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1. Introduction. Take an arbitrary irrational number α and compute
for the first n multiples the distance to the nearest integer. What can we
say about the distribution of this sequence in the interval [0, 1/2]? In this
paper we study the partition of the interval [0, 1/2] induced by this sequence.
The main result (Theorem 2) states that this sequence divides the interval
into subintervals which can take at most four different lengths. This result is
strongly related to the Three Gap Theorem, which states that for α irrational
and n ∈ N, the numbers

(1) {α}, {2α}, {3α}, . . . , {nα}
divide the interval [0, 1] into subintervals of at most three different lengths.
Here {x} = x − bxc = x mod 1 is the fractional part of x. The Three Gap
Theorem was originally a conjecture of H. Steinhaus. Proofs were offered
by various authors, for example by Sós [3], Świerczkowski [5], Surányi [4],
Slater [2] and van Ravenstein [1].

We start with Theorem 1, a variation on the Three Gap Theorem, which
states that if we divide the interval [0, 1] into subintervals by the numbers

(2) {α}, {−α}, {2α}, {−2α}, . . . , {nα}, {−nα}
then the subintervals again have at most three different lengths. We give an
elementary proof for this theorem.

From Theorem 1 we extract the main result, Theorem 2. This “Four Gap
Theorem” gives an analogous statement about the distances to the nearest
integers of the multiples of α: the numbers

(3) ‖α‖, ‖2α‖, ‖3α‖, . . . , ‖nα‖
divide the interval [0, 1/2] into subintervals of at least two and at most
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four different lengths, where ‖x‖ denotes the distance from x to the nearest
integer. Here the number four is the best possible. We also derive some
properties of the lengths of the subintervals into which [0, 1/2] is divided.

2. A variation on the Three Gap Theorem. If we consider not only
the fractional parts of the positive multiples of an irrational number α, but
also of the negative multiples, we have the following result:

Theorem 1. Let α be an irrational number between 0 and 1, and let
n ∈ N, n ≥ 1. For the first n numbers in the sequence

(4) Sα : {α}, {−α}, {2α}, {−2α}, {3α}, {−3α}, . . .
the following assertions hold :

1. They divide the interval [0, 1] into subintervals of either two or three
different lengths, l1 > l2 (> l3). If we have three different lengths,
l1 > l2 > l3, then l1 = l2 + l3.

2. By adding the (n+ 1)th element of the sequence Sα to the partition of
[0, 1], one of the subintervals of length l1 is divided into a subinterval
of length l2 and a subinterval of length l1 − l2.

Before proving the assertions we make some preparations by collecting
observations that will be helpful in proving the assertions. Note that it makes
no difference in Theorem 1 if we consider the open interval (0, 1).

First note that for x ∈ R \ Z we have {−x} = 1 − {x}, so the partition
induced by the first 2n terms of the sequence Sα is symmetric with respect
to 1/2. This also means that without loss of generality we may assume that
α < 1/2. Sometimes α will be called the step size.

It will prove useful to introduce some notation and definitions. For n ≥ 1,
Sα(n) denotes the nth term of Sα. For each k ∈ N, k ≥ 1, let nk(α) be the
unique integer for which

(5) nk(α)α < k < (nk(α) + 1)α.

Since α is irrational, k can never be a multiple of α. Define β by

(6) β := (n1(α) + 1)α− 1.

Note that β = {(n1(α) + 1)α}. Figure 1 illustrates these definitions in
case n1(α) = 3.
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Fig. 1. The first steps in the partition process
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Definition 1. For k ∈ N, k ≥ 1, the kth cycle of the sequence Sα consists
of all those fractional parts {mα},m ∈ Z, for which k − 1 < |mα| < k, or
equivalently nk−1(α) < |m| ≤ nk(α).

Observe that a cycle consists of at least four partition points, because
we assumed that α < 1/2. We are going to use this observation later. The
next definition concerns intervals which are partitioned in the same way.

Definition 2. For 0 ≤ a, b < 1, y ≤ min{1 − a, 1 − b} and n ∈ N we
write

(
a, a+ y

)
(n) '

(
b, b+ y

)
(n) if for all x ∈

(
0, y

)
the condition

∃k1 ∈ Z, |k1| ≤ n such that a+ x = {k1α}
is equivalent to

∃k2 ∈ Z, |k2| ≤ n such that b+ x = {k2α}.
Note that ' is an equivalence relation on the class of partitioned open

subintervals of
(
0, 1

)
. If we replace b + x by b + y − x in Definition 2, we

get an equivalence for an interval and the mirror image of another interval.
If two intervals satisfy this adjusted definition, we will write (a, a+ y)(n)

m'
(b, b+ y)(n).

Now let us investigate what happens in the interval (0, α). Note that Sα
is a sequence in the open interval (0, 1). Therefore also here we investigate
which values we get in the open interval (0, α). For k ∈ N, k ≥ 1, the
interval (k, k+α) contains exactly one positive multiple of α and the interval
(−k,−k+α) contains exactly one negative multiple of α. Hence, in each cycle
we get two values in (0, α), one of them being the fractional part of a positive
multiple of α and the other being the fractional part of a negative multiple
of α. The first cycle is the only exception, since there is no positive multiple
of α in (0, α).

The first positive multiple of α for which the fractional part is in (0, α)
is (n1(α) + 1)α = 1 + β, which gives β as a first hit in (0, α). Because 1 + β
is a positive multiple of α, for k ∈ N the number k + kβ is also a positive
multiple of α. The fractional parts of these numbers are fractional parts of
multiples of β. As long as kβ < α this gives hits in (0, α). As soon as kβ
exceeds α, i.e. when k = bα/βc+ 1, we leave the interval (0, α), but in that
case we had already hit the value kβ − α. This is exactly how it continues
all the time: each next hit in (0, α) is shifted β in the positive direction, and
as soon as we leave the interval, we come back modulo α. Hence, for every
positive integer k, the kth hit in (0, α) by the fractional part of a positive
multiple of α is kβ mod α.

The first negative multiple of α for which the fractional part is in (0, α) is
−n1(α)α, giving the value {−n1(α)α} = 1−{n1(α)α} = 1−n1(α)α = α−β.
Each next hit in (0, α) is shifted β to the left until α − kβ dives under 0.
In that case we leave (0, α), but the previous hit was α − kβ + α, which is
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in (0, α). Hence, the kth hit in (0, α) by the fractional part of a negative
multiple of α is α− (kβ mod α).

By noting that the hits by fractional parts of positive and negative multiples
of α are alternating we see that in (0, α) we get the following sequence of hits:

(7) α− (β mod α), β mod α, α− (2β mod α), 2β mod α,
α− (3β mod α), 3β mod α, . . . .

By multiplying each term by 1/α we get

(8) 1−
(
β

α
mod 1

)
,
β

α
mod 1, 1−

(
2β
α

mod 1
)
,

2β
α

mod 1,

1−
(

3β
α

mod 1
)
,

3β
α

mod 1, . . . .

By defining α̃ := 1− β/α, we can rewrite this as

(9) {α̃}, {−α̃}, {2α̃}, {−2α̃}, {3α̃}, {−3α̃}, . . . .
Hence, (7) is a scaled version of the sequence Sα (with a different ir-

rational step size). This means that the partition of the subinterval (0, α)
has exactly the same structure and properties as the partition of (0, 1). The
same self-similarity holds for the subintervals (α, 2α), . . . , ((n1/2(α)− 1)α,
n1/2(α)α), where n1/2(α)α is the largest multiple of α smaller than 1/2.
In these subintervals we get the same sequence (7), but now shifted by
a multiple of α to the corresponding positions in the subinterval. By us-
ing symmetry we also find the same structure of lengths for the intervals
(1− n1/2(α)α, 1− (n1/2(α)− 1)α), . . . , (1−α, 1). These intervals are mirror
images of the subintervals (0, α), . . . , ((n1/2(α)− 1)α, n1/2(α)α).

Each cycle of Sα gives two hits in each of those intervals. We conclude
that for all k ∈ N, k ≥ 1,

(10) (0, α)(nk(α)) ' · · · ' ((n1/2(α)− 1)α, n1/2(α)α)(nk(α))
m' (1− n1/2(α)α, 1− (n1/2(α)− 1)α)(nk(α)) ' · · · ' (1− α, 1)(nk(α)).
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Fig. 2. Each interval between two integers consists of two parts of length n1/2(α)α and a
part of length L (thick). Fractional parts of numbers in the thick intervals are in Im. The
lengths of the bold parts to the left of s add up to α.

The only part which is not yet considered is the middle part of (0, 1): the
interval (n1/2(α)α, 1−n1/2(α)α), which will be denoted by Im and its length
by L. Denote the smallest positive multiple of α for which the fractional part
is in Im by s, see Figure 2. The Lebesgue measure of the set
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(11) {x ∈ (0, s) : {x} 6∈ Im}
is a multiple of n1/2(α)α. Hence the Lebesgue measure of the set

(12) {x ∈ (0, s) : {x} ∈ Im}
must also be a multiple of α. From the fact that s is the smallest number for
which the measure of this set is a multiple of α it follows that its measure is
exactly α. This implies that the first element of Sα which is in Im is given
by

(13) {s} = n1/2(α)α+ (α mod L).

For each next multiple of α giving a hit in Im, a similar argument applies,
but now the measure of the set (12) increases with α for each next hit. We
conclude that the positive multiples of α give the following sequence of hits
in Im:

(14) (n1/2(α)α+ (kα mod L))∞k=1.

By symmetry we see that by adding the negative multiples of α as well,
we find the following sequence of hits in Im:

(15) n1/2(α)α+ (α mod L), 1− n1/2(α)α− (α mod L),
n1/2(α)α+ (2α mod L), 1− n1/2(α)α− (2α mod L),

n1/2(α)α+ (3α mod L), 1− n1/2(α)α− (3α mod L), . . . ,

where the alternating order follows from the fact that the successor of {kα}
in Sα is {−kα}.

Subtract n1/2(α)α to get

(16) α mod L, L− (α mod L), 2α mod L,
L− (2α mod L), 3α mod L, L− (3α mod L), . . . .

Multiplying by 1/L yields

(17)
α

L
mod 1, 1−

(
α

L
mod 1

)
,

2α
L

mod 1,

1−
(

2α
L

mod 1
)
,

3α
L

mod 1, 1−
(

3α
L

mod 1
)
, . . . .

This is exactly Sα, with step size α/L. It follows that (15) is a scaled
and translated version of the sequence Sα with a different step size.

The next step is to find the relation between the behavior of the partition
process in Im and its complement. The intervals (0, L) and Im have the same
length (by definition of L) and the distance between their left endpoints is a
multiple of α. From this we can conclude that in each cycle a value x ∈ (0, L)
is hit if and only if in the same cycle the point x+n1/2(α) is hit in Im. This
reasoning is also valid when (0, L) and Im are not disjoint (which is possible
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when L > α). By noting that (0, L)(n1(α)) ' Im(n1(α)) and using induction
on k it follows that for all k ∈ N, k ≥ 1:
(18) (0, L)(nk(α)) ' Im(nk(α)).

In words: after each complete cycle the two intervals (0, L) and Im are
partitioned in an equivalent way in the sense of Definition 2.

Proof of Theorem 1. We use induction on the cycle number k. Note that
if the theorem holds for n, then to go to n+ 1 it suffices to check the second
assertion of the theorem. We can see this as follows. If we had three lengths,
then one of the longest subintervals is divided into two existing lengths, so
we get nothing new. If we had two lengths, then we get one new length,
being the difference of the two existing lengths. These remarks show that
the “at most three” part of the first assertion and the requirement l1 = l2+l3
in the case of three lengths are not violated. The “at least two” part of the
first assertion of the theorem follows from the irrationality of α. If only one
length is remaining, the interval [0, 1] must be divided into equal parts. But
in this case α would be a rational number.

Step 1. The first step in our induction argument is to show that during
the first cycle (containing the first 2n1(α) terms of Sα) always one of the
longest subintervals is divided into two intervals of which one has the second
length occurring before the division. The first number in the sequence Sα
is {α}, so after adding this first number the interval (0, 1) is divided into
two subintervals, one of length α and one of length 1− α, where the latter
is the longest in view of our assumption that α < 1/2. So now this longest
subinterval should be divided into a part of length α (the second length) and
a remaining part. Because the second hit is {−α} = 1−α, this is indeed the
case. The process continues in the same way, each time reducing the length
of the middle subinterval by α, until the length of the middle subinterval
becomes smaller than α. Now this middle subinterval has length α − β, by
definition of β.

At this point we have two different lengths: α and α− β. The situation
is illustrated by Figure 3. We now distinguish two cases.

0 {α} {2α} . . . {ν1α} {−ν2α}
. . . {−2α} {−α} 1

-� -� -� -� -� -� -�
α α α α− β α α α

Fig. 3. Halfway the first cycle: either ν1 = ν2 or ν1 = ν2 + 1

If ν1 = ν2, then the next hit will be {(ν1 + 1)α}, dividing an interval of
length α into a part of length α − β (which was the second length) and a
part of length β (a new length). Now we have three different lengths and the



Distribution of distances to the nearest integer 259

sum of the two smallest equals the largest, as required. The next hit now is
{−(ν1 + 1)α} and again this divides an interval of length α into a part of
length α− β and a part of length β. The partition process continues in this
way as long as we are in the first cycle.

If ν1 = ν2 + 1, then the next hit will be {−ν1α} and also in this case all
intervals of length α will successively be divided into a part of length α− β
and a part of length β.

Hence we conclude that the theorem is valid for the first cycle.

Step 2. The next step in the induction argument is to show that if
the theorem holds in the first k cycles, then it also holds in the next cycle.
To prove this we use the observations made before, which state that the
behavior of the partition process in each of the intervals

(19) (0, α), . . . , ((n1/2(α)− 1)α, n1/2(α)α), (n1/2(α)α, 1− n1/2(α)α),

(1− n1/2(α)α, 1− (n1/2(α)− 1)α), . . . , (1− α, 1)

has after rescaling the same properties as the behavior in the entire interval
(0, 1). From now on we will call these intervals elementary intervals.

A crucial remark is that all boundaries (except 0 and 1) of the elementary
intervals belong to the first cycle of Sα. This implies that (at any point in
one of the next cycles) the subintervals into which (0, 1) is divided can only
intersect one of the elementary intervals. This guarantees that to find all
lengths of subintervals in (0, 1), it suffices to find all lengths in the elementary
intervals.

For the elementary intervals we introduce the following abbreviations:

Ip := ((p− 1)α, pα),(20)
I−p := (1− pα, 1− (p− 1)α),(21)

where 1 ≤ p ≤ n1/2(α), p ∈ N. Recall that for the middle elementary
interval we already introduced the symbol Im. The sequence of hits in an
elementary interval I will be denoted by SIα. For example, SI

1

α is equal to
the sequence (7). Because these sequences are scaled and translated versions
of Sα (possibly with a different step size), we can also here introduce cycles.
Every element of the kth cycle of Sα is, for some I and l, also an element
of the lth cycle of SIα, where l may be different from k. We are going to use
these cycles later, but we do not need to specify them explicitly.

Induction hypothesis. Assume that for all α and some k ≥ 1 the
theorem holds as long as we are in one of the first k cycles of Sα.

Let 2nk(α) ≤ n < 2nk+1(α), implying that Sα(n+1) is an element of the
(k+1)th cycle of Sα. Consider the partition of (0, 1) into subintervals by the
first n terms of Sα. Denote the lengths of the subintervals by l1 > l2 (> l3).
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To prove that the theorem holds for the (k + 1)th cycle, it suffices to show
that the following three requirements are satisfied:

Requirement 1. If Sα(n + 1) is the very first hit in an elementary
interval, then it splits a subinterval of length l1 into subintervals of length l2
and l1 − l2.

Requirement 2. If Sα(n + 1) ∈ I, where I is one of the elementary
intervals, then I contains a subinterval of length l1 just before Sα(n+ 1) is
added.

Requirement 3. If Sα(n+ 1) is not the very first hit in an elementary
interval, denote the two largest lengths in this elementary interval by l̂1 > l̂2.
Then Sα(n + 1) splits a subinterval of length l̂1 into subintervals of length
l̂2 and l̂1 − l̂2.

First we argue why it is sufficient that these three requirements hold and
then we check each of them in the substeps below.

The idea of the proof is to use the self-similar structure by applying the
induction hypothesis to the elementary intervals. The theorem only gives
an assertion about the division into subintervals if we already have at least
two lengths. Hence, our induction hypothesis makes no statement about the
very first hit in an elementary interval. Therefore, in Substep 2.1 we start by
checking that in each of the elementary intervals the partition process starts
in the right way, as indicated by Requirement 1. Suppose I is the elementary
interval containing Sα(n+ 1). Denote the lengths occurring in I just before
adding Sα(n + 1) by l̂1 > l̂2 (> l̂3). Then the maximal length in I should
equal the maximal length in [0, 1]: l̂1 = l1, which is Requirement 2. Since all
lengths in I are also lengths in [0, 1], either l̂2 = l2 or l̂2 = l3. In both cases,
splitting an interval of length l̂1 into two subintervals of lengths l̂2 and l̂1− l̂2
(as is demanded in Requirement 3) is the same as splitting an interval of
length l1 into two subintervals of lengths l2 and l1− l2, since l3 = l1− l2. We
conclude that these three requirements are sufficient to complete the proof.
The induction hypothesis is only needed to prove Requirement 3.

Substep 2.1. All elementary intervals, except Im if L < α, get at least
one hit in the first cycle of Sα. So here we have no problems, because we
already checked that the theorem holds for the first cycle. Suppose that
L < α and that Sα(n + 1) is the first value we hit in Im. Then Sα(n + 1)
can be written as n1/2(α)α + x, where x ∈ (0, L). In the same cycle the
value x was already hit in (0, L). The hit n1/2(α)α + x splits Im in exactly
the same way as x has divided (0, L). This means that two subintervals are
generated with lengths already occurring before the division. The two new
subintervals have lengths l2 and l3 = l1 − l2.
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Substep 2.2. After each complete cycle of Sα, Im is partitioned in a
symmetric way. This implies that the longest subinterval occurring in Im is
a subinterval of (n1/2(α)α, (n1/2(α)+1)α). From this observation, combined
with (10) and (18), it follows that after each complete cycle all the intervals
Ip, I−p, where 1 ≤ p ≤ n1/2(α), contain a subinterval which has the maxi-
mal length. Now note that in each cycle the order in which the elementary
intervals will get hits is as follows (writing n1/2(α) as nα1/2 for typographical
reasons):

(22) I1, I−1, I2, I−2, . . . , I
nα1/2 , I

−nα1/2| {z }
1st sequence

, Im, . . . , Im| {z }
2nd sequence

, I
−nα1/2 , I

nα1/2 , . . . , I−2, I2, I−1, I1| {z }
3rd sequence

,

where the second sequence contains 0, 2 or 4 elements. Observe that the
equivalences

(23) (0, α) ' · · · ' ((n1/2(α)− 1)α, n1/2(α)α)
m' (1− n1/2(α)α, 1− (n1/2(α)− 1)α) ' · · · ' (1− α, 1)

hold after the first sequence and after the second sequence. At the start of
the cycle, all elementary intervals in the first sequence contain a subinterval
of the maximal length. It follows that Requirement 2 is satisfied if Sα(n+1)
belongs to the first sequence.

Now let us first check the third sequence. After the third sequence of
hits a cycle is completed, so then again all the intervals Ip, I−p, where
1 ≤ p ≤ n1/2(α), contain a subinterval which has the maximal length.
Just before the third sequence the maximal subinterval in each of these
elementary intervals was certainly not smaller. Since (23) holds after the
second sequence, those maximal subintervals all had the same length, which
shows that Requirement 2 is satisfied if Sα(n + 1) belongs to the third
sequence.

The hits corresponding to the second sequence in (22) can only vio-
late Requirement 2 if the last of these hits does so. This last hit gives a
value in (n1/2(α)α, (n1/2(α) + 1)α). After the third sequence the (k + 1)th
cycle is complete and hence we have the equivalence (0, α)(nk+1(α)) '
(n1/2(α)α, (n1/2(α) + 1)α)(nk+1(α)). The third sequence gives only one hit
in (0, α). The distance between this hit and the last hit of the second se-
quence is n1/2(α)α. It follows that the last hit of the second sequence splits
an interval into two subintervals in exactly the same way as the third se-
quence does in (0, α). By equivalences and symmetry the same holds for the
other elementary intervals. Hence, Requirement 2 is also satisfied if Sα(n+1)
belongs to the second sequence.

Substep 2.3. To check Requirement 3 we use our induction hypothesis.
Suppose Sα(n+1) is a hit in I, where I is one of the elementary intervals. If
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Sα(n+1) is an element of one of the first k cycles of SIα, then by our induction
hypothesis it follows that Sα(n + 1) divides an interval of length l̂1 into a
part of length l̂2 and a part of length l̂1 − l̂2, where l̂1 > l̂2 (> l̂3) are the
lengths of the subintervals in I, and we are ready.

Suppose that the elementary interval I containing Sα(n+ 1) has length
not larger than α. Then each cycle of Sα gives at most 2 hits in I. After k+1
complete cycles of Sα, we have recorded at most 2(k + 1) values in I. After
k complete cycles of SIα, we have at least 4k hits in I. Since 4k ≥ 2(k + 1),
Sα(n + 1) belongs to one of the first k cycles of SIα and Requirement 3 is
satisfied because of the induction hypothesis.

Suppose that Sα(n+ 1) ∈ Im and L > α (this is the only case where the
argument from the previous paragraph fails). Note that from the definitions
it follows that L = 2α − β. In the first cycle of Sα we get 2 hits in Im.
Each next cycle of Sα gives either 2 or 4 hits in Im. After k + 1 complete
cycles of Sα, we have recorded at most 4k+2 values in Im. After k complete
cycles of SImα , we have at least 4k hits in Im. It follows that if the (k+ 1)th
cycle of Sα gives two hits in Im, then Sα(n + 1) belongs to one of the first
k cycles of SImα and again we use the induction hypothesis to conclude that
Requirement 3 is satisfied.

If the (k+ 1)th cycle of Sα gives four hits in Im, denote the last two hits
by x1 and x2. We can only have a problem when Sα(n+ 1) is equal to x1 or
x2, since otherwise Sα(n+1) belongs to one of the first k cycles of SImα . So we
check if x1 and x2 split an interval according to Requirement 3. Note that x1

and x2 are in ((n1/2(α)+1)α, 1−n1/2(α)α) and (n1/2(α)α, 1−(n1/2(α)+1)α)
respectively. These intervals both have length L− α = α− β. The distance
between x2 and the next hit x in (0, α−β) is a multiple of α and by (18) we
know that at the moment that x is reached in Sα, we have (n1/2(α)α, 1 −
(n1/2(α)+1)α) ' (0, α−β). Hence x2 splits (n1/2(α)α, 1−(n1/2(α)+1)α) in
exactly the same way as x splits (0, α−β). Since x belongs to one of the first
k cycles of SI

1

α , we already know that x gives the right splitting. Therefore
Requirement 3 is satisfied if x2 = Sα(n + 1). Using symmetry we see that
Requirement 3 is also satisfied when x1 = Sα(n + 1), which completes the
proof.

3. A Four Gap Theorem. We are now in a position to prove our main
theorem, the “Four Gap Theorem”.

Theorem 2 (The Four Gap Theorem). Let α ∈ R \ Q and n ∈ N. Let
‖x‖ denote the distance from x to the nearest integer. The numbers

(24) ‖α‖, ‖2α‖, ‖3α‖, . . . , ‖nα‖

divide the interval [0, 1/2] into subintervals of at least two and at most four
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different lengths. For these lengths the following assertions hold :

1. The rightmost length, denoted by lr, is unique.
2. There are two different lengths if and only if n‖α‖ < 1/2.
3. If we have three different lengths, denote the two lengths not equal to
lr by l1 > l2. Then exactly one of the following four equalities holds:
2lr = l1, 2lr = l2, 2lr + l2 = l1 or l1 + l2 = 2lr (1).

4. If we have four different lengths, denote the three lengths not equal to
lr by l1 > l2 > l3. Then l1 = l2 + l3 and one of these lengths is equal
to twice lr.

Proof. It is not possible to have only one length occurring, since α is
irrational. Without loss of generality we assume that α ∈ [0, 1/2].

Observe that min{{x}, {−x}} ∈ [0, 1/2]. So if we look at the sequence

(25) min{{α}, {−α}}, min{{2α}, {−2α}}, min{{3α}, {−3α}}, . . . ,

we get a subsequence of the sequence Sα. A term of Sα is a term of the
sequence (25) if and only if it is in [0, 1/2]. Consequently, by Theorem 1,
the first n terms of the sequence (25) divide the interval [0, 1/2] into subin-
tervals of at least two and at most four different lengths. We possibly get
a fourth length because the partition of [0, 1] (which gave three lengths) is
now truncated at 1/2. Since

(26) min{{nα}, {−nα}} = ‖nα‖,

the numbers in (24) divide [0, 1/2] into subintervals of at least two and at
most four different lengths.

We now turn our attention to the four assertions about the lengths. If
the rightmost length is not unique, then there exist integers 0 ≤ k, l,m ≤ n,
with l 6= m, such that

(27) 1/2− ‖kα‖ = ‖lα‖ − ‖mα‖,

which implies that 1/2 is the sum of a multiple of α and an integer, contra-
dicting the irrationality of α. Hence, the rightmost length lr is unique.

If n‖α‖ < 1/2, then the only lengths are ‖α‖ and lr, so we only have two
different lengths. For the opposite implication, assume that there are only
two different lengths. The leftmost interval has length min1≤k≤n ‖kα‖. It
follows that the numbers ‖α‖, . . . , ‖nα‖ are all multiples of min1≤k≤n ‖kα‖.
From the irrationality of α we conclude that min1≤k≤n ‖kα‖ = ‖α‖ and
‖nα‖ = n‖α‖, which is only possible if n‖α‖ < 1/2.

Consider the partition of [0, 1] by the numbers

(28) {α}, {−α}, {2α}, {−2α}, . . . , {nα}, {−nα}.

(1) For all four possibilities we found an example.
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This partition is symmetric with respect to 1/2. The subintervals into
which [0, 1] is divided by these numbers have either two or three different
lengths, according to Theorem 1. We check what happens in both cases. If
we have two different lengths and after truncating the partition of [0, 1] at
1/2 have three different lengths, then either 2lr = l1 or 2lr = l2. If we have
three different lengths and after truncating the partition at 1/2 again have
three different lengths, then either 2lr + l2 = l1 or l1 + l2 = 2lr.

The last assertion of the Four Gap Theorem follows immediately from
Theorem 1 and the observations made before.
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