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Gauss sums for prime powers in p-adic fields
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S. Gurak (San Diego, CA)

1. Introduction. Let K be a field of degree n over Qp, the field of
rational p-adic numbers, say with residue degree f and ramification index e.
Let T denote the maximal unramified subfield of K. The trace and norm
maps for K/Qp will be denoted Tr = TrK/Qp and N = NK/Qp , respectively.
Let O = OK and OT denote the rings of integers of K and T , and fix a
uniformizant Π to generate the prime ideal P of O. It is known [1] that
Π satisfies an Eisenstein polynomial of degree e over T with Πe = pu for
some unit u of K (when K/Qp is tamely ramified, Π may be chosen so that
u ∈ OT [1, pp. 68–69]). The differential exponent d of K/Qp is the largest
non-negative integer r such that Tr P−r is contained in Zp, the ring of p-adic
integers. The ideal Pd is known as the different of K/Qp and it is also the
relative different of K/T . It is known that d ≥ e − 1 with d = e − 1 if and
only if K/Qp is tamely ramified; otherwise K/Qp is wildly ramified and p | e.
Furthermore, for any integer r,

(1) Tr Pr = pr
′
Zp and TrK/T Pr = pr

′
OT ,

where r′ = [(r + d)/e]. (Here [x] denotes the largest integer ≤ x.)
Next consider any subextension k/Qp of K/Qp with prime ideal p̂ and

group of units Uk. Let

U
(0)
k = Uk, U

(i)
k = {u ∈ Uk | u ≡ 1 (mod p̂i)} (i > 0)

denote the usual filtration of Uk. When k = Qp, I simply write U (i)
p for U (i)

Qp .
Now fix q = pr, a power of a prime p, and let χ be a numerical character

defined modulo q of conductor f(χ) = pb. Any such character χ modulo q
extends to Zp in the natural way; namely, χ(u) = χ(ū) where ū denotes
the residue class of u modulo q, and similarly for the root of unity ζuq =
exp(2πiū/q). In addition, for v in Qp, say uniquely expressed as v = u/pt for
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u ∈ Zp and integer t ≥ 0, let ζvq denote the pr+t-root of unity exp(2πiũ/pr+t)
where ũ is the residue class of u modulo pr+t. Then (ζvq )p

t
= ζuq .

For a positive integer γ ≥ re− d satisfying

(2) N(U (γ)
K ) ⊆ U (b)

p ,

one may form the Gauss sum

(3) GPγ (χ) =
∑

α∈(O/Pγ)∗

χ(N(α))ζTrα
q .

Condition (2) ensures that GPγ (χ) is well-defined.
The sum GPγ (χ) lies in the cyclotomic field Q(ζq(p−1)). For any integer

ν with gcd(ν, q(p − 1)) = 1, if σν denotes the automorphism induced by
mapping ζq(p−1) to ζνq(p−1), then one easily finds

(4) GPγ (χν) = χνn(ν)σν(GPγ (χ)).

The above relation allows one to evaluate the Gauss sums (3) for prim-
itive characters in terms of the Gauss sums of a normalized generator χ of
the group of numerical characters defined modulo q = pr when p is odd with
r > 1. Such a character χ is normalized if

(5)
χ(1 + ps) = ζ−1

ps for r = 2s even,

χ

(
1 + ps +

(
p+ 1

2

)
p2s

)
= ζ−1

ps+1 for r = 2s+ 1 odd.

A similar situation holds when p = 2. In this case, a character χ is normalized
if

(6)

χ(1 + 2s) = ζ−1
2s if r = 2s, s ≥ 2,

χ(1 + 2s + 22s−1) = ζ−1
2s+1 if r = 2s+ 1, s ≥ 2,

χ(5) = −1 if r = 3.

In the classical case K = Qp, Mauclaire [13, 14] showed that for any
normalized character χ modulo q and γ ≥ r > 1,

Gpγ (χ) = pγ−r/2ζqζ
κ
8 ,

where

κ =


0 if r ≥ 2 is even,
1− p if r ≥ 3 and p is odd,
1 if r ≥ 5 and p = 2,
−χ(−1) if r = 3 and p = 2.

My main goal here is to obtain an analog of Mauclaire’s result in the general
setting. Indeed, I will show that GPγ (χ) has the general form

(7) GPγ (χ) = pf(γ−(re−d)/2)ζnq ζ
κ
8
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for γ ≥ re− d > 1, except for a few exceptional small values r. Here κ can
be explicitly determined and is such that GPγ (χ) is seen to lie in Q(ζq(p−1)).
Alternatively GPγ (χ) may be expressed in terms of classical quadratic Gauss
sums.

In addition, for any numerical character η modulo q one may form the
Kloosterman sum

(8) K(η, d) =
∑

α∈(O/Pγ)∗

η(N(α))ζTr(α)+d/N(α)
q (d ∈ (Z/qZ)∗).

One finds the customary relationship

(9) K(η, d) =
1

φ(q)

∑
χ

χ̄(d)Gq(χ)GPγ (χη),

the sum taken over all numerical characters modulo q. Here Gq(χ) is just
the ordinary Gauss sum for χ over Z/qZ. In the classical case K = Qp,
Salie [16] explicitly determined the Kloosterman sums K(1, d) and K(φ, d),
where φ is the quadratic character modulo q, for q = pr with p odd and
r > 1. I note that the form (7) for GPγ (χ) above is particularly convenient
to allow one to explicitly compute the Kloosterman sums K(η, d) when
r > 1 for characters η of order dividing p − 1. This evaluation appears in
[9] and is similar to the author’s previous determination of the values of
multi-dimensional Kloosterman sums [8].

Lastly, I should note that Ron Evans [7] recently obtained a result of
the form (7) for totally and tamely ramified global extensions where K is an
algebraic extension of Q, the rational field. The methods employed here may
be extended to evaluate Gauss sums defined over residue rings of algebraic
integers in a general setting. This determination will appear elsewhere.

The paper is organized as follows. This introductory section fixes nota-
tion and states the overall goals of the paper. In Section 2, I give criteria
to determine the least γ for which condition (2) holds (chiefly, Lemma 1)
and then discuss the Davenport–Hasse Theorem for Gauss sums over finite
fields and its consequences for the Weil L-functions attached to families of
such Gauss sums. In Section 3, I first mention a useful divisibility result
concerning traces of certain powers of the uniformizant, before giving some
elementary results about the Gauss sums GPγ (χ). I conclude with a discus-
sion of the situation when q = p is odd, and show that for this case the
evaluation of GPγ (χ) is reduced to that of a classical Gauss sum modulo p.
In Sections 4 and 5 the main results of the paper are proved (chiefly, Theo-
rems 1 and 2). Section 4 treats the case of p odd, while Section 5 does so for
p = 2. Both sections make tedious technical computations, with Section 5
requiring some elementary results about certain 2-adic exponential sums in
unramified extensions of Q2. In the last section, I describe the L-functions
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associated to certain families of the Gauss sums (3), and give their evaluation
using the main results of Sections 4 and 5.

2. Preliminaries. In this section, I first give criteria to determine when
condition (2) holds, then conclude with the statement of the Davenport–
Hasse Theorem for Gauss sums over finite fields.

Finding the least positive integer γ for which (2) holds is intimately
connected to the higher ramification properties of K/Qp. When K/Qp is
a normal extension this can be best answered in terms of Herbrand’s ϑ
function, or more precisely its inverse ψ [2, Chap. 11]. Here I take a more
basic approach using the p-adic logarithm function to determine such a γ,
which holds generally for any finite extension K/Qp.

To proceed, I note that for an odd prime p, the p-adic logarithm and
exponential functions given by

(10) log(1 + pu) =
∞∑
j=1

(−1)j+1 (pu)j

j
and epu =

∞∑
j=0

(pu)j

j!

are analytic on Zp and satisfy the identity elog(1+pu) = 1 + pu for u ∈ Zp.
Fix a primitive root g for q and let R be the p-adic unit R = (1/p) log gp−1.
One defines the exponential function

(11) z = g(p−1)t = eRpt (t ∈ Zp)

which maps Zp isomorphically onto U
(1)
p . With respect to the filtration of

the principal units, the image z(pγ−1Zp) is U (γ)
p for any positive integer γ.

The inverse map for (11) is

(12) t = (Rp)−1log z (z ∈ Up).
For p = 2, the 2-adic logarithm and exponential functions given by

(13) log(1 + 4u) =
∞∑
j=1

(−1)j−1 (4u)j

j
and e4u =

∞∑
j=0

(4u)j

j!

are analytic on Z2 and satisfy the identity elog(1+4u) = 1 + 4u. Let R be the
2-adic unit R = 1

4 log 5. The exponential function

(14) z = 5t = e4Rt (t ∈ Z2)

maps Z2 isomorphically onto U
(2)
2 and has inverse t = (4R)−1 log z. With

respect to the filtration of U2, the image z(2γ−1Z2) equals U (γ+1)
2 for any

positive integer γ. Both the logarithmic and exponential functions have nat-
ural extensions to any algebraic extension of Qp.

Now, for any α ∈ O set

(15) f(x) = N(x− α) = xn + a1x
n−1 + · · ·+ an,
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a monic polynomial in Zp[X] of degree n, say with zeros α1 = α, α2, . . . , αn
including multiplicities, lying in Qp, a fixed algebraic closure of Qp, and with
splitting field M ⊆ Qp. The coefficients of f(x) can be expressed in terms
of the symmetric power sums Sj =

∑n
i=1 α

j
i (j > 0) by Newton’s identities

(16)
ai = −1

i
(Si + a1Si−1 + · · ·+ ai−1S1) (1 ≤ i ≤ n),

Si + a1Si−1 + · · ·+ anSi−n = 0 for i > n.

The following lemma specifies conditions when N(1 + α) ≡ 1 (mod pλ)
for α ∈ P .

Lemma 1. If α ∈ P then the series S = S1− 1
2S2 + 1

3S3− · · · converges
to logN(1 + α) in Qp with

N(1 + α) = 1− a1 + a2 − · · ·+ (−1)nan.

In addition, for any positive integer λ (with λ > 1 when p = 2),

S ≡ 0 (mod pλ) if and only if N(1 + α) ≡ 1 (mod pλ).

Proof. First observe that ordp Sν/ν → ∞ as ν → ∞ for α ∈ P so the
series S1− 1

2S2 + 1
3S3−· · · converges in Qp. To determine its sum S, let B be

the prime ideal of M . The αi (1 ≤ i ≤ n) are all conjugates of one another,
so lie in B since α ∈ P . Thus N(1 + α) ≡ 1 (mod p), and consequently
logN(1 + α) ≡ 0 (mod p). Moreover,

log(1 + αi) = αi − α2
i /2 + α3

i /3− · · · (1 ≤ i ≤ n),

where log also denotes the extension of the logarithmic function to M/Qp.
Then logN(1 + α) =

∑n
i=1 log(1 + αi) = S1 − 1

2S2 + 1
3S3 − · · · from the

usual properties of the logarithmic function. That N(1 +α) = 1− a1 + a2−
· · ·+ (−1)nan follows immediately from (15). The second statement readily
follows from the isomorphisms given in (11) and (14) when S ≡ 0 (mod p)
(or S ≡ 0 (mod 4) if p = 2).

To determine when condition (2) holds one has

Lemma 2. Let γ be the smallest positive integer for which NU (γ)
K ⊆ U (b)

p

where b > 1 (b > 2 when p = 2). Then NU
(γ−1)
K = U

(b−1)
p if γ > 1. If

be− d > 1 + e/(p− 1) then γ = be− d.

Proof. If γ > 1 then NU
(γ−1)
K 6⊆ U

(b)
p from the choice of γ. Now

U
(γ−1)
K /U

(γ)
K ' O/P ' Z/pZ+· · ·+Z/pZ (f copies). Thus NU (γ−1)

K /NU
(γ)
K is

a non-trivial subgroup of U (1)
p /U

(b)
p of exponent p. But U (1)

p /U
(b)
p ' Z/pb−1Z

so NU (γ−1)
K /NU

(γ)
K ' U (b−1)

p /U
(b)
p is of order p. Hence NU (γ−1)

K = U
(b−1)
p . To

prove the second statement I first observe that S = logN(1+α) is congruent
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to S1 modulo pb in Lemma 1 for α ∈ P be−d−1 when be− d > 1 + e/(p− 1).
Indeed, for ν > 1,

be− d− 1 >
e

p− 1
≥ e ordp ν

ν − 1

implies ν(be−d−1) > be−d−1+e ordp ν or ν(be−d−1)+d ≥ be+e ordp ν.
Thus (1/ν)Sν ≡ 0 (mod pb) for ν > 1, and hence S ≡ S1 (mod pb) for
α ∈ P be−d−1. In view of Lemma 1 and (1) it follows that NU (be−d−1)

K 6⊆ U (b)
p

but NU (be−d)
K ⊆ U (b)

p so γ = be−d. The proof of the lemma is now complete.

I remark that when K/Qp is a normal extension, the least positive integer
γ for which (2) holds can be found from the relations between norms of
unit groups and the ψ function mentioned earlier (chiefly Theorem 9 in [2,
p. 129]). Indeed, γ is seen to equal ψ(b−1) + 1 = be−d as soon as b exceeds
the length of the chain of higher ramification groups. The details are left to
the reader.

To conclude this section, I mention the Davenport–Hasse Theorem for
Gauss sums in this setting for unramified extensions, together with its con-
sequences for the Weil L-functions attached to families of such Gauss sums
[4, 5, 18]. Let Tm denote the unramified extension of T of degree m and set
Km = KTm, Om = OKm and Pm = POm. Here I take γ = 1 and q = p in
(3) with K = T and assume χ is non-trivial to obtain the Gauss sum

(17) GP (χ) =
∑

α∈(O/P)∗

χ(Nα)ζTrα
p

for the finite field O/P with pf elements. For any m ≥ 1 one similarly
obtains

(18) GPm(χ) =
∑

α∈(Om/Pm)∗

χ(NKm/Qpα)ζ
TrKm/Qp α
p ,

the corresponding Gauss sums (3) for the finite field Om/Pm. The Daven-
port–Hasse Theorem [3] expresses GPm(χ) in terms of GP (χ), namely

(19) GPm(χ) = (−1)m−1GP (χ)m.

The L-function associated to such sums is

(20) L(χ, t) = exp
(∑
m≥1

GPm(χ)tm/m
)
.

By the series expansion −ln(1 − x) =
∑

m≥1 x
m/m, the Davenport–Hasse

relation (19) readily yields the explicit classical evaluation

(21) L(χ, t) = 1 +GP (χ)t,

in terms of the Gauss sum GP (χ).



Gauss sums in p-adic fields 17

3. Some elementary results about GPγ (χ). In this section, I give
some elementary results concerning the Gauss sums (3) and then conclude
with a discussion of the evaluation of GPγ (χ) when r = 1. Before starting,
I mention the following two useful results which will be needed in the sub-
sequent sections. The first concerns traces of powers of the uniformizant Π;
the second evaluates sums of the form

∑
x∈O/Pγ ζ

Trαx
q for any α ∈ P−d.

Lemma 3. For any t ≥ 0, TrK/T Πte−d−1 6≡ 0 (mod ptOT ).

Proof. From the definition of the inverse different [1, p. 86] of K/T ,

P−d = {x ∈ K | TrK/T yx ∈ OT for all y ∈ O}.

Now suppose to the contrary that TrK/T Πte−d−1 ≡ 0 (mod ptOT ). Then
for any y ∈ O, say y = x0 + x1Π + · · ·+ xe−1Π

e−1 with xi ∈ OT ,

TrK/T yΠ
te−d−1 = x0 TrK/T Π

te−d−1+· · ·+xe−1 TrK/T Π
(t+1)e−d−2 ∈ ptOT ,

which would imply that p−tΠte−d−1 = utΠ−d−1 ∈ P−d, a contradiction.

The second result concerns the sums
∑

x∈O/Pγ ζ
Trαx
q for any α ∈ P−d.

Proposition 1. For any α ∈ P−d with positive integer γ ≥ re − d −
ordP α, ∑

x∈O/Pγ
ζTrαx
q =

{
pfγ if α ∈ Pre−d,
0 otherwise.

Proof. First note that the condition γ ≥ re − d − ordP α guarantees
that the sum is well-defined for any choice of α in P−d. Now the mapping
ω : O/Pγ → Z/qZ given by ω(x) = Trαx (mod q) is an additive group
homomorphism with image Imω = qZ if and only if ordP α ≥ re − d. If
Imω 6= qZ then ∑

x∈O/Pγ
ζTrαx
q = |kerω| ·

∑
y∈Imω

ζyq = 0,

where kerω denotes the kernel of ω. The statement of the proposition now
follows.

The next results concern the Gauss sums GPγ (χ) given in (3). Setting
γ0 = max(e/(p− 1), re− d), one first finds the following reduction formula:

Proposition 2. For any γ > γ0, GPγ (χ) = pf(γ−γ0)GPγ0 (χ).

Proof. Write each α ∈ (O/Pγ)∗ uniquely as α = β(1 + Πγ0δ) for β ∈
(O/Pγ0)∗ and δ∈O/Pγ−γ0 . First observe that NU (γ0)

K ⊆ U (r)
p from Lemma 1,

since for α ∈ P γ0 we have S = logN(1 +α) ≡ 0 (mod q). Indeed, for ν ≥ 1,

γ0 =
γ0

ν
+
ν − 1
ν

γ0 ≥
re− d
ν

+
e

ν
ordp ν



18 S. Gurak

since γ0 ≥ re − d and γ0 ≥ e/(p− 1) ≥ (e ordp ν)/(ν − 1). So νγ0 + d ≥
re+ e ordp ν, and consequently (1/ν)Sν ≡ 0 (mod q). Hence S ≡ 0 (mod q)
as asserted. Thus, one has Nα = Nβ · N(1 + Πγ0δ) ≡ Nβ (mod q) and
Trα ≡ Trβ (mod q), so

GPγ (χ) =
∑

α∈O/Pγ
χ(Nα)ζTrα

q

=
∑

δ∈O/Pγ−γ0

∑
β∈(O/Pγ0 )∗

χ(Nβ)ζTrβ
q = pf(γ−γ0)GPγ0 (χ).

When χ is imprimitive one finds that GPγ (χ) vanishes much as in the
classical case K = Qp.

Proposition 3. If re − d > 1 + e/(p− 1) with χ imprimitive, then
GPγ (χ) = 0 for γ ≥ γ0.

Proof. By Proposition 2 one may assume γ = γ0 = re − d. Each α ∈
(O/Pγ0)∗ may be uniquely expressed as α = β(1 + Πre−d−1δ) for β ∈
(O/Pre−d−1)∗ and δ ∈ O/P . But NU (re−d−1)

K ⊆ U
(r−1)
p from Lemma 2

so N(1 + Πre−d−1δ) ≡ 1 (mod pr−1). Now Nα ≡ Nβ (mod pr−1) and
χ(Nα) = χ(Nβ) since χ is imprimitive. Hence

GPγ0 (χ) =
∑

β∈(O/Pre−d−1)∗

χ(Nβ)ζTrβ
q

∑
δ∈O/P

ζTrβΠre−d−1δ
q = 0

by Proposition 1 as βΠre−d−1 6≡ 0 (mod Πre−d).

More generally, one finds

Proposition 4. If re− d > 1 + e/(p− 1) with χ of conductor pb, then
for γ ≥ γ0,

|GPγ (χ)| =

{
0 if NU (re−d−1)

K ⊆ U (b)
p ,

pf(γ−(re−d)/2) otherwise.

Proof. One may assume γ = γ0 = re − d again by Proposition 2. If
NU

(re−d−1)
K ⊆ U

(b)
p then the argument in the proof of Proposition 3 shows

that GPγ (χ) = 0. Thus it suffices to consider the cases NU (re−d−1)
K 6⊆ U

(b)
p ,

so necessarily χ is primitive and NU
(re−d−1)
K = U

(r−1)
p as U (r−1)

p /U
(r)
p is

cyclic of prime order. Now consider

|GPγ (χ)|2 =
∑

α∈(O/Pγ)∗

χ(Nα)ζTrα
q

∑
β∈(O/Pγ)∗

χ̄(Nβ)ζ−Trβ
q

=
∑

λ∈(O/Pγ)∗

χ(Nλ)
∑

β∈(O/Pγ)∗

ζTrβ(λ−1)
q ,
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which by Proposition 1 equals∑
λ∈(O/Pγ)∗

χ(Nλ)
( ∑
β∈O/Pγ

ζTrβ(λ−1)
q −

∑
β∈P/Pγ

ζTrβ(λ−1)
q

)
= pfγ − pf(γ−1)

∑
λ∈U(γ−1)

K /U
(γ)
K

χ(Nλ).

But NU (γ−1)
K /NU

(γ)
K = U

(r−1)
p /U

(r)
p so

∑
λ∈U(γ−1)

K /U
(γ)
K

χ(Nλ) = 0, and thus

|GPγ (χ)|2 = pfγ . The proof of the proposition is now complete.

I remark that the condition re − d > 1 + e/(p− 1) cannot generally be
relaxed in the last two propositions, as shown by the example below.

Example 1. Consider K = Q3(31/3) with Π = 31/3, where e = 3, f = 1
and d = 5. Any element α of O has the form α = x0+x1Π+x2Π

2 for xi ∈ Z3

with Nα = x3
0 + 3x3

1 + 9x3
2 − 9x0x1x2 and Trα = 3x0. For r = 2, re− d = 1

but e/(p− 1) = 1.5 so γ0 = 2. One may choose {±1,±1 + Π,±1 − Π} to
represent (O/P2)∗, so

GP2(χ) = χ(1)ζTr 1
9 + χ(−1)ζTr(−1)

9 + χ(4)ζTr(1+Π)
9 + χ(2)ζTr(−1+Π)

9

+ χ(−2)ζTr(1−Π)
9 + χ(−4)ζTr(−1−Π)

9

for any numerical character χ modulo 9. For the quadratic character χ
modulo 9, one finds GP2(χ) = 3i

√
3; whereas GP2(χ) = 0 for any primitive

character χ modulo 9.

To conclude this section I mention a consequence of the Davenport–Hasse
relation (19) that reduces the evaluation of the Gauss sums (3) when q = p
is odd to that of a classical Gauss sum Gp(χ) =

∑
x∈(Z/pZ)∗ χ(x)ζxp for any

character χ defined modulo p. Specifically, one finds

Proposition 5. For any character χ defined modulo p of order o(χ)
and γ > 0, the Gauss sum∑

α∈(O/Pγ)∗

χ(Nα)ζTrα
p

=


−pf(γ−1) if o(χ) | e but p - e,
pfγ − pf(γ−1) if po(χ) | e,
0 if o(χ) - e but p | e,
(−1)f−1pf(γ−1)χ̄n(e)Gp(χe)f if o(χ) - e and p - e.

Proof. First write each α ∈ (O/P)∗ uniquely as α = βτ for β ∈ (O/P)∗

' (OT /pOT )∗ and τ ∈ U (1)
K /U

(γ)
K , where we may take the representatives for

(O/P)∗ from (OT /pOT )∗. Then
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α∈(O/Pγ)∗

χ(Nα)ζTrα
p =

∑
β∈(OT /pOT )∗

χ(Nβ)
∑

τ∈U(1)
K /U

(γ)
K

χ(Nτ)ζTrβτ
p

or

(22)
∑

β∈(OT /pOT )∗

χe(NT/Qpβ)
∑

τ∈U(1)
K /U

(γ)
K

ζTrβτ
p ,

since TrU (1)
K ⊆ U

(1)
p from (1). When p | e, K/Qp is wildly ramified with

TrO ⊆ pZp so (22) becomes

pf(γ−1)
∑

β∈(OT /pOT )∗

χe(NT/Qpβ) =
{
pfγ − pf(γ−1) if o(χ) | e,
0 if o(χ) - e,

since NT/Qp : (OT /pOT )∗ → (Zp/pZp)∗ ' (Z/pZ)∗ is onto with kernel of
size (pf − 1)/(p− 1). When p - e, K/Qp is tamely ramified with∑

τ∈U(1)
K /U

(γ)
K

ζTrβτ
p = pf(γ−1)ζ

eTrT/Qp β
p

since Trβτ ≡ Trβ (mod p) for τ ∈ U (1)
K from (1). Thus (22) becomes

pf(γ−1)
∑

β∈(OT /pOT )∗

χe(NT/Qpβ)ζ
eTrT/Qp β
p

= pf(γ−1)χ̄ef (e)
∑

β∈(OT /pOT )∗

χe(NT/Qpβ)ζ
TrT/Qp β
p

= −(−1)fpf(γ−1)χ̄ef (e)Gp(χe)f

in view of (19). Since Gp(χe) = −1 when o(χ) | e, this last expression has
the value as stated in the proposition for the cases with p - e. This concludes
the proof of the proposition.

4. The case of p odd. My primary goal here is to show that GPγ (χ)
has the form (7) when p is odd. I assume q = pr is odd for r = 2s or
2s + 1, and with s > d/e so that γ0 = re − d > es′, where s′ = s or s + 1
according as r is even or odd. Writing each α ∈ O/Pγ for γ ≥ γ0 uniquely
as α = z(1 + wps

′
) for z ∈ O/Pes′ and w ∈ O/Pγ−es′ , one finds for any

numerical character χ modulo q normalized as in (5) that

GPγ (χ) =
∑

z∈O/Pes′

∑
w∈O/Pγ−es′

χ(Nz)χ(N(1 + wps
′
))ζTr z+ps

′
Tr zw

q

=
∑

z∈O/Pes′
χ(Nz)ζTr z

q ·
∑

w∈O/Pγ−es′
ζ
Trw(z−1)
ps
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since χ(N(1 + wps
′
)) = ζ−Trw

ps . As
∑

w∈O/Pγ−es′ ζ
Trw(z−1)
ps = pf(γ−es′) or 0

according as z ≡ 1 (mod P es−d) or not from Proposition 1, the above ex-
pression becomes

(23) GPγ (χ) = pf(γ−es′)
∑

z≡1 (modP es−d) inO/Pes′

χ(N(z))ζTr z
q .

To proceed further, it will be necessary to evaluate χ(N(z)) in the ex-
pression above. To this end, set δ = 2d/e or 2d/e+ 1 according as p > 3 or
p = 3.

Lemma 4. For s > d/e and α ∈ Pes′−d, if s′ ≥ δ then

χ(N(1 + α)) = ζ
−S1+ 1

2
S2

q

for any numerical character χ modulo q normalized as in (5).

Proof. I assert that the condition s′ ≥ δ ensures (1/ν)Sν ≡ 0 (mod q)
for ν > 2, so that S = logN(1 + α) ≡ S1 − 1

2S2 (mod q) in Lemma 1.

Consequently, χ(N(1+α)) = ζ
−S1+ 1

2
S2

q from the normalization (5). To verify
the assertion one requires that

ν(s′e− d) + d ≥ re+ e ordp ν for ν > 2,

or equivalently that

(24) s ≥ ν − 1
ν − 2

d

e
+

ordp ν
ν − 2

− ν − 1
ν − 2

(s′ − s) for ν > 2.

For the above inequality to hold it suffices to have

(25) s′ ≥ ν − 1
ν − 2

d

e
+

ordp ν
ν − 2

for ν > 2.

For unramified extensions d = 0 so (25) trivially holds for any s′ > 0. Now
assume that K/Qp is ramified. Then (ν − 1)/(ν − 2) takes on its maximum
value 2 when ν = 3; whereas (ordp ν)/(ν − 2) has maximum 1/(p− 2) when
ν = p. Thus for p > 3, 2d/e exceeds the right-hand side of the inequality
(25). For p = 3, the quantity 2d/e+ 1 is an upper bound for the right-hand
side of (25). This concludes the proof of the lemma.

I now require that s′ ≥ δ in addition to s > d/e in evaluating (23), and
deal with the cases of r even and odd separately.

Case of r even. I consider the case of r = 2s even first. In view of the
lemma above, the expression (23) for GPγ (χ) becomes

GPγ (χ) = pf(γ−es)ζnq
∑

α∈Pes−d/Pes
ζ

1
2

Trα2

q ,

upon writing each z ≡ 1 (mod P es−d) as 1 + α for α ∈ Pes−d. To evaluate
the sum above, one has
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Proposition 6. For r = 2s with s > d/e and s ≥ δ,∑
α∈Pes−d/Pes

ζ
1
2

Trα2

q

=


pfd/2 if d even,

(−1)f−1ζ
(1−p)f
8

(
NT/Qp(TrK/T Πe−d−1u)

p

)
pfd/2 if d odd.

(Here (p) denotes the usual Legendre symbol.)

Proof. First write α = psΠ−dβ for β ∈ O/Pd and note that as α runs
through the representatives of Pes−d/Pes, β runs through those of O/Pd.
Thus

(26)
∑

α∈Pes−d/Pes
ζ

1
2

Tr α2

q =
∑

β∈O/Pd
ζ
q
2

Tr (Π−dβ)2

q .

Writing β = Πvβ′ + b uniquely for β′ ∈ O/Pd−v and b ∈ O/Pv for any
d/2 ≤ v ≤ d, one obtains∑

β∈O/Pd
ζ
q
2

Tr (Π−dβ)2

q =
∑

b∈O/Pv
ζ
q
2

Tr (Π−db)2

q

∑
β′∈O/Pd−v

ζqTrΠv−2dbβ′
q

= pf(d−v)
∑

b∈Pd−v/Pv
ζ
q
2

Tr (Π−db)2

q

since ∑
β′∈O/Pd−v

ζqTrΠv−2dbβ′
q =

{
pf(d−v) if b ∈ Pd−v,
0 otherwise.

Choosing v = d/2 when d is even in this last expression yields the value
pfd/2 for (26) as stated in the proposition. Choosing v = (d + 1)/2 when d
is odd yields the value

pf(d−1)/2
∑

b∈P(d−1)/2/P(d+1)/2

ζ
q
2

Tr (Π−db)2

q

= pf(d−1)/2
∑

β∈O/P

ζ
1
2

TrT/Qp TrK/T Π
e−d−1uβ2

p

for (26) instead, where each b ∈ P (d−1)/2/P (d+1)/2 has been uniquely written
as b = Π(d−1)/2uβ for β ∈ O/P to obtain the last equality. The representa-
tives for O/P can be taken to lie in OT /pOT , so in view of the fact that

λ ∈ (OT /pOT )∗2 if and only if NT/Qpλ ∈ (Zp/pZp)∗2,
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the sum∑
β∈O/P

ζ
1
2

TrT/Qp TrK/T Π
e−d−1uβ2

p

=
∑

β∈OT /pOT

(
NT/Qpβ

p

)
ζ
TrT/Qp βTrK/T Π

e−d−1u/2
p

=
(
NT/Qp(TrK/T Πe−d−1u/2)

p

) ∑
β∈OT /pOT

(
NT/Qpβ

p

)
ζ
TrT/Qp β
p

is an ordinary quadratic Gauss sum over the finite field of pf elements. It
equals

(−1)f−1ζ
(1−p)f
8

(
NT/Qp(TrK/T Πe−d−1u)

p

)
pf/2

from (19), using the fact that
p−1∑
x=1

(
x

p

)
ζxp = i(p−1)2/4√p and i(p−1)2/4

(
2
p

)
= ζ1−p

8 .

Case of r odd. I now evaluate (23) for r = 2s + 1. Writing each z ≡
1 (mod P es−d) in (O/Pes′)∗ uniquely as z = x(1 + psa) for x ∈ (O/Pes)∗

and a ∈ O/pO, one finds from (23) that

(27) GPγ (χ) = pf(γ−es′)
∑

x≡1 (modP es−d) inO/Pes

χ(Nx)ζTrx
q S(x),

where

S(x) =
∑

a∈O/pO

χ(N(1 + psa))ζTr ax
ps+1 .

From Lemma 1 and the binomial theorem, N(1 + psa) is congruent to

1 + ps Tr a+
1
2
p2s((Tr a)2 − Tr a2) ≡

(
1 + ps +

p+ 1
2

p2s

)Tr(a−psa2/2)

modulo q. It follows from the normalization (5) that

(28) S(x) =
∑

a∈O/pO

ζ
Tr(ax−a+psa2/2)
ps+1 .

To evaluate S(x) above, I consider the case of K/Qp tamely ramified
first. Then d = e− 1 and one may assume Πe = pu for some unit u in OT .
In addition, any conjugate of Π has the form ζe(2u)1/e for some eth root
of unity ζe lying in the algebraic closure Qp. In particular, for any integer
i 6≡ 0 (mod e) one has TrK/T Π i = 0. Writing x = 1+psΠ−dβ for β ∈ O/Pd,
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say β = y0 + y1Π + · · ·+ ye−2Π
e−2 with yi ∈ OT /pOT (0 ≤ i ≤ e− 2), the

expression (28) for S(x) becomes∑
a∈O/pO

ζ
1
2

Tr(a2+2aΠ−d(y0+y1Π+···+ye−2Πe−2))
p .

Expressing each a ∈ O/pO uniquely as x0 + x1Π + · · · + xe−1Π
e−1 with

xi ∈ OT /pOT in the above sum yields

S(x) =
∑

x0,x1,...,xe−1∈OT /pOT

ζ
1
2

Tr(x2
0+2aΠ−dβ)

p(29)

=
∑

x0,...,xe−2

ζ
1
2

Trx2
0+Tr (x0+x1Π+···+xe−2Πe−2)Π−dβ

p

∑
xe−1

ζTrxe−1β
p .

Since the inner sum
∑

xe−1
ζ
TrT/Qp xe−1 TrK/T β
p =

∑
xe−1

ζ
TrT/Qp xe−1y0
p equals

pf or 0 according as y0 ≡ 0 (mod pOT ) or not, one obtains

S(x) = pf
∑

x0,...,xe−2

ζ
1
2

Trx2
0+Tr (x0+x1Π+···+xe−2Πe−2)Π−dβ

p , or

pf
∑

x0,...,xe−3

ζ
1
2

Trx2
0+Tr (x0+···+xe−3Πe−3)Π−dβ

p

∑
xe−2

ζTrxe−2Π−1β
p .

Now the inner sum is
∑

xe−2
ζ
Trxe−2y1
p , which equals pf or 0 according as

y1 ≡ 0 modulo pOT or not, so

S(x) = p2f
∑

x0,...,xe−3

ζ
1
2

Trx2
0+Tr (x0+···+xe−3Πe−3)Π−dβ

p

with y0 ≡ y1 ≡ 0 (mod pOT ). Continuing in this manner yields a total sum

pf(e−1)
∑
x0

ζ
1
2

Trx2
0

p = pf(e−1)
∑
x0

ζ
1
2

TrT/Qp ex
2
0

p

= pf(e−1/2)(−1)f−1

(
e

p

)f
ζ
(1−p)f
8

from (29) with β = 0. Thus

GPγ (χ) = pf(γ−es′)ζnq S(1) = (−1)f−1pf(γ−es−1/2)ζnq

(
e

p

)f
ζ
(1−p)f
8

in (27).
It remains to evaluate S(x) when K/Qp is wildly ramified where d ≥ e.

In this case S(x) becomes
∑

a∈O/pO ζ
Tr a(x−1)
ps+1 equal to pfe or 0 according as
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x ≡ 1 (mod P es
′−d) or not. Thus one obtains

GPγ (χ) = pf(γ−es)
∑

α∈Pes′−d/Pes
χ(N(1 + α))ζTr(1+α)

q

from (27) upon writing each x ≡ 1 (mod P es
′−d) as 1 +α for α ∈ Pes′−d. In

view of Lemma 4, the above expression becomes

GPγ (χ) = pf(γ−es)ζnq
∑

α∈Pes′−d/Pes
ζ

1
2

Trα2

q .

To evaluate the sum above, one has

Proposition 7. For r = 2s+ 1 with s > d/e ≥ 1 and s′ ≥ δ,

∑
α∈Pes′−d/Pes

ζ
1
2

Trα2

q =


pf(d−e)/2 or

(−1)f−1pf(d−e)/2
(
NT/Qp(TrK/T Πe−d−1)

p

)
ζ
(1−p)f
8

according as d ≡ e (mod 2) or not.

Proof. First express α as α = ps+1Π−dβ for β ∈ O/Pd−e so∑
α∈Pes′−d/Pes

ζ
1
2

Trα2

q =
∑

β∈O/Pd−e
ζ

1
2

Tr (pΠ−dβ)2

p .

Now write β = Πvβ′ + b uniquely for β′ ∈ O/Pd−e−v and b ∈ O/Pv for
(d− e)/2 ≤ v ≤ d− e. Arguing as before one obtains the values as stated in
the proposition.

In view of the prior discussion and the propositions above one finds in
general for r > 1 the following:

Theorem 1. For s > d/e, s′ ≥ δ and γ ≥ γ0 with p odd and χ normal-
ized as in (5),

GPγ (χ)

=


pf(γ−(re−d)/2)ζnq or

(−1)f−1pf(γ−(re−d)/2)

(
NT/Qp(TrK/T Πe−d−1u1+s−s′)

p

)
ζ
(1−p)f
8 ζnq

according as re ≡ d (mod 2) or not, where Πe = pu for u ∈ O.

The following corollary is the special case when K/Qp is tamely ramified.

Corollary 1. For s > 0 and γ ≥ γ0 with p odd, K/Qp tamely ramified
and χ normalized as in (5),
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GPγ (χ) =
pf(γ−(re−d)/2)ζnq if re ≡ d (mod 2),

(−1)f−1ζ
(1−p)f
8 pf(γ−(re−d)/2)

(
NT/Qp(eu

1+s−s′)
p

)
ζnq if re 6≡ d (mod 2),

where Πe = pu for u ∈ OT .

Since d = e − 1 the corollary follows immediately from Theorem 1 for
s′ > 1 (s′ > 2 when p = 3). However, the argument Ron Evans used in
[7, Theorem 2.2] extends here to establish the stated result for any s > 0
when K/Qp is tamely ramified including the “pesky” case s = 1. The details
which rely on the facts TrK/T Π i = 0 for e - i and NT/QpU

(i)
T = U

(i)
p for i > 0

are left to the reader.

5. The case p = 2. My main goal here is to show that GPγ (χ) has the
form (7) for p = 2. For this purpose, I first require some elementary results
about certain 2-adic sums in the unramified extension T/Q2. To begin, let
U denote the group of 2f − 1 roots of unity in T , the so-called Teichmüller
subgroup of T . Any element α of OT has a unique representation α =∑∞

i=0 ti2
i with each ti ∈ U ∪ {0}. Furthermore, for any x ∈ U , TrT/Q2

x =
x+ x2 + · · ·+ x2f−1

, so

(30) TrT/Q2
x2 = TrT/Q2

x for x ∈ U ∪ {0}.
Lastly, note that for any u 6≡0 (mod 2OT ), the congruence x2≡u (mod 2OT )
has the unique solution u2f−1

modulo 2OT which I shall denote as u1/2.

Lemma 5. For v ∈ OT ,∑
x∈OT /2OT

ζ
TrT/Q2

(x2+vx)

2 =
{

2f if v ≡ 1 (mod 2OT ),
0 otherwise.

Proof. For convenience I write Tr = TrT/Q2
here and in the proofs of the

next two lemmas. Note that

(31)
∑

x∈OT /2OT

ζTrαx
2 =

{
2f if α ≡ 0 (mod 2OT ),
0 otherwise.

It follows from (30) that Trx2 = Trx (mod 2OT ) for any x ∈ OT . Thus∑
x∈OT /2OT

ζ
Tr(x2+vx)
2 =

∑
x∈OT /2OT

ζ
Tr(x+vx)
2

so the result of the lemma follows from Proposition 1.

Corollary 2. For u 6∈ 2OT ,∑
x∈OT /2OT

ζ
TrT/Q2

(ux2+vx)

2 =
{

2f if u ≡ v2 (mod 2OT ),
0 otherwise.
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Proof. Since u 6≡ 0 (mod 2OT ), u is a 2f − 1-st root of unity in OT /2OT
and so is u1/2. Replacing x by x/u1/2 in the summation yields∑

x∈OT /2OT

ζ
Tr(ux2+vx)
2 =

∑
x∈OT /2OT

ζ
Tr(x2+vx/u1/2)
2 .

The statement of the corollary immediately follows now from Lemma 5.

Lemma 6. For any odd integer a,∑
x∈OT /2OT

ζ
TrT/Q2

ax2

4 = (−1)f−12f/2
(

2
a

)f
ζfa8 .

Proof. Since Tr ax2 = aTrx2, it suffices to demonstrate the result when
a = 1. First note that any x =

∑∞
i=0 ti2

i in OT with ti ∈ U ∪ {0} satisfies
x2 ≡ t20 (mod 4OT ) so

(32)
∑

x∈OT /2OT

ζTrx2

4 =
∑

t∈U∪{0}

ζTr t
4

from (30). But the incomplete Gauss sum on the right side of (32) is known
[12] (see also [15]) to equal (−1)f−1(1 + i)f = (−1)f−12f/2ζf8 .

Lemma 7. Let α, β ∈ OT with α ≡ a+ 2b (mod 4OT ), where a ∈ U and
b ∈ U ∪ {0}. Then∑

x∈OT /2OT

ζ
TrT/Q2

(αx2+2βx)

4 = ζ
−TrT/Q2

(β2/α+b/a)

4 (−1)f−12f/2ζf8 .

Proof. Observe first that∑
x∈OT /2OT

ζ
Tr(αx2+2βx)
4 = ζ

−Trβ2/α
4

∑
x∈OT /2OT

ζTrαx2

4 .

But ∑
x∈OT /2OT

ζTrαx2

4 =
∑

t∈U∪{0}

ζTrαt2

4 =
∑

t∈U∪{0}

ζ
Tr (a+2b)t
4

since the set U ∪ {0} is invariant under the Frobenius action x → x2. This
last sum is known [12, Prop 7.1] to equal ζ−Tr b/a

4 (−1)f−12f/2ζf8 . I note that
this result is incorrectly stated in [12], with a minus sign missing (the factor
µA(b/a) should read µA(−b/a) there).

I now return attention to that of computing GPγ (χ) in (3), assuming
q = 2r with r = 2s or 2s+1 with s > d/e first. Then γ0 = re−d > es′ again,
where s′ = s or s+ 1 according as r is even or odd. Writing each α ∈ O/Pγ

for γ ≥ γ0 uniquely as α = z(1 + w2s
′
) for z ∈ O/Pes′ and w ∈ O/Pγ−es′ ,
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one finds for any numerical character χ modulo q normalized as in (6) that

(33) GPγ (χ) = 2f(γ−es′)
∑

z≡1 (Pes−d) inO/Pes
′

χ(N(z))ζTr z
q ,

using the same argument as in the case of p odd before. To evaluate χ(N(z))
here, I set δ = max(2d/e, 1 + 3d/(2e)) and obtain the following analog of
Lemma 4.

Lemma 8. For s > d/e and α ∈ Pes′−d, if s′ ≥ δ then

χ(N(1 + α)) =

{
ζ
−S1+ 1

2
(S2−S2

1)
q if r is even,

ζ
−S1+ 1

2
S2

q if r is odd,

for any numerical character χ modulo q normalized as in (6).

Proof. I assert that the condition s′ ≥ δ here ensures that (1/ν)Sν ≡
0 (mod q) for ν > 2 so that N(1 + α) ≡ 1− a1 + a2 ≡ 1 + S1 − 1

2(S2 − S2
1)

(mod q) from Lemma 1. Also S2
1 ≡ 0 (mod 22s′) and S2 ≡ 0 (mod 2s

′+1) so

χ(N(1 +α)) = ζ
−S1+ 1

2
(S2−S2

1)
q from the normalization in (6) when r is even.

For odd r one obtains χ(N(1 + α)) = ζ
−S1+ 1

2
S2

q instead from (6) since by
the binomial theorem

(1 + 2s + 22s−1)(S1− 1
2
S2)/2s ≡ 1 + S1 −

1
2

(S2 − S2
1) (mod q)

in this case. To verify the assertion one requires that

ν(s′e− d) + d ≥ re+ e ord2 ν for ν > 2.

As in the proof of Lemma 4, the above inequality will hold if

s′ ≥ ν − 1
ν − 2

d

e
+

ord2 ν

ν − 2
for ν > 2,

which is trivially true for unramified extensions. When K/Q2 is ramified,
(ν − 1)/(ν − 2) takes on its maximum value 2 when ν = 3; whereas
(ord2 ν)/(ν − 2) has maximum value 1 when ν = 4. Thus the last inequality
holds for any s′ ≥ δ.

I remark that the conclusion of this lemma holds for α ∈ Pes−[(d+1)/2]

whenever e is even and r odd, but with s > 2 when e < d < 2e. Indeed,
when d ≥ 2e, Pes−[(d+1)/2] ⊆ Pes′−d since es− [(d+ 1)/2] ≥ es′ − d, so the
remark follows immediately from Lemma 8. For e < d < 2e with s > 2,
s′ ≥ δ and α ∈ pes−[(d+1)/2], one readily finds that S1 ≡ 0 (mod 2s) and
S2 ≡ 0 (mod 2s+2). In addition, (1/ν)Sν ≡ 0 (mod q) for ν > 2 by arguing

similarly as in the proof of Lemma 8 above. Thus χ(N(1 + α)) = ζ
−S1+ 1

2
S2

q

from the normalization in (6) as before. The same result is seen to hold for
s = 2 when d = e.
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I now require that s′ ≥ δ in addition to s > d/e in evaluating (33), and
deal with the cases of r even and odd separately.

Case of r even. If r = 2s, then in view of the lemma above, the expres-
sion (33) for GPγ (χ) becomes

(34) GPγ (χ) = 2f(γ−es)ζnq
∑

α∈Pes−d/Pes
ζ

1
2
(Trα2−(Trα)2)

q

upon writing z = 1 + α for α ∈ Pes−d.
Expressing each α as 2sΠ−dβ for β ∈ O/Pd in the sum above, one finds

that

(35)
∑

α∈Pes−d/Pes
ζ

1
2
(Trα2−(Trα)2)

q =
∑

β∈O/Pd
ζ
Tr (Π−dβ)2−(TrΠ−dβ)2

2

as for the case of p odd.
Now suppose K/Q2 is ramified, but tamely so. Then d = e− 1 and one

may assume Πe = 2u for some unit u in OT . In particular, for any integer
i 6≡ 0 (mod e) one has TrK/T Π i = 0 just as before in the case of p odd.
Expressing each β ∈ O/Pd in the form x0 + x1Π + · · · + xe−2Π

e−2 for
xi ∈ OT /2OT , one finds that TrΠ−dβ = 0 and TrK/T (Π−dβ)2 equals

TrK/T
∑

0≤i,j≤e−2

xixjΠ
−2d+i+j =

e−2∑
i=0

xixe−2−i TrK/T Π
−e =

e

2u

e−2∑
i=0

xixe−2−i.

Thus (35) becomes ∑
x0,...,xe−2

ζ
e
2

TrT/Q2
1
u

Pe−2
i=0 xixe−2−i

2 ,

which is readily seen to equal 2fd/2 from (31).
Now consider the case where K/Q2 is wildly ramified, so e is even. To

evaluate the sum (35) for this case, write any β ∈ O/Pd uniquely as β =
Πvβ′ + b for β′ ∈ O/Pd−v and b ∈ O/Pv with (d + e)/2 ≤ v ≤ d. One
obtains∑

β∈O/Pd
ζ
Tr (Π−dβ)2−(TrΠ−dβ)2

2

=
∑

b∈O/Pv
ζ
Tr (Π−db)2−(TrΠ−db)2

2

∑
β′∈O/Pd−v

ζ2TrΠv−2dbβ′

2 ,

which by Proposition 1 equals

2f(d−v)
∑

b∈Pd−v/Pv
ζ
Tr (Π−db)2−(TrΠ−db)2.
2
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Choosing v = [(d+ e+ 1)/2] in this last expression, yields the quantity

2f [(d−e)/2]
∑

b∈P [(d−e)/2]/P [(d+e+1)/2]

ζ
Tr (Π−db)2−(TrΠ−db)2

2

or equivalently

(36) 2f [(d−e)/2]
∑

β∈O/Pe+[(d+1)/2]−[d/2]

ζ
Tr (Π−[(d+e+1)/2]β)2−(TrΠ−[(d+e+1)/2]β)2

2

where each b ∈ P [(d−e)/2]/P [(d+e+1)/2] has been uniquely expressed as b =
Π [(d−e)/2]β for β ∈ O/Pe+[(d+1)/2]−[d/2].

To evaluate the sum (36) it will be necessary to consider solutions x0,
x1, . . . , xe/2−1 modulo 2OT of the following auxiliary system of linear con-
gruences:

(37)

u1x0 ≡ z1,
u2x0 + u1x1 ≡ z2,
. . . . . . . . . . . . . . . . . .

ue/2x0 + ue/2−1x1 + · · ·+ u1xe/2−1 ≡ ze/2,

where for 1 ≤ i ≤ e/2, ui ≡ 2 TrK/T Π−d−ius
′−s and zi uniquely satisfies

modulo 2OT the congruence

z2
i ≡

{
TrK/T Π−w−2iu if r is odd,
TrK/T Π−w−2i + (TrK/T Π−w/2−i)2 if r is even,

with w = max(2[d/2]− e, 0).
Note that the system (37) above is triangular with u1 6≡ 0 (mod 2OT )

by Lemma 3, and hence always has a unique solution which is readily found
using forward substitution. One may also uniquely express

(38) u1 ≡ ω0 + 2ω1 (mod 4OT ),

with ω0 ∈ U and ω1 ∈ U ∪ {0}.
The sum in (36) is evaluated next.

Proposition 8. For r = 2s with s > d/e ≥ 1 and s ≥ δ,∑
β∈O/Pe+[(d+1)/2]−[d/2]

ζ
Tr (Π−[(d+e+1)/2]β)2−(TrΠ−[(d+e+1)/2]β)2

2

= 2f(e+[(d+1)/2]−[d/2])/2ζκ8 ,

with

κ ={
4 Tr (Π−(e+d)γ2 +Π−(e+d)/2γ) or
5f − 4 + 4 Tr (Π−(e+d+1)γ2 +Π−(e+d+1)/2γ)− 2 TrT/Q2

(v/u1 + ω1/ω0),
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according as d is even or odd. Here γ = x0 + x1 + · · · + xe/2−1Π
e/2−1 with

x1, . . . , xe/2−1 uniquely solving the system (37) modulo 2OT , u1 ≡ ω0 +
2ω1 (mod 4OT ) as in (38) and

v = (TrK/T Π
−(d+1)/2)2 + (2 TrK/T Π

−d−e/2−1γ)2

when d is odd.

Proof. Note that K/Q2 is wildly ramified since d ≥ e, so e is even.
I consider the case of d even first. Writing each β ∈ O/2O now as β =
x0 + x1Π + · · ·+ xe−1Π

e−1 for xi ∈ OT /2OT , one finds that∑
β∈O/2O

ζ
TrΠ−(d+e)β2−(TrΠ−(d+e)/2β)2

2

=
∑

x0,...,xe−1

ζ
Tr(Π−(d+e)(x0+x1Π+···+xe−1Πe−1)2+Π−(d+e)/2(x0+x1Π+···+xe−1Πe−1))
2

=
∑

x0,...,xe−2

ζ
Tr(Π−(d+e)(x0+x1Π+···+xe−2Πe−2)2+Π−(d+e)/2(x0+x1Π+···+xe−2Πe−2))
2

×
∑
xe−1

ζ
TrT/Q2

(x2
e−1 TrK/T Π

e−d−2+xe−1(2x0 TrK/T Π
−d−1+TrK/T Π

(e−d−2)/2))

2 .

But the inner sum equals 2f or 0 according as u1x0 + TrK/T Π(e−d−2)/2 ≡
(TrK/T Πe−d−2)1/2 (mod 2OT ) or not by Corollary 2 (equivalently as u1x0

≡ z1 or not). Hence one gets

2f
∑

x1,...,xe−3

ζ
Tr(Π−(d+e)(x0+···+xe−3Πe−3)2+Π−(d+e)/2(x0+···+xe−3Πe−3))
2

∑
xe−2

ζTR
2 ,

where

TR = TrT/Q2
(x2
e−2 TrK/T Π

e−d−4

+ xe−2(2x0 TrK/T Π
−d−2 + 2x1 TrK/T Π

−d−1 + TrK/T Π
(e−d−4)/2)),

separating out the summation over xe−2. Now the inner sum equals 2f or 0
according as u2x0+u1x1+TrK/T Π(e−d−4)/2≡(TrK/T Πe−d−4)1/2 (mod 2OT )
or not, again by Corollary 1 (equivalently as u2x0 + u1x1 ≡ z2 or not).
Continuing in this manner one obtains

2fe/2ζ
Tr(Π−(d+e)(x0+x1Π+···+xe/2−1Π

e/2−1)2+Π−(d+e)/2(x0+x1Π+···+xe/2−1Π
e/2−1))

2

for the complete sum, where the xi satisfy (37).
It remains to consider the case of d odd. Expressing each β ∈ O/Pe+1

as β = x0 + x1Π + · · ·+ xeΠ
e for xi ∈ OT /2OT one finds that
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β∈O/Pe+1

ζ
TrΠ−(d+e+1)β2−(TrΠ−(d+e+1)/2β)2

2

×
∑

x0,...,xe−1

ζ
TrΠ−(d+e+1)(x0+x1Π+···+xe−1Πe−1)2+TrΠ−(d+e+1)/2(x0+x1Π+···+xe−1Πe−1)
2

×
∑
xe

ζ
TrT/Q2

x2
e(TrK/T Π

e−d−1)+xe(2x0 TrK/T Π
−d−1+TrK/T Π

(e−d−1)/2)

2 .

But the inner sum equals 2f or 0 according as u1x0 + TrK/T Π(e−d−1)/2 ≡
(TrK/T Πe−d−1)1/2 (mod 2OT ) or not by Corollary 1 (equivalently as u1x0 ≡
z1 or not). Hence one gets

2f
∑

x1,...,xe−2

ζTR1
2

∑
xe−1

ζTR2
2

where

TR1 = Tr (Π−(d+e+1)(x0 + x1Π + · · ·+ xe−2Π
e−2)2

+Π−(d+e+1)/2(x0 + x1Π + · · ·+ xe−2Π
e−2)),

TR2 = TrT/Q2
x2
e−1(TrK/T Π

e−d−3)

+ xe−1(2x0 TrK/T Π
−d−2 + 2x1 TrK/T Π

−d−1 + TrK/T Π
(e−d−3)/2),

separating out the summation over xe−1. Now the inner sum equals 2f

or 0, again by Corollary 1, according as u2x0 + u1x1 + TrK/T Π(e−d−3)/2 ≡
(TrK/T Πe−d−3)1/2 (mod 2OT ) or not (equivalently as u2x0 + u1x1 ≡ z2 or
not). Continuing in this manner one obtains

2fe/2ζ
Tr (Π−(d+e+1)(x0+···+xe/2−1Π

e/2−1)2+Π−(d+e+1)/2(x0+···+xe/2−1Π
e/2−1))

2

×
∑
xe/2

ζ
TrT/Q2

2TrK/T (Π−d−1x2
e/2

+2xe/2(x0Π−(d+e/2+1)+···+xe/2−1Π
−d−2+Π−(d+1)/2))

4 ,

where the xi satisfy (37). By Lemma 7 the inner sum this time is found to
be

ζ
−TrT/Q2

((TrK/T Π
−(d+1)/2)2+(2TrK/T Π

−(d+e/2+1)γ)2/u1+ω1/ω0)

4 (−1)f−12f/2ζf8 ,

with u1 ≡ ω0 + 2ω1 (mod 4OT ) as in (38).
This completes the proof of the proposition.

Case of r odd. I next consider the case r = 2s+ 1 with s > max(1, d/e)
and s′ ≥ δ (and s > 2 when K/Q2 is wildly ramified with e < d < 2e).
Writing each z ≡ 1 (mod Pes−d) uniquely as z = x(1+2sa) for x ∈ (O/Pes)∗

and a ∈ O/2O, one finds from (33) that

(39) GPγ (χ) = 2f(γ−es′)
∑

x≡1 (modP es−d) inO/Pes

χ(Nx)ζTrx
q S(x)
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as before, where

(40) S(x) =
∑

a∈O/2O

χ(N(1 + 2sa))ζTr ax
2s+1 =

∑
a∈O/2O

ζ
Tr(ax−a+2s−1a2)
2s+1 .

The evaluation of S(x) when K/Q2 is tamely ramified proceeds just as in
the analogous case when p is odd to yield

GPγ (χ) = 2f(γ−es′)ζnq S(1)

when Π is chosen so that Πe = 2u for some unit u ∈ OT , with

S(1) = 2f(e−1)
∑
x0

ζ
TrT/Q2

ex2
0

4 = 2f(e−1/2)(−1)f−1

(
2
e

)f
ζn8

from Lemma 6. The same holds when K/Q2 is wildly ramified with d ≥ 2e
to yield S(x) = 2fe or 0 according as x ≡ 1 (mod P es

′−d) or not, so (39)
becomes

GPγ (χ) = 2f(γ−es)
∑

α∈Pes′−d/Pes
χ(N(1 + α))ζTr(1+α)

q .

In view of Lemma 8, the above expression becomes

GPγ (χ) = 2f(γ−es)ζnq
∑

α∈Pes′−d/Pes
ζ

1
2

Trα2

q ,

or equivalently

2f(γ−es)ζnq
∑

β∈O/Pd−e
ζ
Tr (Πe−dβ)2

4

upon expressing α as α = 2sΠe−dβ for β ∈ O/Pd−e. Writing β = Πvβ′ + b
for β′ ∈ O/Pd−e−v and b ∈ O/Pv for any d/2 ≤ v ≤ d− e, one obtains∑

β∈O/Pd−e
ζ
Tr (Πe−dβ)2

4 = 2f(d−e−v)
∑

b∈Pd−e−v/Pv
ζ
Tr (Πe−db)2

4

as before for the case r = 2s. Choosing v = [(d+1)/2] in this last expression
yields∑

β∈O/Pd−e
ζ
Tr (Πe−dβ)2

4 = 2f([d/2]−e)
∑

β∈O/Pe+[(d+1)/2]−[d/2]

ζ
Tr (Π−[(d+1)/2]β)2

4

by arguing as before in the proof of Proposition 8. Thus

(41) GPγ (χ) = 2f(γ−es′+[d/2])ζnq
∑

β∈O/Pe+[(d+1)/2]−[d/2]

ζ
Tr (Π−[(d+1)/2]β)2

4 .
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I assert that (41) holds when e ≤ d < 2e here, too. Indeed, writing x =
1 + 2sΠ−dρ for ρ ∈ O/Pd in (40) one obtains

S(x) =
∑

α∈O/Pe−[d/2]

ζ
Tr(α2+2αΠ−dρ)
4

∑
a′∈O/P [d/2]

ζTr 2Πe−d−[d/2]a′ρ
4 ,

where each a ∈ O/2O is uniquely expressed as a = α + Πe−[d/2]a′ for α ∈
O/Pe−[d/2] and a′ ∈ O/P [d/2]. But from Proposition 1, the inner sum equals
2f [d/2] or 0 according as ρ ∈ P [d/2] or not, with

S(x) = 2f [d/2]
∑

α∈O/Pe−[d/2]

ζ
Tr(α2+2Π−dαρ)
4

or 0 in (40) accordingly. Summing in (39) over all x of the form 1 +
2sΠ−[(d+1)/2]β′ with β′ ∈ O/P [(d+1)/2] yields

GPγ (χ) = 2f(γ−es′+[d/2])

×
∑

β′∈O/P [(d+1)/2]

χ(N(1 + 2sΠ−[(d+1)/2]β′))ζTr(1+2sΠ−[(d+1)/2]β′)
q

×
∑

α∈O/Pe−[d/2]

ζ
Tr(α2+2αΠ−[(d+1)/2]β′)
4 .

In view of the remark accompanying Lemma 8 one finds that GPγ (χ) has the
form (41) upon putting β = αΠ [(d+1)/2] +β′, where α and β′ separately run
through the representatives of O/Pe−[d/2] and O/P [(d+1)/2], respectively.

To evaluate the sum in (41) when K/Qp is wildly ramified one has

Proposition 9. For r = 2s + 1 with s > d/e ≥ 1 and s′ ≥ δ (s > 2
when e < d < 2e),∑

β∈O/Pe+[(d+1)/2]−[d/2]

ζ
Tr (Π−[(d+1)/2]β)2

4 = 2f(e+[(d+1)/2]−[d/2])/2ζκ8

with

κ =

{
2 Tr(Π−dγ2) or

5f−4+2 TrT/Q2
(TrK/T Π−d−1γ2−(TrK/T Πe/2−d−1γ)2/u1−ω1/ω0)

according as d is even or odd. Here γ = x0 + x1Π + · · · + xe/2−1Π
e/2−1

with x0, . . . , xe/2−1 satisfying the system (37) modulo 2OT and u1 ≡ ω0 +
2ω1 (mod 4OT ) as in (38).

Proof. I consider the case of d even first. Expressing each β ∈ O/2O as
β = x0 + x1Π + · · ·+ xe−1Π

e−1, we have
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β∈O/2O

ζTrΠ−dβ2

4 =
∑

x0,...,xe−1

ζ
TrΠ−d(x0+···+xe−1Πe−1)2

4

=
∑

x0,...,xe−2

ζ
TrΠ−d(x0+···+xe−2Πe−2)2

4

∑
xe−1

ζ
Tr(Π2e−d−2x2

e−1+2xe−1x0Πe−d−1)

4 .

But the inner sum is∑
xe−1

ζ
TrT/Q2

(x2
e−1 TrK/T Π

e−d−2u+xe−1x0u1)

2

equal to 2f or 0 according as u1x0 ≡ z1 (mod 2OT ) or not by Corollary 2.
Hence one gets

2f
∑

x1,...,xe−2∈OT /2OT

ζ
TrΠ−d(x0+x1Π+···+xe−2Πe−2)2

4 ,

where x0 satisfies the first congruence in (37). Continuing in this manner,
one obtains as before ∑

β∈O/2O

ζTrΠ−dβ2

4 = 2fe/2ζTrΠ−dγ2

4

where γ = x0 +x1Π+ · · ·+xe/2−1Π
e/2−1 with x0, . . . , xe/2−1 satisfying (37).

This yields the result stated in view of (41) when d is even.

For d odd, expressing each β ∈ O/Pe+1 as β = x0 + x1Π + · · · + xeΠ
e

with xi ∈ OT /2OT , the sum
∑

β∈O/Pe+1 ζ
TrΠ−d−1β2

4 becomes∑
x0,...,xe−1

ζ
TrΠ−d−1(x0+···+xe−1Πe−1)2

4

∑
xe

ζ
Tr (Π2e−d−1x2

e+2xex0Πe−d−1)
4 .

But the inner sum is∑
xe∈OT /2OT

ζ
TrT/Q2

(x2
e TrK/T Π

e−d−1u+xex0u1)

2

equal to 2f or 0 according as u1x0 ≡ z1 (mod 2OT ) or not by Corollary 1.
Hence one finds∑

β∈O/Pe+1

ζTrΠ−d−1β2

4 = 2f
∑

x1,...,xe−1

ζ
TrΠ−d−1(x0+x1Π+···+xe−1Πe−1)2

4 ,

where x0 satisfies the first congruence in (37). Continuing one obtains
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2fe/2
∑
xe/2

ζ
TrΠ−d−1(x0+···+xe/2−1Π

e/2−1+xe/2Π
e/2)2

4

= 2ef/2ζ
TrΠ−d−1(x0+···+xe/2−1Π

e/2−1)2

4

×
∑
xe/2

ζ
TrT/Q2

(x2
e/2

TrK/T Π
e−d−1+2xe/2 TrK/T Π

e/2−d−1(x0+···+xe/2−1Π
e/2−1))

4

= 2fe/2ζTrΠ−d−1γ2

4

∑
xe/2

ζ
TrT/Q2

(u1x2
e/2

+2xe/2 TrK/T Π
e/2−d−1γ)

4 ,

where γ = x0+· · ·+xe/2−1Π
e/2−1 with xi satisfying (37). In view of Lemma 7

one finds then that
∑

β∈O/Pe+1 ζ
TrΠ−d−1β2

4 equals

2f(e+1)/2(−1)f−1ζf8 ζ
TrT/Q2

(TrK/T Π
−d−1γ2−(TrK/T Π

e/2−d−1γ)2/u1−ω1/ω0)

4

where u1 = ω0 + 2ω1 is given in (38).
This concludes the proof of the proposition.

In view of the propositions above and the prior discussion I have shown
for general r > 1 the following

Theorem 2. For r = 2s or 2s+ 1 with s > d/e, s′ ≥ δ and any γ ≥ γ0

with χ normalized as in (7) (and s > 2 when r is odd with e < d < 2e),

GPγ (χ) = 2f(γ−(re−d)/2)ζnq ζ
κ
8 ,

where

κ =
{
n+ (4 + (e2 − 1)/2)f − 4 if r = 2s+ 1,
0 if r = 2s,

when K/Q2 is tamely ramified. Otherwise, κ is explicitly determined as in
Propositions 8 and 9.

I note that κ appearing in Propositions 8 and 9 referred to above must
be independent of the choice of uniformizant Π, of course. Actually showing
this from the definition of κ given here in terms of the system of congruences
(37) seems challenging. It would be desirable to obtain an alternative, more
amenable formulation.

The following corollary concerns the special case of K/Qp tamely rami-
fied.

Corollary 3. For s > 0 and γ ≥ γ0 with K/Qp tamely ramified and χ
normalized as in (6),

GPγ (χ) = 2f(γ−(re−d)/2)ζnq ζ
κ
8

with
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κ =


0 if r = 2s,
n+ 4(1 + (e2 − 1)/2)f − 4 if r = 2s+ 1 > 3,
−χ(−1)n+ 4(1 + (e2 − 1)/2)f − 4 if r = 3.

Since d = e−1 the corollary immediately follows from Theorem 2 except
for q = 4, 8 and 16. However, the argument Ron Evans used in [7, Theorem
2.2] extends again here to establish the result when K/Q2 is tamely ramified
for any s > 0. The details are left to the reader.

I conclude with two examples illustrating the results above.

Example 2. Consider the wildly ramified extension K = Q2(ζ12, 21/3)
with f = 2, e = 6, d = 8 and T = Q2(ζ3), so δ = 3. One may choose
the uniformizant Π = (i − 1)/21/3 satisfying Π6 − 2Π3 + 2 = 0 over T
with Π6 = 2i. For s = 3 with r = 2s = 6, γ0 = re − d = 28. Choosing a
character χ modulo 26 normalized as in (6), one expects GP28(χ) = 228ζ12

64ζ
κ
8

from Theorem 2 and Proposition 8 with κ ≡ 4 Tr(Π−14γ2 +Π−7γ) (mod 8),
where γ = x0 + x1Π + x2Π

2 with x0, x1 and x2 satisfying x0 ≡ 0, x1 ≡ 1,
x2 ≡ 0 (mod 2OT ) from (37). In particular with γ = Π one finds κ ≡
4 (mod 8). Direct computation confirms GP28(χ) = −228ζ3

16 as expected.
For s = 3 with r = 2s + 1 = 7, γ0 = re − d = 34. Choosing a character

χ modulo 27 normalized as in (6), one expects GP34(χ) = 234ζ12
128ζ

κ
8 from

Theorem 2 and Proposition 9 with κ = 2 TrΠ−8γ2, where γ = x0 + x1Π +
x2Π

2 with x0, x1 and x2 satisfying x0 ≡ 0, x1 ≡ 1, x2 ≡ 0 (mod 2OT )
from (37). Thus, with γ = Π one obtains κ ≡ 0 (mod 8). Direct computation
confirms that GP34(χ) = 234ζ3

32 as expected.

Example 3. Consider the extension K = Q2(ζ16 + ζ−1
16 ) which is wildly

ramified with e = 4, d = 11 and T = Q2, so δ = 5.5. One may choose the
uniformizant Π = ζ16 + ζ−1

16 satisfying Π4 − 4Π2 + 2 = 0 with Π4 = 2(3 +
2
√

2). For s = 6 with r = 2s = 12, γ0 = re− d = 37. Choosing a character
χ modulo 212 normalized as in (6), one expects GP37(χ) = 237/2ζ4

4096ζ
κ
8

from Theorem 2 and Proposition 8 with κ ≡ 1 + 4 Tr(Π−16γ2 + Π−8γ) −
2(v/u1 +ω1/ω0) (mod 8), where γ = x0 +x1Π with x0 ≡ x1 ≡ 1 (mod 2OT )
from (37), v = (TrΠ−6)2 + (2 TrΠ−14γ)2 and u1 = 2 TrΠ−12 = 99 ≡
1+2 · 1 (mod 4OT ) so ω0 = ω1 = 1. In particular, with γ = 1+Π, one finds
κ ≡ 0 (mod 8). Direct computation confirms that GP37(χ) = 237/2ζ1024 as
expected.

For s = 5 with r = 2s+ 1 = 11, γ0 = re− d = 33. Choosing a character
χ modulo 211 normalized as in (6), one expects GP33(χ) = 233/2ζ4

2048ζ
κ
8 from

Theorem 2 and Proposition 9, with κ ≡ 1+2(TrΠ−12γ2−(TrΠ−10γ)2/u1−
ω1/ω0) (mod 8), where γ = x0 + x1Π with x0 ≡ x1 ≡ 1 (mod 2OT ) in (37)
and u1 = 2 TrΠ−12(3 + 2

√
2) = 17 ≡ 1 + 2 · 0 (mod 4OT ), so ω0 = 0 and

ω1 = 1. In particular with γ = 1 + Π one obtains κ ≡ 4 (mod 8). Direct
computation confirms that GP33(χ) = −233/2ζ512 as expected.
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6. L-functions attached to the Gauss sums. As in Section 2 let Tm
denote the unramified extension of T of degreem, and setKm = KTm,Om =
OKm and Pm = POm. With any numerical character χ defined modulo q of
conductor f(χ) = pb and positive integer γ ≥ re− d satisfying (2), one may
associate an L-function

(42) L(χ, t) = exp
(∑
m≥1

GPγm
(χ)tm/m

)
,

where
GPγm

(χ) =
∑

α∈(Om/P
γ
m)∗

χ(NKm/Qpα)ζ
TrKm/Qp α
q

is the corresponding Gauss sum (3) defined for the field Km with the same γ
and q. I note that from Proposition 3 it immediately follows that if re−d >
1+e/(p− 1) with b < r then for all γ ≥ γ0, L(χ, t) ≡ 1. Thus the interesting
case will be for primitive characters χ modulo q. For a normalized character
χ as in (5) with s and γ satisfying the hypotheses of Theorem 1, or as in
(6) with s and γ satisfying the hypotheses of Theorem 2, one finds upon
comparing the explicit values for GPγ (χ) and GPγm

(χ) a Davenport–Hasse
relation

(43) GPγm
(χ) = (−1)(re−d)(m−1)GPγ (χ)m.

To see this one takes Π again as a uniformizant to generate the prime
ideal Pm of Om, so u = Πep−1 lies in T and for all integers i and j,
TrKm/Tm Π

iuj = TrK/T Π iuj . Now any primitive character modulo q can
be expressed as a power χv of a normalized character χ for some integer v
satisfying gcd(v, q(p− 1)) = 1, so from (4) it follows that (43) holds for any
primitive character modulo q.

The Davenport–Hasse relation (43) readily yields the following evalua-
tion of L(χ, t).

Theorem 3. With s and γ satisfying the hypotheses of Theorem 1 (or
Theorem 2 if p = 2) and for any primitive character χ modulo q,

L(χ, t) =

{
1 +GPγ (χ)t if re− d is odd,

1
1−GPγ (χ)t if re− d is even.

I note that the above generalizes the classical observation (21) for the
case γ = r = 1 with K = T .
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