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1. Introduction. Let n be a positive integer. Given a polynomial with
integer coefficients, f ∈ Z[x], denote by mn(f) its logarithmic Mahler mea-
sure over Z/nZ, defined by

mn(f) =
1
n

n−1∑
k=0

log |f(e2πik/n)|.

By λn > 0 we denote the Lehmer constant of Z/nZ,

λn = min
f∈Z[x]

mn(f)>0

mn(f)

(see [11]). We notice later that the minimum is indeed attained, and that it
is the same if deg f ≤ n− 1 is assumed. Lind [11] has given an upper bound
for λn (see below) and he obtained the values

λ1 = log 2, λ2 =
1
2

log 3, λ4 =
1
4

log 3, λn =
1
n

log 2 for all odd n.

We sharpen his result, complement it by a lower bound, and obtain the value
of λn for all n except for multiples of 420. The main result is formulated in
Section 2 and proved in Section 3.

2. Main result. For a positive integer n, let
{
ρ(n)
ρ′(n)

}
denote the small-

est
{

prime number
positive integer

}
that does not divide n. We write pk ‖n when pk is a

principal divisor of n, that is, if p is a prime and k is a positive integer such
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that pk |n and pk+1 -n. Let

ρ′′(n) = min(min
p-n

p,min
pk‖n

pp
k
) = min(ρ(n),min

pk‖n
pp

k
).

Lind proved that λn ≤ n−1 log ρ(n) for all n. Extending his result we
obtain the following theorem, our main result.

Theorem 1. The Lehmer constant of Z/nZ is of the form λn =
n−1 logΛn, with an integer Λn ≥ 2 not dividing n and in the range

ρ′(n) ≤ Λn ≤ ρ′′(n).

For all n = 1, . . . , 419 (mod 420), we have Λn = ρ′(n) = ρ′′(n).

Example 1. Example new values are λ6 = 1
6 log 4, λ8 = 1

8 log 3, or more
generally,

λn =


1
n

log 3 if, and only if, n = 2k with 3 - k,

1
n

log 4 if, and only if, n = 6k with odd k.

Remark 1. (i) Theorem 1 yields the exact value of λn when ρ′(n) =
ρ(n), or more generally, when ρ′(n) = ρ′′(n). Thus it also includes certain
multiples of 420. For example, let n = 6 · k · 420 with 11 - k. Then ρ′(n) =
ρ(n) = 11 and thus λn = n−1 log 11.

(ii) By Theorem 1 the known upper bound λn ≤ n−1 log ρ(n) is sharp-
ened strictly for all n = 6 (mod 12), where it yields the exact value for λn,
and also for certain multiples of 420. For example, let n = 11 ·13 ·420. Then
the theorem implies λn = n−1 logΛn with Λn ∈ {8, 9, 16}, while ρ(n) = 17.

Open question. Determine λn = n−1 logΛn for n = 420. By Theo-
rem 1(i) we have Λ420 ∈ {8, 9, 11}.

3. Proof of Theorem 1. We have, for f ∈ Z[x],

(1) mn(f) =
1
n

log |∆n(f)| with ∆n(f) =
n−1∏
k=0

f(e2πik/n).

The number ∆n(f) is always an integer, and there is an elementary way
to see that. To this end we recall the determinantal relation of [13], readily
extended here to f of arbitrary degree. If deg f ≤ n − 1, write f(x) =
a0 + a1x + · · · + an−1x

n−1, with zero coefficients where necessary. If a
polynomial of higher degree is given, with coefficients a′0, a

′
1, . . . , replace

it first with f as above by defining ak =
∑

l=k (modn) a
′
l. Let Ca denote

the n × n integer circulant matrix with first row a = (a0, . . . , an−1). Then
detCa =

∏n−1
k=0 f(e2πik/n) and this implies

(2) ∆n(f) = detCa.
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Hence, ∆n(f) is indeed an integer. Observe that expressing mn(f) in terms
of the integer ∆n(f) justifies the definition of the Lehmer constant λn as a
minimum, not just an infimum. We will also use the expression of ∆n(f) as
a resultant, like for example in [2, 5, 11]. Indeed, since Res(xn − 1, f(x)) =∏n−1
k=0 f(e2πik/n), we have

(3) ∆n(f) = Res(xn − 1, f(x)).

The more commonly used expression Res(f(x), xn − 1), with interchanged
arguments, works as well, as long as only absolute values are considered. In-
deed, the sign of the determinant in (2) or of the resultant in (3) is irrelevant
for mn(f). We remark that the opposite sign is obtained for the polynomial

f∨(x) = −xn−1f(1/x),

with coefficient sequence (−an−1,−an−2, . . . ,−a0), the negative of the usual
reciprocal polynomial.

Remark 2. (i) Lehmer and Pierce [10, 13] investigated the sequences
{∆1(f), ∆2(f), . . .} for f ∈ Z[x]. For example, the polynomial f(x) = 2− x
yields ∆n(f) = 2n − 1, the Mersenne numbers; we refer to [6, 7, 8, 9]. For
Lehmer’s problem, formulated in [10], we refer to [3, 14] and the spectacular
solution for odd coefficients in [2]. Lind’s Lehmer constants λn relate to the
family {∆n(f) : f ∈ Z[x]} for fixed n.

(ii) Our approach highlights and makes use of the fact that finding pos-
sible (or minimal) values of the logarithmic Mahler measure over Z/nZ is
equivalent to finding possible (or minimal) values of integer circular deter-
minants, an open problem attributed to Taussky-Todd [12].

Call f ∈ Z[x] cyclotomic if all its zeros lie on the complex unit circle.
As a preliminary observation we determine, for all n, the exact value of a
cyclotomic variant of Lind’s Lehmer constants.

Lemma 1. For cyclotomic polynomials f ∈ Z[x], the minimal possible
value of mn(f) > 0 is determined by

(4) min
f∈Z[x] cyclotomic

mn(f)>0

mn(f) = n−1 log ρ′′(n).

Proof. First, Kronecker’s theorem implies that any cyclotomic polyno-
mial f ∈ Z[x] is the product of some of Φ1, Φ2, . . . and a constant, if neces-
sary; here Φm ∈ Z[x] denotes the mth cyclotomic polynomial, i.e., the monic
polynomial whose zeros are the primitive mth roots of unity. Since always

(5) ∆n(f1f2) = ∆n(f1)∆n(f2),

and consequently, mn(f1f2) ≤ mn(f1) + mn(f2), we thus obtain

(6) min
f∈Z[x] cyclotomic

mn(f)>0

mn(f) = min
m=1,2,...

mn(Φm)>0

mn(Φm).
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Let ϕ(n) denote Euler’s totient of n. We point out that

(7) ∆n(Φm) = Res(xn − 1, Φm(x))

=



0 if m |n,

1 if at least two distinct primes divide m/gcd(m,n),

pϕ(q) if m/gcd(m,n) is the power of a prime p -n
—here we write gcd(m,n) = q,

pϕ(q)pk
if m/gcd(m,n) is the power of a prime p |n
—here we factorize gcd(m,n) = pkq with pk ‖n.

We remark that by our approach no negative sign is needed here, for any
m,n. This formula is obtained from [1, proof of Theorem 2], where it is used
for a short proof of the formula for Res(Φm1(x), Φm2(x)); secondly, since

(8) Res(xn − 1, Φm(x)) = Res(Φ1(xn), Φm(x)),

the formula (7) also follows from applying [4, Proposition 14]; a third, con-
venient and direct source is [5, Theorem 3].

Notice that (7) implies, for any n,m, that in particular

(9) ∆n(Φm) = 0, 1, or ∆n(Φm) ≥ min(min
p-n

p,min
pk‖n

pp
k
) = ρ′′(n).

Since (7) also yields

(10)
∆n(Φp) = p for p -n,

∆n(Φpk+1) = pp
k

for pk ‖n,

we conclude that the inequality in (9) is sharp, that is,

(11) min
m=1,2,...
∆n(Φm)≥2

∆n(Φm) = ρ′′(n).

Finally, since mn(Φm) = n−1 log∆n(Φm), the statement of the lemma follows
by combining (6) and (11).

Lemma 2. Let n satisfy n 6= 6 (mod 12) and n 6= 0 (mod 420). Then
ρ(n) = ρ′(n), that is, the least non-divisor of n is a prime (and not a prime
power).

Remark 3. The example given in Remark 1(i) shows that the implica-
tion of Lemma 2 cannot be reversed.

Proof of Lemma 2. Suppose that n 6= 6 (mod 12) and ρ′(n) < ρ(n); we
verify that this implies 420 |n. First, if 6 -n, then either ρ′(n) = ρ(n) = 2 or
ρ′(n) = ρ(n) = 3. This contradicts the assumption ρ′(n) < ρ(n). Hence, we
have n = 6k for some k. The case of k odd is excluded by the assumption
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n 6= 6 (mod 12), so we obtain k even. In other words, n = 12k′ for some k′.
If 5 - k′, then we have ρ′(n) = ρ(n) = 5, in contradiction to the assumption
ρ′(n) < ρ(n). Therefore, we have n = 60k′′ for some k′′. Finally, if 7 - k′′,
then ρ′(n) = ρ(n) = 7, again contrary to ρ′(n) < ρ(n). Thus we conclude
that n = 420k′′′ for some k′′′.

Proof of Theorem 1.

Step I: First notice that indeed λn = n−1 logΛn for an integer Λn ≥ 2;
in fact,

(12) Λn = min
f∈Z[x]
|∆n(f)|≥2

|∆n(f)|.

Therefore, Λn = |∆n(f0)| for some f0 ∈ Z[x] with deg f0 = n − 1. Upon
replacing f0 with f∨0 defined above, if necessary, we can assume that Λn =
∆n(f0).

Step II: We show that Λn -n. Suppose that Λn divides n. Then there
exists a prime p dividing both Λn and n. Let pm ‖Λn and pk ‖n. Since Λn |n
we notice that m ≤ k. On the other hand, let Ca be the n × n integer
circulant matrix whose first row consists of the coefficients of f0, so that

(13) Λn = ∆n(f0) = detCa.

Then we have pk ‖n and pm ‖detCa, and a result by Newman [12, Theo-
rem 2] thus implies that m ≥ k + 1, so we obtain a contradiction.

Step III: The previous step implies that the positive integer Λn does
not divide n. By definition, ρ′(n) is the smallest number with this property.
We thus obtain the lower bound ρ′(n) ≤ Λn.

Step IV: The upper bound Λn ≤ ρ′′(n) is a consequence of Lemma 1.

Step V: Suppose that n = 6 (mod 12). Then 2 |n and 3 |n, while 4 -n.
Hence, ρ′(n) = 4. On the other hand,

(14) min
pk‖n

pp
k

= 221
= 4,

and thus ρ′′(n) = 4; notice that ρ(n) ≥ 5. Therefore in Theorem 1 the lower
and upper bound coincide, and we obtain Λn = ρ′(n) = ρ′′(n) = 4.

Step VI: Suppose that n 6= 6 (mod 12) and n 6= 0 (mod 420). By
Lemma 2 these conditions on n imply that ρ(n) = ρ′(n). Since always ρ′(n) ≤
ρ′′(n) ≤ ρ(n), we conclude that ρ′(n) = ρ′′(n). Thus the lower and upper
bound in Theorem 1 coincide and we obtain Λn = ρ′(n) = ρ′′(n).
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