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1. Introduction. Let f(n) denote the number of distinct unordered fac-
torisations of the natural number n into factors larger than 1. For example,
f(28) = 4 as 28 has the following factorisations:

28, 2 · 14, 4 · 7, 2 · 2 · 7.
In this paper, we address three aspects of the function f(n). For the first
aspect, in [1], Canfield, Erdős and Pomerance mention without proof that
the number of values of f(n) that do not exceed x is xo(1) as x → ∞. Our
first theorem in this note makes this result explicit.

For a set A of positive integers we put A(x) = {n ∈ A : n ≤ x}.
Theorem 1. Let A = {f(m) : m ∈ N}. Then

#A(x) = xO(log log log x/log log x).

Recall that Oppenheim [8] and independently Szekeres and Turán [11]
considered the average value of f(n) in the interval (0, x] showing that

(1)
1
x

∑
0<n≤x

f(n) =
e2
√

log x

2
√
π(log x)3/4

(
1 +O

(
1√

log x

))
.

There is a large body of literature addressing average values of various arith-
metic functions in short intervals. Our next result gives a lower bound for
the average of f(n) over a short interval (x, x+y] which is of the same order
as the average of f(n) over the interval (0, y].

Theorem 2. Uniformly for x > 0 and y ≥ 2, we have

1
y

∑
x<n≤x+y

f(n)� e2
√

log y

(log y)3/4
.

2010 Mathematics Subject Classification: Primary 11A51; Secondary 11A25.
Key words and phrases: factorisation, arithmetic functions.

DOI: 10.4064/aa142-1-3 [41] c© Instytut Matematyczny PAN, 2010



42 F. Luca et al.

Finally, there are also several results addressing the behaviour of positive
integers n which are multiples of some other arithmetic function of n. See,
for example, [3], [5], [9] and [10] for problems related to counting positive
integers n which are divisible by either ω(n), Ω(n) or τ(n), where these
functions are the number of distinct prime factors of n, the number of total
prime factors of n, and the number of divisors of n, respectively. Our next
and last result gives upper and lower bounds on the counting function of
the set of positive integers n which are multiples of f(n).

Theorem 3. Let B = {n : f(n) |n}. Then

#B(x) =
x

(log x)1+o(1)
as x→∞.

2. Preliminaries and lemmas. The function f(n) is related to various
partition functions. For example, f(2n) = p(n), where p(n) is the number
of partitions of n. Furthermore, f(p1 · · · pk) = Bk, where Bk is the kth Bell
number which counts the number of partitions of a set with k elements
into nonempty disjoint subsets. In general, f(pα1

1 · · · p
αk
k ) is the number of

partitions of a multiset consisting of αi copies of {i} for each i = 1, . . . , k.
Throughout the paper, we write log x for the natural logarithm of x. We use
p and q for prime numbers, O and o for the Landau symbols, and � and �
for the Vinogradov symbols. The following asymptotic formula for the kth
Bell number is due to de Bruijn [4].

Lemma 1.
logBk
k

= log k − log log k − 1 +
log log k

log k
+

1
log k

+O

(
(log log k)2

(log k)2

)
.

We also need the Stirling numbers of the second kind S(k, l) which count
the number of partitions of a k-element set into l nonempty disjoint subsets.
Clearly,

(2) Bk =
k∑
l=1

S(k, l).

We now formulate and prove a few lemmas about the function f(n) which
will come in handy later on.

The next lemma is an easy observation, so we state it without proof.

Lemma 2. If a | b, then f(a) ≤ f(b).

We let pn denote the nth prime number and α1(n) denote the maximal
exponent of a prime appearing in the prime factorisation of n. Let n be a
positive integer with prime factorisation

n = qα1
1 · · · q

αk
k ,
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where q1, . . . , qk are distinct primes and α1(n) := α1 ≥ · · · ≥ αk. We put
n0 = pα1

1 · · · p
αk
k , and observe that f(n) = f(n0). This observation will play

a crucial role in the proof of Theorem 1.
The following lemma gives upper bounds for α1(n) and ω(n) when

f(n) ≤ x.

Lemma 3. Let n = qα1
1 · · · q

αk
k , where α1 ≥ · · · ≥ αk and f(n) ≤ x. Then

(i) α1 = O((log x)2);
(ii) k = ω(n) = O(log x/log log x).

Proof. It follows from Lemma 2 that

f(n) ≥ f(qα1
1 ) = p(α1).

Using the asymptotic formula

(3) p(n) = (1 + o(1))
exp(π

√
2n/3)

4n
√

3
as n→∞,

due to Hardy and Ramanujan [6], we conclude that exp(c
√
α1) ≤ x with

some constant c > 0. Hence, (i) follows. In order to prove (ii), let n′0 =
p1 · · · pk. By Lemma 2, we have f(n′0) ≤ f(n) ≤ x. Furthermore, f(n′0) = Bk.
It now follows from Lemma 1 that

exp((1 + o(1))k log k) = Bk ≤ x
as k →∞, yielding

k = O

(
log x

log log x

)
,

which completes the proof of the lemma.

3. Proofs of the theorems

3.1. Proof of Theorem 1. For a positive integer n, we let again n0

and α1(n) be the functions defined earlier. We let A(x) = {m1, . . . ,mt} be
such that m1 < · · · < mt and let N = {n1, . . . , nt} be positive integers
such that ni is minimal among all positive integers n with f(n) = mi for
all i = 1, . . . , t. It is clear that if n ∈ N , then n is of the form n0. Since
#A(x) = t = #N , it suffices to bound the cardinality of N .

We partition this set as N = N1 ∪N2 ∪N3, where

N1 = {n ∈ N : α1(n) ≤ log log x},

N2 =
{
n ∈ N : ω(n) ≤ log x

(log log x)2

}
, N3 = N \ (N1 ∪N2).

If n ∈ N1, then n has at most O(log x/log log x) prime factors (by
Lemma 3), each appearing with an exponent of at most log log x.
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Therefore,

(4) #N1 = (log log x)O(log x/log log x) = x
O( log log log x

log log x
)
.

Next, we observe that an integer in N2 has at most log x/(log log x)2

prime factors, each appearing with an exponent O((log x)2) (by Lemma 3).
Thus,

#N2 ≤ (O(log x)2)
log x

(log log x)2 = exp
(

(2 + o(1)) log x
log log x

)
(5)

= x
o( log log log x

log log x
) as x→∞.

Finally, let n ∈ N3, and write it as

n = pα1
1 · · · p

αi
i p

αi+1

i+1 · · · p
αk
k ,

where we put

i := max{j ≤ k : αj ≥ y} with y := blog log x/log log log xc.
Observe that the divisors pαi+1

i+1 · · · p
αt
t of the numbers n ∈ N3 can be chosen

in at most

(6) yk = y
O( log x

log log x
) = exp

(
O

(
log x log log log x

log log x

))
ways. Furthermore, by Lemma 3, the numbers n′ = pα1

1 · · · p
αi
i can trivially

be chosen in at most

(O((log x)2))i = exp(O(i log log x))

ways. Thus, writing N4 for the subset of N3 such that i ≤ log x/(log log x)2,
we get

(7) #N4 ≤ exp
(
O

(
log x

log log x

))
.

From now on, we look at n ∈ N5 = N3 \ N4.
For each t, we let kt be such that S(t, kt) is maximal among the numbers

S(t, k) for k = 1, . . . , t. By formula (2), the definition of kt, and Lemma 1,

S(t, kt) ≥
Bt
t

=
exp((1 + o(1))t log t)

t
= exp((1 + o(1))t log t)

as t→∞. We now claim that

f(n) ≥ f(n′) ≥ f((p1 · · · pi)y) ≥
S(i, ki)y

(yki)!
.

The first two inequalities follow immediately from Lemma 2, so let us prove
the last one.

Note that S(i, ki) counts the number of factorisations of p1 · · · pi into
precisely ki factors. Therefore, (S(i, ki))y counts the number of factorisa-
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tions of (p1 · · · pi)y into kiy square-free factors, where we count each such
factorisation at most (kiy)! times. This establishes the claim.

Since i tends to infinity as x→∞ for all n ∈ N5, we get

S(i, ki)y ≥ exp((1 + o(1))yi log i)

as x→∞. Furthermore, we trivially have

(kiy)! ≤ (kiy)kiy = exp(kiy log(kiy)).

Thus,

(8) f(n) ≥ S(i, ki)y

(kiy)!
≥ exp

(
(1 + o(1))yi log i− kiy log(kiy)

)
as x→∞. We next show that for our choices of y and i we have

kiy log(kiy) = o(yi log i) as x→∞.
Indeed, using the fact

ki = (1 + o(1))
i

log i
as i→∞

(see, for example, [2]), we see that the above condition is equivalent to

log y = o((log i)2),

which holds as x→∞ because

y = log log x/log log log x and i > log x/(log log x)2.

Now the inequality f(n) ≤ x together with (8) and the fact that log i ≥
(1 + o(1)) log log x implies that

(9) i ≤ (1 + o(1))
log x

y log log x
as x→∞.

Thus, the numbers n′ can be chosen in at most

(10) (O((log x)2))i ≤ (O((log x)2))(1+o(1)) log x
y log log x = x

O( log log log x
log log x

)

ways. As we have already seen at (6), the complementary divisor n/n′ =
p
αi+1

i+1 · · · p
αt
t of n can be chosen in at most

(11) xO(log log log x/log log x)

ways also. Thus, the total number of choices for n in N5 is

(12) #N5 ≤ xO(log log log x/log log x).

Hence, from estimates (7) and (12), we get

(13) #N3 ≤ #N4 + #N5 ≤ xO(log log log x/log log x).

From estimates (4), (5) and (13), we finally get

#N ≤ #N1 + #N2 + #N3 ≤ xO(log log log x/log log x),

which completes the proof of the theorem.
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3.2. Proof of Theorem 2. For ease of notation we put

S(x, y) :=
∑

x<n≤x+y
f(n).

Let z be some function of y tending to infinity with it such that z log z <
o(
√

log y) as y →∞. Assume that 0 < x ≤ zy. Write

S(x, y) = S(0, x+ y)− S(0, x).

Observe that
log(x+ y) = log y +O(log z),

therefore

exp(2
√

log(x+ y)) = exp(2
√

log y +O(log z))

= exp
(

2
√

log y +O

(
log z√
log y

))
= e2

√
log y

(
1 +O

(
log z√
log y

))
,

and a similar estimate holds for exp(2
√

log x). Furthermore,
1

(log(x+ y))3/4
=

1
(log y +O(log z))3/4

=
1

(log y)3/4

(
1 +O

(
log z
log y

))
,

and again a similar estimate holds for 1/(log x)3/4. Thus, using estimate (1),
we see that in the range 0 < x ≤ zy the desired sum is

S(x, y) = S(0, x+ y)− S(0, x) =
ye2
√

log y

2
√
π(log y)3/4

(
1 +O

(
z log z

(log y)1/2

))
.

This is even an asymptotic as y →∞ if we take z := (log y)1/2(log log y)−2.
We next assume that x > yz. For each integer n ∈ (0, y], let m(n) be
the largest multiple of n in (x, x + y] and write it as m(n) = m0(n) · n.
Observe that m0(n) ≥ x/n > x/y. Thus, if x ≥ y2, then x/n > y. Let
M = {m(n) : n ∈ (0, y]} and observe that in this range∑

x<n≤x+y
f(n) ≥

∑
m∈M

f(m) ≥
∑

0<n≤y
f(n),

where the last inequality follows by considering only factorisations of m ∈M
which are of the form

n1 · · ·nk ·m0(n)

for some n ∈ (0, y], by remarking also that since m0(n) > y, distinct fac-
torisations of n will yield distinct factorisations of m ∈M. Thus, if x > y2,
the above argument yields

S(x, y) ≥ S(0, y) =
ye2
√

log y

2
√
π(log y)3/4

(
1 +O

(
1√

log y

))
.
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We now suppose that yz ≤ x ≤ y2. We let

S(0, y)− S(0, y/2) =
∑

y/2<n≤y

f(n) = S(0, y)
(

1
2

+O

(
1√

log y

))
.

To each factorisation n1 · · ·nk of some n ∈ I := [y/2, y] we associate, as
before, the factorisation n1 · · ·nk · m0(n) of m(n). Observe that m0(n) ∈
(x/n, x/n + y/n] ⊂ J := (x/y, 2x/y + 2]. Let f1(n) be the number of fac-
torisations of n with two or more parts in J . Note that f1(n) = 0 unless
(x/y)2 ≤ y. Writing a factorisation counted by f1(n) as

a · b ·m1 · · ·ms, where a, b ∈ J ,

we get ∑
y/2≤n≤y

f1(n) ≤
∑
a≤b
a,b∈J

∑
m≤y/ab

f(m) =
∑
a≤b
a,b∈J

S(0, y/ab).

We split the above sum at ab ≤ y/2. In the low range, we use the fact that
the function u 7→ e2

√
log u/(log u)3/4 is increasing, to get∑

a≤b
a,b∈J
ab<y/2

S(0, y/ab) ≤ ye2
√

log y

2
√
π(log y)3/4

( ∑
a≤b
a,b∈J

1
ab

)(
1 +O

(
1

(log y)1/2

))
.

Observe that∑
a≤b
a,b∈J

1
ab
≤
∑
a≥x/y

1
a2

+
1
2

(∑
a∈J

1
a

)2

≤
(

log
(

2x
y

+ 2
)
− log

(
x

y

)
+O

(
1
z

))2

+O

(
1
z

)
=

1
2

(
log 2 +O

(
1
z

))2

+O

(
1
z

)
=

(log 2)2

2
+O

(
1
z

)
.

In the larger range, we have S(0, y/ab) = 1. Thus, under the assumption
that (x/y)2 ≤ y, ∑

a≤b
a,b∈J
ab>y/2

S(0, y/ab) ≤
∑
a,b∈J

1� (x/y)2 ≤ y.

Putting everything together, we get∑
y/2≤n≤y

f1(n) ≤ S(0, y)
(

(log 2)2

2
+O

(
(log log y)2√

log y

))
.
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Therefore,∑
y/2≤n≤y

(f(n)− f1(n)) ≥ S(0, y)
(

1
2
− (log 2)2

2
+O

(
(log log y)2√

log y

))
� S(0, y).

We now look only at the factorisations m1 · · ·mkm0(n) of m(n) for n ∈
[y/2, y] arising from factorisations m1 · · ·mk of n counted by f(n) − f1(n).
These might not be distinct but since the factorisation m1 · · ·mk of n has at
most one part in J , the interval containing m0(n) for all n under scrutiny,
it follows that each such factorisation is counted at most twice. This shows

S(x, y) ≥ 1
2

∑
y/2≤n≤y

(f(n)− f1(n))� S(0, y),

which is what we wanted to prove.

3.3. Proof of Theorem 3. We observe that all primes are in A since
f(p) = 1 for all prime p. Thus,

#A(x)� x

log x
.

This completes the lower bound part of the theorem. To obtain the upper
bound, we cover the set A(x) by three sets A1, A2 and A3 as follows:

A1 = {n ≤ x : Ω(n) > 10 log log x},

A2 =
{
n ≤ x : ω(n) <

log log x
log log log x

}
,

A3 = {n ≤ x : n ≡ 0 (mod f(n)), n 6∈ A1 ∪ A2}.
We recall the bound

#{n ≤ x : Ω(n) = k} � kx log x
2k

valid uniformly in k (see, for example, Lemma 13 in [7]). Using the above
estimate, we get

(14) #A1 ≤ x
∑

k>10 log log x

k

2k
� x log log x

210 log log x
= o

(
x

log x

)
as x→∞. To find an upper bound for A2, we use the bounds (see page 200
of [12])

#{n ≤ x : ω(n) = k} � x

(k − 1)!
(log log x+ c1)k−1

log x
,

where c1 > 0 is some constant. Using the elementary estimate m! ≥ (m/e)m

with m = k − 1, we get

#{n ≤ x : ω(n) = k} � x

log x

(
e log log x+ c2

k − 1

)k−1

,
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where c2 = ec1. The right hand side is an increasing function of k in our
range for k versus x when x is large. Since k < log log x/log log log x, we
deduce that

(15) #A2 �
x

log x
(O(log log log x))

log log x
log log log x =

x

(log x)1+o(1)

as x→∞.
Finally, we estimate A3. Each n ∈ A3 can be written as

n = qα1
1 · · · q

αk
k ,

where q1, . . . , qk are distinct primes, α1 ≥ · · · ≥ αk, α1 + · · · + αk ≤
10 log log x and k > K := blog log x/log log log xc. Let T be the set of all
such tuples (k, α1, . . . , αk). For each such n, we have

f(n) ≥ BK ≥ exp((1 + o(1))K logK) ≥ exp((1 + o(1)) log log x)

= (log x)1+o(1)

as x→∞. The number of tuples (k, α1, . . . , αk) satisfying the above condi-
tions is at most

#T � log log x
∑

n≤10 log log x

p(n),

where again p(n) is the partition function of n. Using estimate (3), we con-
clude that

#T � (log log x)2 exp(O(
√

log log x)) = (log x)o(1) as x→∞.
Thus,

(16) #A3 ≤
∑

(k,α1,...,αk)∈T

x

f(pα1
1 · · · p

αk
k )
≤ x#T

BK
=

x

(log x)1+o(1)

as x → ∞. Now inequalities (14), (15) and (16) yield the desired upper
bound and complete the proof.

4. Comments. Quite likely, the results of Theorems 1 and 2 are not
best possible. In this respect, we suggest the following questions:

Question 1. Is it true that #A(x) = exp(O(
√

log x))?

Question 2. In the notations used in the proof of Theorem 2, is it true
that

S(x, y) ≥ (1 + o(1))S(0, y) as y →∞?

Namely, is it true that the average value of f(n) in the interval (0, y] is
an asymptotic lower bound for the average value of f(n) in any interval of
length y as y →∞?

Concerning Question 2 above, observe that our proof indicates that this
is indeed the case except when x ∈ [yz, y2], where z = (log y)1/2(log log y)−2.
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