) and the Teichmüller character
for the prime 3, respectively. If

B1,χω−1 6≡ 0 (mod 3),

then λ3(Q(3)(p)) = µ3(Q(3)(p)) = 0, where B1,χω−1 is the generalized
Bernoulli number.

Proof. It is sufficient to show that f(T, χ) ∈ Z3[ζ3][[T ]] is irreducible
in Z3[ζ3][[T ]] by Theorem 2. Note that −B1,χω−1 is the constant term of
f(T, χ), and that g(T ) ∈ Z3[ζ3][[T ]]× if and only if g(0) ∈ Z3[ζ3] is a unit.
Hence we see immediately that f(T, χ) is irreducible in Z3[ζ3][[T ]].

One can easily check whether the conditions of Theorem 1 and Corol-
lary 3 hold or not by computer. We give some examples below.

We consider the prime numbers p ≤ 10000 congruent to 1 modulo 3.
There exist 611 such p’s. By Theorem A, one can verify λ3(Q(3)(p)) =
µ3(Q(3)(p)) = 0 for 547 among them. The remaining 64 prime numbers are
as follows:

73, 271, 307, 523, 577, 613, 757, 919, 991, 1009, 1117, 1531, 1549, 1621,
1783, 2179, 2251, 2269, 2287, 2341, 2971, 3079, 3187, 3529, 3853, 3889,
3907, 4177, 4339, 4483, 4933, 4951, 4969, 5059, 5077, 5113, 5527, 5851,
6067, 6211, 6247, 6301, 6481, 6553, 6967, 7219, 7507, 7561, 7669, 7687,
8011, 8191, 8461, 8677, 8803, 8893, 8929, 9001, 9109, 9181, 9343, 9613,
9901, 9973.

For 42 prime numbers p among these, we can show that λ3(Q(3)(p)) =
µ3(Q(3)(p)) = 0 by using Theorem 1. The remaining 22 are:
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991, 1117, 1549, 2251, 2269, 2341, 3907, 4483, 4933, 5527, 6247, 6481, 6967,
7219, 7669, 7687, 8011, 8677, 8803, 9001, 9181, 9901.

For 10 prime numbers p among these, we can show that λ3(Q(3)(p)) =
µ3(Q(3)(p)) = 0 by using Corollary 3. The remaining 12 are:

2269, 3907, 4933, 5527, 6247, 6481, 7219, 7687, 8011, 8677, 9001, 9901.

For 6 prime numbers p among these, we can verify that f(T, χ) is ir-
reducible and ((z − 1)(z−1 − 1))(p−1)/3 6≡ 1 (mod p) by computer, hence
λ3(Q(3)(p)) = µ3(Q(3)(p)) = 0 by Theorem 2. The remaining 6 are:

2269, 3907, 6481, 7219, 8011, 8677.

For these, one can verify that f(T, χ) is reducible in the case p = 7219
and 8677. Also, one can verify that ((z− 1)(z−1− 1))(p−1)/3 ≡ 1 (mod p) in
the case p = 3907 and 8011. For p = 2269 and 6481, we do not know whether
f(T, χ) is irreducible or not. In what follows we give another method to show
λ3(Q(3)(p)) = µ3(Q(3)(p)) = 0 for p = 2269 and 6481.

We would like to express our thanks to Prof. Masato Kurihara who
communicated to us the following theorem. It gives an upper bound of the
λ3-invariant of Q(3)(p):

Theorem 4 (M. Kurihara). Let k = Q(3)(p) be a cyclic cubic field with
conductor p, where p is a prime number such that p ≡ 1 (mod 9) and
3(p−1)/3 ≡ 1 (mod p). If

((z − 1)(z−1 − 1))(p−1)/3 6≡ 1 (mod p),

then λ3(k) ≤ 2. (µ3(k) = 0 by the Ferrero–Washington theorem.)

Proof. If
( (z2−1)(z−2−1)

(z−1)(z−1−1)

)(p−1)/3 6≡ 1 (mod p), then λ3(k) = 0 by Theo-

rem 1. Hence we may assume that
( (z2−1)(z−2−1)

(z−1)(z−1−1)

)(p−1)/3 ≡ 1 (mod p).
Let σ be a generator of G = Gal(k∞/Q∞). As in the proof of Theorem 1,

we can see that

(7) A(k1)/A(k1)σ−1 ' (Z/3Z)⊕2,

and

(8) Im(D(k1)→ A(k1)/A(k1)σ−1) ' Z/3Z,

since
( (z2−1)(z−2−1)

(z−1)(z−1−1)

)(p−1)/3 ≡ 1 (mod p) and ((z − 1)(z−1 − 1))(p−1)/3 6≡ 1
(mod p). Let A′(kn) be the 3-Sylow subgroup of the 3-ideal class group of
kn, namely, A′(kn) = A(kn)/D(kn). Then

(9) A′(k1)/A′(k1)σ−1 ' Coker(D(k1)→ A(k1)/A(k1)σ−1) ' Z/3Z
from (7) and (8).
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We now also show that

(10) A′(k2)/A′(k2)σ−1 ' Z/3Z.
Denote by Q2(p)(3) the maximal abelian extension over Q2 (the second

layer of the cyclotomic Z3-extension over Q) of conductor p whose Galois
group over Q2 is an elementary abelian 3-group. Then, as in the proof of
Theorem 1, we find that Q2(p)(3) is the maximal unramified abelian 3-
extension over k2 which is abelian over Q2 and that Gal(Q2(p)(3)/k2) '
A(k2)/A(k2)σ−1, because the class number of Q2 is prime to 3.

Firstly, we consider the case p 6≡ 1 (mod 27). In this case, as in the

proof of Theorem 1, we have Gal(Q2(p)(3)/Q2) ' Coker(E(p3−1)/3
Q2

→
((OQ2/p)

×)(p3−1)/3) and 3-rank(((OQ2/p)
×)(p3−1)/3) = 3 because the prime

p decomposes into three primes of degree three in Q2 by the assumption p
6≡ 1 (mod 27). Hence 3-rank(A(k2)/A(k2)σ−1) = 3-rank(Gal(Q2(p)(3)/k2))
≤ 2. Since the norm maps A(k2) → A(k1) and D(k2) → D(k1) are sur-
jective, it follows from (7) and (8) that 3-rank(A(k2)/A(k2)σ−1) = 2 and
Im(D(k2) → A(k2)/A(k2)σ−1) 6= 0. Hence 3-rank(A′(k2)/A′(k2)σ−1) ≤ 1.
Since the norm map A′(k2)/A′(k2)σ−1 → A′(k1)/A′(k1)σ−1 is surjective,
the group A′(k2)/A′(k2)σ−1 is non-trivial, so we have proved (10).

Next, we consider the case p ≡ 1 (mod 27). As in the case p 6≡ 1 (mod 27),
we deduce Im(D(k2) → A(k2)/A(k2)σ−1) 6= 0 from (8). Since this image is
generated by an ideal class containing a prime of k2 lying above 3, we have

(11) Im(D(k2)→ A(k2)/A(k2)σ−1) ' Z/3Z.
Let p2 be a prime ideal of k2 lying above p and p1 the prime ideal of k1 below
p2. We choose a primitive 9th root of unity ζ9 such that (z − 1)(z−1 − 1) ≡
(ζ9 − 1)(ζ−1

9 − 1) (mod p1). Further, we choose a primitive 27th root of
unity ζ27 such that NQ2/Q1((ζ27 − 1)(ζ−1

27 − 1)) = (ζ9 − 1)(ζ−1
9 − 1). Let γ

be a topological generator of Γ =Gal(k∞/k) such that ((ζ9 − 1)(ζ−1
9 − 1))γ

= (ζ2
9 − 1)(ζ−2

9 − 1), and γn the restriction of γ to kn. Then γn is a gener-
ator of Γn = Gal(kn/k). For simplicity, we put πi = (ζ3i+1 − 1)(ζ−1

3i+1 − 1)
and ηi = (πγi−1

i )(p−1)/3 for i = 1, 2. Then it follows from the assumption
((z − 1)(z−1 − 1))(p−1)/3 6≡ 1 (mod p) that

(12) π
(p−1)/3
1 6≡ 1 (mod p).

Also it follows from the assumption
( (z2−1)(z−2−1)

(z−1)(z−1−1)

)(p−1)/3 ≡ 1 (mod p) that

(13) η1 ≡ 1 (mod p)

as in the proof of Theorem 1.
In this case, we have

Gal(Q(3)(p)/Q2) ' Coker(ηZ[Γ2]
2 → ((OQ2/p)

×)(p−1)/3)
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as in the proof of Theorem 1 since [EQ2 : η
Z[Γ2]
2 ] is prime to 3. Note

that we have ((OQ2/p)
×)(p−1)/3 ' ⊕8

i=0((OQ2/p
γi

2 )×)(p−1)/3 ' (Z/3Z)⊕9.
Let I = AnnF3[Γ2](η2 mod p) ⊆ F3[Γ2] be the annihilator ideal of η2 mod p ∈
((OQ2/p)

×)(p−1)/3.

Then Im(ηZ[Γ2]
2 → ((OQ2/p)

×)(p−1)/3) ' F3[Γ2]/I. We claim that I =

(γ2 − 1)6F3[Γ2] = (1 + γ3
2 + γ6

2)F3[Γ2]. Since η1+γ3
2+γ6

2
2 = η1 ≡ 1 (mod p) by

(13), we have (1 + γ3
2 + γ6

2)F3[Γ2] = (γ2 − 1)6F3[Γ2] ⊆ I. Now, assume that
(γ2 − 1)6F3[Γ2] ( I. Since F3[Γ2] ' F3[T ]/(T 9 − 1) = F3[T ]/(T − 1)9 and
F3[T ] is a principal ideal domain, we must have (γ2 − 1)5 ∈ I. Then

1 ≡ η(γ2−1)5

2 = ((πγ2−1
2 )(p−1)/3)(γ2−1)5

= (π(γ2−1)6

2 )(p−1)/3

≡ (π1+γ3
2+γ6

2
2 )(p−1)/3 = π

(p−1)/3
1 (mod p),

which contradicts (12). Thus we obtain I = (γ2 − 1)6F3[Γ2], hence

Gal(Q(3)(p)/Q2) ' Coker(ηZ[Γ2]
2 → ((OQ2/p)

×)(p−1)/3)

' F3[Γ2]/(γ2 − 1)6 ' (Z/3Z)⊕3.

Therefore we have A(k2)/A(k2)σ−1 ' Gal(Q(3)(p)/k2) ' (Z/3Z)⊕2 and
A′(k2)/A′(k2)σ−1 ' Z/3Z by (11). Thus we have proved (10).

Let L′(k∞) be the maximal unramified pro-3 abelian extension of k∞
in which every prime of k∞ lying above 3 splits completely, and X ′ =
Gal(L′(k∞)/k∞). Then X ′ ' lim←−A

′(kn), and it follows from A′(k) = 0
that X ′/νnX ′ ' A′(kn), where νn = 1 + γ + γ2 + . . . + γ3n−1 (see [I2]).
Hence

(14) (X ′/X ′σ−1)/νn(X ′/X ′σ−1) ' A′(kn)/A′(kn)σ−1

for all n ≥ 1.
We need the following lemma:

Lemma 5. Let Λ = Zl[[Γ ]], where l is any prime number and Γ is a
pro-l group isomorphic to Zl. For a topological generator γ of Γ , put νn =
1 +γ+γ2 + . . .+γl

n−1 ∈ Λ. For a finitely generated Λ-module M and some
n ≥ 0, if the identity map M 'M induces the isomorphism

M/νn+1M 'M/νnM,

then νnM = 0.

Proof. By assumption,

Ker(M/νn+1M →M/νnM) ' νnM/νn+1M = νnM/(νn+1/νn)νnM = 0.

Since νn+1/νn is contained in the maximal ideal of Λ, we have νnM = 0 by
Nakayama’s lemma.
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We can apply Lemma 5 to M = X ′/X ′σ−1 and n = 1 by (9), (10) and
(14). Then we get ν1(X ′/X ′σ−1) = 0. Hence

X ′/X ′
σ−1 ' X ′/X ′σ−1

/ν1(X ′/X ′σ−1) ' A′(k1)/A′(k1)σ−1 ' Z/3Z
by (9) and (14). Therefore, there exists an x′ ∈ X ′ such that X ′ = Z3[G]x′

by Nakayama’s lemma. Since (1 + σ + σ2)x′ = 0, there is a surjection
Z⊕2

3 ' Z3[G]/NGZ3[G] → X ′. Hence rankZ3 X
′ ≤ 2. Because lim←−D(kn) is

finite, we have λ3(k) = rankZ3(lim←−A(kn)) = rankZ3(lim←−A(kn)/lim←−D(kn)) =
rankZ3 X

′ ≤ 2. Thus we have proved Theorem 2.

Corollary 6. Let k satisfy the assumptions of Theorem 4. If λ3(k)
6= 0, then

X ′ ' Z⊕2
3 and TorZ3(X) = D,

where X = lim←−A(kn) and D = lim←−D(kn).

Proof. We consider a surjective homomorphism

f : Z3[ζ3] ' Z3[G]/NGZ3[G]→ X ′, ζ3 7→ σ 7→ σ(x′),

where x′ is as in the proof of Theorem 3 (X ′ = Z3[G]x′). If Ker(f) 6= 0, then
X ′ is finite because any non-zero ideal of Z3[ζ3] has finite index in Z3[ζ3].
Hence λ3(k) = rankZ3(X ′) = 0. Therefore, under the assumption λ3(k) 6= 0,
f must be injective, hence an isomorphism. This shows that X ′ ' Z⊕2

3 .
Further, from the exact sequence 0→ D → X → X ′ → 0 and the fact that
the order of D is finite, we see immediately that TorZ3(X) = D.

Now, we investigate the case p = 2269. The number field computations
in what follows where done by using KASH, version 2.2. The prime number
p = 2269 satisfies the assumption of Theorem 4. LetM be the decomposition
field of the polynomial x3 +124794x2 +5186218509x+71770829079384 over
Q. Then M is a cubic subfield of k1 different from k and Q1, where k =
Q(3)(2269). We find that A(M) ' Z/3Z ⊕ Z/9Z, where A(F ) denotes the
3-Sylow subgroup of the ideal class group of F for any number field F . Let
p and l be the prime ideals of M lying above 2269 and 3, respectively. For
a number field F and a fractional ideal a of F , we denote by πF (a) the
projection of a to A(F ). Then πM (p) 6= 0 and πM (l) = 0. Hence

(15) πk1(p1) 6∈ D(k1)

for any prime ideal p1 of k1 lying above p, because

Nk1/M (πk1(p1)) = πM (p) 6∈ Nk1/M (D(k1)) = 〈πM (l)〉 = 0.

We shall apply the following lemma:

Lemma 7. Let l ≥ 2 be a prime number and k/Q a cyclic extension with
[k : Q] = l. Denote by F∞/F and Fn the cyclotomic Zl-extension and its nth
layer , respectively , for any number field F . Let p be a prime ideal of kn which



Iwasawa λ3-invariants 397

ramifies in kn/Qn. If p splits completely in km and l-rankA′(km) < lm−n

for some m ≥ n, then πkn(p) ∈ A(kn) capitulates in k∞, where A′(kn) is
the l-Sylow subgroup of the l-ideal class group of kn, and πkn denotes the
natural projection map from the ideal group of kn to the l-Sylow subgroup
A(kn) of the ideal class group of kn.

Proof. We write IK , A′(K) and A(K) for the ideal group of K, the
l-Sylow subgroup of the l-ideal class group of K, and the l-Sylow subgroup
of the ideal class group of K, respectively, for any subfield K of Q. Also we
denote by π′K and πK the natural projection maps from IK to A′(K) and
A(K), respectively.

We write P for a prime ideal of km lying above p. Since Pl ∈ IQm and
since A′(Qm) = 0, we see that π′km(P)l = 0. We consider the map ψ :
Z/lZ[Gal(km/kn)] → A′(km)[l], f 7→ fπ′km(P), where A′(km)[l] is the sub-
group of A′(km) consisting of the elements whose order divides l. It follows
from the assumption that

#(A′(km)[l]) < ll
m−n

= #Z/lZ[Gal(km/kn)].

Hence Ker(ψ) 6= 0, which implies Ker(ψ)Gal(km/kn) 6= 0. Because

Z/lZ[Gal(km/kn)]Gal(km/kn) = Z/lZ
∑

γ∈Gal(km/kn)

γ,

we have
∑
γ∈Gal(km/kn) γ ∈ Ker(ψ). So π′km(p) =

∑
γ∈Gal(km/kn) γπ

′
km

(P)
= 0, namely, πkm(p) ∈ D(km) since A′(km) = A(km)/D(km), where D(km)
is the subgroup of A(km) consisting of the ideal classes which contain a
product of prime ideals of km lying above l. Because k/Q is abelian, D(km)
capitulates in k∞. Therefore πkn(p) capitulates in k∞.

Assume that λ3(k) 6= 0. Since 2269 ≡ 1 (mod 27), a prime ideal p1 of
k1 lying above 2269 decomposes into three prime ideals in k2. Then πk1(p1)
capitulates in k∞ by Lemma 7, because 3-rank(A′(k2)) ≤ 3-rank(X ′) = 2
by Corollary 6. Thus πk1(p1) ∈ Ker(A(k1) → A(k∞)) = Im(TorZ3 X →
A(k1)) by [O, Proposition]. But this contradicts (15) since TorZ3 X = D
and Im(D → A(k1)) = D(k1) by Corollary 6. Therefore, we have shown
that λ3(k) = µ3(k) = 0.

In the case p = 6481, one can verify λ3(Q(3)(6481)) = µ3(Q(3)(6481)) = 0
in the same manner.

Consequently, we have the following result:

Theorem 8. λ3(Q(3)(p)) = µ3(Q(3)(p)) = 0 for all prime numbers p <
10000 with p ≡ 1 (mod 3) but p = 3907, 7219, 8011, 8677.
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