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1. Introduction. For a prime p and an arbitrary integer a with gcd(a, p)
= 1, we consider the following set of points (x, y) on the modular hyperbola:

Ha,p = {(x, y) : xy ≡ a (mod p)}.
There is an extensive literature where various questions concerning the dis-
tribution of points of Ha,p are studied (see the survey [14] and references
therein). In particular, for a positive integer H < p and arbitrary integers
K and L, we denote by Na,p(H;K,L) the number of points (x, y) ∈ Ha,p
which belong to the square [K+1,K+H]× [L+1, L+H]. Using a standard
technique and the Weil bound on incomplete Kloosterman sums one can
easily obtain the asymptotic formula

(1) Na,p(H;K,L) = H2/p+O(p1/2(log p)2),

which has been slightly improved by Garaev [8].
We remark that (1) implies that Na,p(H;K,L) = (1 + o(1))H2/p if

Hp−3/4(log p)−1 → ∞ as p → ∞ and also gives a nontrivial upper bound
Na,p(H;K,L) = o(H) if Hp−1/2(log p)−2 → ∞ and H = o(p) as p → ∞.
These results seem to be the limit of what can be achieved within the stan-
dard exponential sum techniques and currently available estimates on in-
complete Kloosterman sums. Here we show that a variant of the celebrated
result of Bourgain, Katz & Tao [4] on the sum-product problem in finite
fields, which is given by Bourgain [1, Theorem 4.1], allows us to obtain an
upper bound on Na,p(H;K,L) which is nontrivial for any H = o(p).

Furthermore, for a prime p, and arbitrary integers a and g with gcd(ag, p)
= 1, we consider the following set of points (x, y) on the modular exponential
curves:

Ea,g,p = {(x, y) : y ≡ agx (mod p)}.

2010 Mathematics Subject Classification: 11A07, 11B75, 11T23.
Key words and phrases: modular hyperbola, modular exponential curve, sum-product
estimates, concentration function.

DOI: 10.4064/aa142-1-5 [59] c© Instytut Matematyczny PAN, 2010



60 T. H. Chan and I. E. Shparlinski

Accordingly, for a positive integer H < p and arbitrary integers K and L, we
denote by Ma,g,p(H;K,L) the number of points (x, y) ∈ Ea,g,p which belong
to the square [K+ 1,K+H]× [L+ 1, L+H]. For Ma,g,p(H;K,L) one has a
full analogue of (1). More precisely, for H ≤ t, where t is the multiplicative
order of g modulo p,

(2) Ma,g,p(H;K,L) = H2/p+O(p1/2(log p)2).

Here we also obtain an upper bound Ma,g,p(H;K,L), which is also non-
trivial for any H = o(t). In fact, in this case we are in the setting of the
traditional sum-product problem and can use explicit estimates of Bour-
gain & Garaev [3], Garaev [9] and Katz & Shen [11] to get a more explicit
estimate on Ma,g,p(H;K,L) than the one we obtain for Na,p(H;K,L).

Although the proofs of our bounds are very simple, it seems that tech-
niques from additive combinatorics have never been applied to questions of
this kind. So, we hope this link may lead to some other new results.

We note that our results have a natural interpretation of upper bounds
on the concentration functions of points on Ha,p and Ea,g,p.

Finally, we discuss some possible ways to improve our results and further
applications.

Throughout the paper, any implied constants in the symbols O, � and
� may occasionally depend, where obvious, on the parameter ε, but are
absolute otherwise. We recall that the notations U = O(V ), U � V and
V � U are all equivalent to the statement that the inequality |U | ≤ c V
holds with some constant c > 0.

2. Sum-product and sum-reciprocal sum problems. Let Fp denote
the finite field of p elements. For a set A ⊆ F∗p and a rational function
F (X1, . . . , Xm) ∈ Fp(X1, . . . , Xm), we define the set

F (A, . . . ,A) = {F (a1, . . . , am) : a1, . . . , am ∈ A}.
We also use E(A) to denote the multiplicative energy of A, that is,

E(A) = |{(a1, a2, a3, a4) : a1a2 = a3a4, a1, a2, a3, a4 ∈ A}|.

Our bound on Na,p(H;K,L) depends on the following estimate of Bour-
gain [1, Theorem 4.1].

Lemma 1. For any ε > 0 there exists δ > 0 such that for any set A ⊆ F∗p
of cardinality |A| ≤ p1−ε,

max{|A+A|, |A−1 +A−1|} � |A|1+δ.

To estimateMa,g,p(H;K,L), we recall the following explicit version of the
sum-product result of Bourgain, Katz & Tao [4], which is due to Bourgain
& Garaev [3, Theorem 1.1].
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Lemma 2. For any set A ⊆ F∗p,

E(A)4 �
(
|A − A|+ |A|

3

p

)
|A|5|A − A|4|A+A−A−A|(log(|A|+ 2))4.

We also remark that by the Cauchy–Schwarz inequality,

(3) E(A) ≥ |A|4

|A · A|
.

3. Main results. Here we show how Lemmas 1 and 2 imply upper
bounds on Na,p(H;K,L) and Ma,g,p(H;K,L), respectively.

Theorem 3. There exists some absolute constant η > 0 such that for
any positive integer H < p, uniformly over arbitrary integers K and L, we
have

Na,p(H;K,L)� H2/p+H1−η.

Proof. For large values of H, namely for H ≥ p2/3, the result is imme-
diate from (1).

For small values of H, namely for H < p2/3, we consider the set A of
smallest nonnegative residues modulo p of x ∈ [K + 1,K + H] such that a
times the inverse of x modulo p is congruent to some integer in the interval
[L+ 1, L+H].

Clearly,
|A+A| ≤ 2H and |A−1 +A−1| ≤ 2H.

Applying Lemma 1 with ε = 1/3 we see that for some absolute constant
δ > 0 we have

H � |A|1+δ,

which concludes the proof.

Theorem 4. For any positive integer H ≤ t, where t is the multiplicative
order of g modulo p, uniformly over arbitrary integers K and L, we have

Ma,g,p(H;K,L)� max{H10/11+o(1), H9/8+o(1)p−1/8}
as H →∞.

Proof. We consider the set A of smallest nonnegative residues modulo p
of y ∈ [L + 1, L + H] such that y is congruent to agx modulo p for some
integer x in the interval [K + 1,K +H].

Clearly,

|A − A| ≤ 2H, |A · A| ≤ 2H, |A+A−A−A| ≤ 4H.

Applying Lemma 2, we obtain

E(A)4 � (H + |A|3/p)|A|5H5(log(H + 2))4,
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while the bound (3) now implies

E(A)� |A|
4

H
.

Comparing the previous estimates, we derive

|A|11 � (H + |A|3/p)H9(log(H + 2))4

and the result follows.

Corollary 5. For any positive integers H ≤ t, where t is the multi-
plicative order of g modulo p, uniformly over arbitrary integers K and L,
we have

Ma,g,p(H;K,L)� H2/p+H10/11+o(1)

as H →∞.

Proof. For large values of H, namely for H > p5/9, we deduce from (2)
that

(4) Ma,g,p(H;K,L)� H2/p+ p1/2(log p)2 ≤ H2/p+H9/10+o(1),

since p < H9/5.
For small values of H, namely for H ≤ p5/9, we have

H9/8p−1/8 ≤ H9/10 ≤ H10/11

and the result now follows from Theorem 4.

4. Comments. It seems to be quite feasible to obtain an explicit form
of Lemma 1 of the same type as Lemma 2, and thus obtain a concrete value
of η in the bound of Theorem 3. Furthermore, for large sets A ⊆ F∗p, the
method of Garaev [9] gives such a bound right away:

(5) |A+A| |A−1 +A−1| � min
{
p|A|, |A|

4

p

}
.

To establish (5) we first estimate exponential sums

Sλ,p(U ,V) =
∑
u∈U

∑
v∈V
v 6=u

ep(λ(u− v)−1),

where ep(z) = exp(2πiz/p), for any two sets U ,V ⊆ Fp. We have

|Sλ,p(U ,V)| =
∣∣∣∣ p−1∑
t=1

ep(λt−1)
1
p

p−1∑
b=0

∑
u∈U

∑
v∈V
v 6=u

ep(b(t− u+ v))
∣∣∣∣

=
∣∣∣∣1p

p−1∑
b=0

p−1∑
t=1

∑
u∈U

∑
v∈V

ep(b(t− u+ v) + λt−1)
∣∣∣∣
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as the contribution from v = u to the sum is
p−1∑
b=0

p−1∑
t=1

ep(bt+ λt−1) =
p−1∑
t=1

ep(λt−1)
p−1∑
b=0

ep(bt) = 0.

Hence,

|Sλ,p(U ,V)| ≤ 1
p

p−1∑
b=0

∣∣∣∑
u∈U

ep(bu)
∣∣∣ ∣∣∣∑
v∈V

ep(bv)
∣∣∣ ∣∣∣ p−1∑

t=1

ep(bt+ λt−1)
∣∣∣.

Now, using the Weil bound on Kloosterman sums (see [10, Theorem 11.11])
for the sum over t, and applying the Cauchy–Schwarz inequality to the sum
over u and v, we obtain

|Sλ,p(U ,V)| � 1
p1/2

( p−1∑
b=0

∣∣∣∑
u∈U

ep(bu)
∣∣∣2)1/2( p−1∑

b=0

∣∣∣∑
v∈V

ep(bv)
∣∣∣2)1/2

(6)

=
1
p1/2

(p|U|)1/2(p|V|)1/2 =
√
p|U| |V|

provided that gcd(λ, p) = 1.
We now mimic the argument of Garaev [9] and consider the equation

(7) a−1
1 + (b− a2)−1 = c, (a1, a2, b, c) ∈ A×A× B × C,

where
B = A+A and C = A−1 +A−1.

Let J be the number of solutions to (7).
For any triple (a1, a2, a3) ∈ A×A×A, we see that the vector

(a1, a2, a2 + a3, a
−1
1 + a−1

3 )

is a solution to (7), and different triples (a1, a2, a3) give different solutions.
Therefore

(8) J ≥ |A|3.

We can also express J via exponential sums

J =
∑
a1∈A

∑
a2∈A

∑
b∈B
b6=a2

∑
c∈C

1
p

p−1∑
λ=0

ep(λ(a−1
1 + (b− a2)−1 − c)).

Changing the order of summation, separating the term |A|2|B| |C|/p corre-
sponding to λ = 0 and recalling (8), we obtain

|A|3 ≤ |A|
2|B| |C|
p

+
1
p

p−1∑
λ=1

|Sλ,p(A,B)|
∣∣∣ ∑
a1∈A

∑
c∈C

ep(λ(a−1
1 − c))

∣∣∣.
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By (6) we obtain

|A|3 � |A|
2|B| |C|
p

(9)

+ |A|1/2|B|1/2p−1/2
p−1∑
λ=1

∣∣∣ ∑
a1∈A

ep(λa−1
1 )
∣∣∣ ∣∣∣∑

c∈C
ep(λc)

∣∣∣.
Applying the Cauchy–Schwarz inequality to the sum over λ, as in (6), we
obtain the inequality

p−1∑
λ=1

∣∣∣ ∑
a1∈A

ep(λa−1
1 )
∣∣∣ ∣∣∣∑

c∈C
ep(λc)

∣∣∣ ≤ p√|A| |C|,
which after inserting into (9) implies (5).

Note that the bound (5) is optimal when |A| > p2/3. In particular, take
N = [

√
pH]. By the pigeon-hole principle, there is some k with 1 ≤ k ≤ p/N

such that the set

Ak = {a ∈ [(k − 1)N, kN ] : a ≡ b−1 (mod p) for some b ∈ [1, N ]}

has cardinality |A| � N2/p� H while

|A+A|, |A−1 +A−1| ≤ 2N �
√
pH.

Hence |A+A| |A−1 +A−1| � pH � p|A|.
The bound (5) can now be used in the scheme of the proof of Theorem 3

(and it leads to a nontrivial upper bound on Na,p(H;K,L)), however it
does not seem to improve the bound which follows from (1) (we also note
that it is easy to get a version of (1) that gives the same upper bound but
without (log p)2 in the error term). It seems that in order to be useful, a
version of (5) is needed which is nontrivial for smaller sets A (of cardinality
|A| = o(p1/2)). Furthermore, one easily notices that in the scheme of the
proof of Theorem 3 the set A + A−1 can be used instead of A−1 + A−1.
Similarly, the set A−A can be used instead of A+A. Thus it is enough to
obtain an explicit lower bound on

max{|A+A|, |A − A|, |A−1 +A−1|, |A+A−1|}.

Furthermore, one can consider longer expressions of the form

a1 ± · · · ± ak ± a−1
k+1 ± · · · ± a

−1
k+m, a1, . . . , ak+m ∈ A,

and try to show that at least one of them generates a sufficiently large set.
Probably using the extension of the result of Bourgain & Garaev [3],

given by Shen [13], one can study the concentration function of solutions to
some other congruences.
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Another possible direction of research is to study the concentration func-
tions of points on the multidimensional generalisations of Ha,p such as

{(x, y1, . . . , ys) : (x+ j)yj ≡ aj (mod p), j = 1, . . . , s},
see [7] for some results for the case s = 2, a1 = a2 = 1; or

{(x1, . . . , xs) : x1 . . . xs ≡ a (mod p)},
see [15, 16, 17], where multiplicative character sums are shown to be a more
appropriate tool to study such sets for s ≥ 3.

Multidimensional analogues of the set Ea,g,p, such as

{(x, y1, . . . , ys) : yj ≡ ajgxj (mod p), j = 1, . . . , s},
are also of interest.

Finally, we remark that using the technique introduced in [12] and then
refined in [6] (see also [2, 5]) one can obtain results about the distribution
of residues of gx which go beyond the results of the type of (2). However,
this technique has only been developed in the case when x runs through the
full period x = 1, . . . , t, where, as before, t is the multiplicative order of g
modulo p. It is certainly an interesting question to extend these results to the
case of x running through shorter intervals of length H < t and obtain new
upper bounds on Ma,g,p(H;K,L). It is not clear whether this technique may
lead to new results on Na,p(H;K,L) but this is definitely worth studying.
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