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Rank-Crank type PDE’s for higher level Appell functions

by

Sander Zwegers (Dublin)

1. Introduction and statement of results. Dyson in [5] introduced
the rank of a partition, to explain the first two of the three Ramanujan
congruences

p(5n+ 4) ≡ 0 (mod 5),
p(7n+ 5) ≡ 0 (mod 7),
p(11n+ 6) ≡ 0 (mod 11).

(1.1)

Here p(n) denotes the number of partitions of n. He defined the rank of a
partition as the largest part minus the number of its parts and conjectured
that the partitions of 5n+ 4 (resp. 7n+ 5) form 5 (resp. 7) groups of equal
size when sorted by their ranks modulo 5 (resp. 7). This was later proven by
Atkin and Swinnerton-Dyer in [3]. We are interested here in the generating
function

R(w; q) :=
∑
λ

wrank(λ)q‖λ‖ =
1− w
(q)∞

∑
n∈Z

(−1)nq
n
2
(3n+1)

1− wqn
,

where (q)∞ :=
∏∞
n=1(1− qn). In the first sum the λ run over all partitions,

rank(λ) denotes the rank of λ and ‖λ‖ denotes the size of the partition (the
sum of all its parts).

Another partition statistic is the so called crank of a partition. For the
generating function we have

C(w; q) :=
∑
λ

wcrank(λ)q‖λ‖ =
∞∏
n=1

1− qn

(1− wqn)(1− w−1qn)

=
1− w
(q)∞

∑
n∈Z

(−1)nq
n
2
(n+1)

1− wqn
= (1− w)

(q)2∞∑
n∈Z(−1)nq

n
2
(n−1)wn

.
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The crank was introduced by Andrews and Garvan in [1] to explain the
Ramanujan congruence (1.1) with modulus 11.

In the setting of Jacobi forms it is more natural to consider the following
modified rank and crank generating functions

R(z; τ) :=
w1/2q−1/24

1− w
R(w; q), C(z; τ) :=

w1/2q−1/24

1− w
C(w; q).

Here we use w = exp(2πiz) and q = exp(2πiτ), with z ∈ C and τ in the
complex upper half plane H.

Remark 1.1. C is a meromorphic Jacobi form of weight 1/2 and index
−1/2 and in [10] it is shown that R is a mock Jacobi form of weight 1/2
and index −3/2.

For the theory of Jacobi forms we refer the reader to [6]. Although, some
of the formulas and methods presented here are motivated by Jacobi forms,
we will actually not use many of their properties. For the purpose of this
paper it is also not necessary to know what a mock Jacobi form is.

The two modified generating functions are related by a partial differential
equation, which we will refer to as the Rank-Crank PDE.

Theorem 1.2 (see [2]). If we define the heat operator H by

H :=
3
πi

∂

∂τ
+

1
(2πi)2

∂2

∂z2
,

then
HR = 2η2C3,

where η is the Dedekind η-function, given by η(τ) = q1/24
∏∞
n=1(1− qn).

Note that the identity found in [2] is slightly different, because they use
a different normalization. The two identities, however, are easily seen to be
equivalent.

In [4] it is explained how the Rank-Crank PDE fits naturally into the
theory of (non-holomorphic) Jacobi forms and a generalization is given for
an infinite family of related functions. The method used, however, works
only in certain special cases and no results are found for the level l Appell
function

(1.2) Al(z; τ) := wl/2
∑
n∈Z

(−1)lnq
l
2
n(n+1)

1− wqn
, l ∈ Z>0,

for values of l higher than 3. See [10] for more details on Appell functions
and their behaviour under modular transformation properties.

Remark 1.3. Just as A1/η is related to cranks, and A3/η is related
to ranks, Al/η for odd l also has an interpretation in terms of partition
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statistics: it is related to the so called (l + 1)/2-rank of a partition. See [7]
for more details and some background on partition statistics in general.

Somewhat surprisingly, Garvan ([8]) found a PDE for a level 5 Appell
function. His original equation involves 10 terms and we will not reproduce it
here. However, for a slightly different normalization, his equation simplifies
considerably to give

Theorem 1.4 (Garvan). Let

G5(z; τ) :=
A5(z; τ)
η(τ)3

,

and define the heat operator

H :=
5
πi

∂

∂τ
+

1
(2πi)2

∂2

∂z2
.

Then
(H2−E4)G5 = 24η2C5,

where E4 is the usual Eisenstein series

E4(τ) = 1 + 240
∞∑
n=1

(∑
d|n

d3
)
qn.

Garvan’s result turns out to be a special case of the following

Theorem 1.5. Let l ≥ 3 be an odd integer. Define

Hk :=
l

πi

∂

∂τ
+

1
(2πi)2

∂2

∂z2
− l(2k − 1)

12
E2,

Hk := H2k−1H2k−3 · · ·H3H1,

where E2(τ) = 1 − 24
∑∞

n=1(
∑

d|n d)qn is the usual Eisenstein series of
weight 2. Then there exist holomorphic modular forms fj on SL2(Z) of
weight j, with j = 4, 6, 8, . . . , l − 1, such that(

H(l−1)/2 +
(l−5)/2∑
k=0

fl−2k−1Hk
)
Al = (l − 1)!ηlCl.

For the proof of the theorem we will need the following

Lemma 1.6. Let l ≥ 3 be an odd integer. Define

Dk :=
1

2πi
∂

∂τ
− k

12
E2,

Dk := D2k−3/2 D2k−7/2 · · ·D5/2 D1/2,

and for r ∈ Z and τ ∈ H,

ϑl,r(τ) :=
∑
n∈Z

(−1)nq
l
2
(n−1/2+r/l)2 .
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Then there exist holomorphic modular forms Fj, with j = 4, 6, 8, . . . , l − 1,
on SL2(Z) of weight j, such that

(1.3)
(

D(l−1)/2 +
(l−5)/2∑
k=0

Fl−2k−1 Dk
)
ϑl,r = 0

for all r ∈ Z.

Remark 1.7. In the proofs we will see an explicit construction for the
Fj ’s and fj ’s for given l.

In the next section we will prove Theorem 1.5 and Lemma 1.6, and in
Section 3 we will look at the first few cases and in particular we will see that
the theorem for l = 5 is equivalent to Theorem 1.4.

2. Proofs of Theorem 1.5 and Lemma 1.6

Proof of Theorem 1.5. Throughout we assume that l ≥ 3 is an odd
integer. We (trivially) have

(2.1) Al(z + 1; τ) = −Al(z; τ),

and if we replace z by z + τ and n by n− 1 in (1.2) we find

e−2πilz−πilτAl(z + τ ; τ) = −w−l/2
∑
n∈Z

(−1)nq
l
2
n(n−1)

1− wqn
,

and so

(2.2) Al(z; τ) + e−2πilz−πilτAl(z + τ ; τ)

= − w−l/2
∑
n∈Z

(−1)nq
l
2
n(n−1)

1− wqn
(1− wlqln)

= − w−l/2
∑
n∈Z

(−1)nq
l
2
n(n−1)

l−1∑
r=0

wrqnr

= −
l−1∑
r=0

wr−l/2q−
1
2l

(r−l/2)2
∑
n∈Z

(−1)nq
l
2
(n−1/2+r/l)2

= −
l−1∑
r=0

e2πi(r−l/2)z−πi
l

(r−l/2)2τϑl,r(τ),

with ϑl,r as defined in Lemma 1.6.
It is easy to check that(

l

πi

∂

∂τ
+

1
(2πi)2

∂2

∂z2

)
e2πi(r−l/2)z−πi

l
(r−l/2)2τ = 0,
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and that for functions F : C×H→ C,

Hk(F (z + 1; τ)) = (HkF )(z + 1; τ),

Hk(e−2πilz−πilτF (z + τ ; τ)) = e−2πilz−πilτ (HkF )(z + τ ; τ),

with Hk as in the theorem. Hence we get, from applying H1 to equations
(2.1) and (2.2),

(H1Al)(z + 1; τ) = −(H1Al)(z; τ),

and

(H1Al)(z; τ) + e−2πilz−πilτ (H1Al)(z + τ ; τ)

= −2l
l−1∑
r=0

e2πi(r−l/2)z−πi
l

(r−l/2)2τ (D1/2 ϑl,r)(τ),

with the operator Dk as defined in Lemma 1.6.
If we successively apply H3, H5, . . . , up to H2k−1 we find

(2.3) (HkAl)(z + 1; τ) = −(HkAl)(z; τ),

and

(2.4) (HkAl)(z; τ) + e−2πilz−πilτ (HkAl)(z + τ ; τ)

= −(2l)k
l−1∑
r=0

e2πi(r−l/2)z−πi
l

(r−l/2)2τ (Dk ϑl,r)(τ),

with Dk as in Lemma 1.6.
Define

P :=
(
H(l−1)/2 +

(l−5)/2∑
k=0

fl−2k−1Hk
)
Al,

with
fj = (2l)j/2Fj , j = 4, 6, . . . , l − 1,

and Fj as in the lemma. Then we see from equations (2.3) and (2.4) that

(2.5) P (z + 1; τ) = e−2πilz−πilτP (z + τ ; τ) = −P (z; τ).

Now consider the Jacobi theta function

ϑ(z; τ) :=
∑
n∈Z

(−1)nwn+1/2q
1
2
(n+1/2)2

= w1/2q1/8
∞∏
n=1

(1− qn)(1− wqn)(1− w−1qn−1) = − η(τ)2

C(z; τ)
.

This function satisfies

(2.6) ϑ(z + 1; τ) = e2πiz+πiτϑ(z + τ ; τ) = −ϑ(z; τ),
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z 7→ ϑ(z; τ) has simple zeros in Zτ + Z and

(2.7)
1

2πi
∂

∂z

∣∣∣∣
z=0

ϑ(z; τ) = η(τ)3.

Since the poles of z 7→ Al(z; τ) are simple poles in Zτ + Z, the function
z 7→ P (z; τ) has poles of order l in Zτ + Z, and so the function

p(z; τ) := ϑ(z; τ)lP (z; τ)

is holomorphic as a function of z. Using (2.5) and (2.6) we find that

p(z + 1; τ) = p(z + τ ; τ) = p(z; τ).

We see that z 7→ p(z; τ) is a double periodic holomorphic function on C
and hence by Liouville’s Theorem, constant. To determine the constant, we
consider the behaviour for z → 0. From (1.2) we find that for z → 0,

Al(z; τ) = − 1
2πi

1
z

+O(1),

and so

P (z; τ) = −(l − 1)!
(2πi)l

1
zl

+O
(

1
zl−1

)
.

Combining this with (2.7) we see that

p(z; τ) = −(l − 1)!η(τ)3l,

and so

P (z; τ) = −(l − 1)!
η(τ)3l

ϑ(z; τ)l
= (l − 1)!η(τ)lC(z; τ)l,

which finishes the proof.

Proof of Lemma 1.6. Throughout, let l ≥ 3 be an odd integer. Because
of the trivial relations

ϑl,r+l = −ϑl,r, ϑl,−r = −ϑl,r,
it suffices to consider ϑl,r for r = 1, 2, . . . , (l − 1)/2. Define

Θl :=


ϑl,1

ϑl,2
...

ϑl,(l−1)/2

 .

Then Θl transforms as a (vector-valued) modular form of weight 1/2 on the
full modular group SL2(Z):

Θl(τ + 1) = diag (ζ(l−2j)2

8l )1≤j≤(l−1)/2Θl(τ),

Θl(−1/τ) = (−1)(l+1)/2
√
τ/li (2 sin 2πrk/l)1≤r,k≤(l−1)/2 Θl(τ).
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The first equation is trivial and the second can be obtained by using Poisson
summation. We leave the details to the reader. Note that for the proof of
the lemma, we actually do not need to know the explicit transformation
properties. It would suffice to know that Θl is a modular form of weight 1/2
on the full modular group.

Using

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6
πi
c(cτ + d) for

(
a b
c d

)
∈ SL2(Z)

(see [9, p. 19]) we can easily verify that

Dk

(
(cτ + d)−kf

(
aτ + b

cτ + d

))
= (cτ + d)−k−2(Dk f)

(
aτ + b

cτ + d

)
,

and so

Dk

(
(cτ + d)−1/2Θl

(
aτ + b

cτ + d

))
= (cτ + d)−2k−1/2(Dk Θl)

(
aτ + b

cτ + d

)
.

Now define the (l − 1)/2× (l − 1)/2-matrix

Tl := (Θl D1Θl D2Θl · · · D(l−3)/2Θl).

Then Tl transforms as a (matrix-valued) modular form on the full modular
group SL2(Z):

Tl(τ + 1) = diag (ζ(l−2j)2

8l )1≤j≤(l−1)/2Tl(τ),

Tl(−1/τ) = (−1)(l+1)/2
√
τ/li (2 sin 2πrk/l)1≤r,k≤(l−1)/2

· Tl(τ) diag (τ2j−2)1≤j≤(l−1)/2.

(2.8)

From this we see that

det(Tl(τ + 1)) = ζ
(l−1)(l−2)/2
24 det(Tl(τ)),

det(Tl(−1/τ)) = (−iτ)(l−1)(l−2)/4 det(Tl(τ)),

and so det(Tl) is a multiple of η(l−1)(l−2)/2. We determine what that multiple
is by looking at the lowest order terms:

First observe that by doing elementary column operations we get

det(Tl) = det (Θl ∂τΘl ∂2
τΘl · · · ∂

(l−3)/2
τ Θl),

with ∂τ := 1
2πi

∂
∂τ .

For 1 ≤ r ≤ (l − 1)/2 we have

ϑl,r(τ) = q(l−2r)2/8l(1 +O(q)),
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so

(Θl ∂τΘl ∂2
τΘl · · · ∂

(l−3)/2
τ Θl)

= diag (q(l−2i)2/8l)1≤i≤(l−1)/2 ·
((

(l − 2i)2

8l

)j−1

+O(q)
)

1≤i,j≤(l−1)/2

,

det (Θl ∂τΘl ∂2
τΘl · · · ∂

(l−3)/2
τ Θl) = q(l−1)(l−2)/48(det(B) +O(q)),

and hence

(2.9) det(Tl(τ)) = det(B)η(τ)(l−1)(l−2)/2,

with

Bij =
((l − 2i)2

8l

)j−1
for 1 ≤ i, j ≤ (l − 1)/2.

B is a Vandermonde matrix: an m× n matrix V such that Vij = αj−1
i with

αi ∈ R. Since a square Vandermonde matrix is invertible if and only if the
αi are distinct, we see that B is invertible. From (2.9) and the fact that η
has no zeros on H we then conclude that Tl(τ) is invertible for all τ ∈ H.

Now define the (l − 1)/2 functions Fj with j = 2, 4, . . . , l − 1 by

(2.10)


Fl−1

Fl−3

...
F2

 := −T−1
l D(l−1)/2Θl.

We claim that the Fj are holomorphic modular forms of weight j on SL2(Z).
The modular transformation properties follow easily from (2.8) and those of
D(l−1)/2Θl, which are

D(l−1)/2Θl(τ + 1) = diag (ζ(l−2j)2

8l )1≤j≤(l−1)/2 D(l−1)/2Θl(τ),

D(l−1)/2Θl(−1/τ)

= (−1)(l+1)/2
√
τ/li τ l−1(2 sin 2πrk/l)1≤r,k≤(l−1)/2 D(l−1)/2Θl(τ).

Since det(Tl) has no zeros on H we see that Fj is a holomorphic function
on H. That it also has no pole at infinity follows from

D(l−1)/2Θl = diag (q(l−2i)2/8l)1≤i≤(l−1)/2 ·


O(1)
O(1)

...
O(1)

 ,

Tl = diag (q(l−2i)2/8l)1≤i≤(l−1)/2 · (Cij +O(q))1≤i,j≤(l−1)/2,
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for some (l − 1)/2× (l − 1)/2-matrix C, with

det(C) = det(B) 6= 0.

Since there are no holomorphic modular forms of weight 2 on SL2(Z), we
have F2 ≡ 0, and so we can rewrite (2.10) as

D(l−1)/2Θl + Tl


Fl−1

...
F4

0

 = 0,

which is equivalent to the condition that (1.3) holds for 1 ≤ r ≤ (l− 1)/2.

3. Some examples. For l = 3, the sum
∑(l−5)/2

k=0 is empty, and so
Theorem 1.5 gives

H1A3 = 2η3C3.

Using

R(z; τ) =
A3(z; τ)
η(τ)

+ eπiz−πiτ/12,

we see

H1/2R = H1/2

(
A3

η

)
=
H1A3

η
+ 6A3 D−1/2

(
1
η

)
= 2η2C3,

which is the Rank-Crank PDE. Here we used

Dk/2(ηk) = 0,

which follows from
E2 = 24

∂τη

η

(first equation in the proof of Proposition 7 of [9] together with ∆ = η24).
For l = 5, we find from (2.10) that

F4(τ) = − 11
3600

− 11
15
q +O(q2),

and since F4 is a holomorphic modular form on SL2(Z), we can easily identify
it as

F4 = − 11
3600

E4,

and so
f4 = −11

36
E4.

If we put this into Theorem 1.5 we get(
H3H1 −

11
36
E4

)
A5 = 24η5C5.
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We now rewrite this in terms of G5:

H1A5 = H1(η3G5) = 10(D3/2 η
3)G5 + η3H−1/2G5 = η3H−1/2G5,

H3H1A5 = H3(η3H−1/2G5)

= 10(D3/2 η
3)H−1/2G5 + η3H3/2H−1/2G5 = η3H3/2H−1/2G5,

and so we get (
H3/2H−1/2 −

11
36
E4

)
G5 = 24η2C5.

Using

H3/2H−1/2 = H2 +
25
3

(
∂τE2 −

1
12
E2

2

)
and

∂τE2 =
E2

2 − E4

12
(see Proposition 15 of [9]), we see that is equivalent to the statement of
Theorem 1.4.

For l = 7 we find, again using (2.10),

f4 = −35
9
E4 and f6 =

85
27
E6.

For l = 9,

f4 = −39
2
E4, f6 = 53E6, f8 = −759

16
E8.

For l = 11,

f4 = −583
9
E4, f6 =

3245
9

E6, f8 = −67661
81

E8, f10 =
252416

243
E10.

And for l = 13,

f4 = −6097
36

E4, f6 =
42653

27
E6, f8 = −8081645

1296
E8,

f10 =
4910555

324
E10, f12 = −1462986875

46656
E12 +

57480372950
6219

∆.

In fact, for general l we can show

f4 = − l(l + 1)(l − 1)(l − 3)
8640

(7l − 24)E4,

and further

f6 =
l(l + 1)(l − 1)(l − 3)(l − 5)

362880
(33l2 − 184l + 96)E6,
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f8 =
l(l + 1)(l − 1)(l − 3)(l − 5)(l − 7)

1045094400
· (343l4 − 12765l3 + 75600l2 − 60480l + 41472)E8,

f10 = − l(l + 1)(l − 1)(l − 3)(l − 5)(l − 7)(l − 9)
34488115200

· (2541l5 − 64399l4 + 370624l3 − 279264l2 + 338688l − 276480)E10,

etc.
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