Iterated Cesàro averages, frequencies of digits, and Baire category

by

J. HYDE (St Andrews), V. LASCHOS (Bath), L. OLSEN (St Andrews), I. PETRYKIEWICZ (St Andrews) and A. SHAW (St Andrews)

1. Statement of results. Fix a positive integer $N \ge 2$. Throughout this paper, we will consider the unique, non-terminating, base N expansion of a number $x \in [0, 1]$, written as

$$x = \frac{d_1(x)}{N} + \frac{d_2(x)}{N^2} + \dots + \frac{d_n(x)}{N^n} + \dots \quad \text{with } d_i(x) \in \{0, 1, \dots, N-1\}.$$

For each digit $i \in \{0, 1, \ldots, N-1\}$, we will write

$$\Pi_i(x;n) = \frac{1}{n} |\{1 \le j \le n \mid d_j(x) = i\}|$$

for the frequency of the digit i among the first n digits of x.

We recall that in a metric space X, a set S is called *residual* if its complement is of the first category. Also recall that we say that a *typical element* x has property P if the set $S = \{x \in X \mid x \text{ has property P}\}$ is residual. We refer the reader to Oxtoby [Ox] for more details. The limiting behaviour of the frequencies $\Pi_i(x; n)$ has been investigated extensively during the past many years. For example, Volkmann [Vo] and Šalát [Ša1] proved that for a typical x, we have

$$\limsup_{n \to \infty} \Pi_i(x; n) = 1 \quad \text{and} \quad \liminf_{n \to \infty} \Pi_i(x; n) = 0$$

for all $0 \le i \le N - 1$. Their proofs can also be found in various textbooks; see, for example, Billingsley [Bi, p. 16] and Hlawka [Hl, p. 77].

During the past 50 years these results have been extended and generalized further in many different directions [APT, CZ, Ol, Ša2, Si, SŠ]. For example, recently Olsen [Ol] proved Theorem A below. To state this result we need to introduce some notation. Let Δ_N denote the family of

²⁰¹⁰ Mathematics Subject Classification: 11K16, 11A63, 28A78.

Key words and phrases: Baire category, iterated Cesàro averages, iterated Cesàro means, frequencies of digits.

J. Hyde et al.

N-dimensional probability vectors, i.e.

$$\Delta_N = \Big\{ (p_0, p_1, \dots, p_{N-1}) \, \Big| \, p_i \ge 0, \sum_{i=0}^{N-1} p_i = 1 \Big\},\$$

and write

$$\boldsymbol{\Pi}(x;n) = (\Pi_0(x;n), \Pi_1(x;n), \dots, \Pi_{N-1}(x;n))$$

for the vector of frequencies of digits. Then clearly $\boldsymbol{\Pi}(x;n) \in \Delta_N$, and consequently the set of accumulation points of the sequence $(\boldsymbol{\Pi}(x;n))_n$ is a subset of Δ_N . Somewhat surprisingly, in [OI] it is proved that for a typical $x \in [0, 1]$, the set of accumulation points of $(\boldsymbol{\Pi}(x;n))_n$ is all of Δ_N .

THEOREM A [Ol]. The set

 $\{x \in [0,1] \mid \text{the set of accumulation points of } (\boldsymbol{\Pi}(x;n))_{n=1}^{\infty} \text{ equals } \Delta_N\}$ is residual.

es residual.

Given a divergent sequence, forming its Cesàro averages may succeed in producing a convergent sequence, and one might expect that iterating this method would eventually give a convergent sequence when applied to the sequence $(\boldsymbol{\Pi}(x;n))_n$. In this paper we will prove a somewhat unexpected result that strengthens Theorem A considerably. Namely, we show that for a typical x, the set of accumulation points of all higher order Cesàro averages of the sequence $(\boldsymbol{\Pi}(x;n))_n$ equals Δ_N . To state this result precisely, we make the following definitions. Let

$$\Pi_{i}^{(1)}(x;n) = \Pi_{i}(x;n),$$

and for $k \geq 2$, let

$$\Pi_i^{(k)}(x;n) = \frac{\sum_{j=1}^n \Pi_j^{(k-1)}(x;j)}{n}$$

denote kth iterated Cesàro average. Next let

$$\boldsymbol{\Pi}^{(k)}(x;n) = (\Pi_0^{(k)}(x;n), \Pi_1^{(k)}(x;n), \dots, \Pi_{N-1}^{(k)}(x;n))$$

denote the vector of kth iterated Cesàro averages. Now we can state our main theorem.

THEOREM 1.1. The set

$$R = \{x \in [0,1] \mid \text{the set of accumulation points of } (\boldsymbol{\Pi}^{(k)}(x;n))_{n=1}^{\infty}$$
equals Δ_N for all $k \in \mathbb{N}\}$

is residual.

The proof of Theorem 1.1 is given in Section 2. Before presenting it, we make a few remarks concerning our result in different contexts. Below we will denote the Hausdorff dimension and the packing dimension by $\dim_{\rm H}$

288

and $\dim_{\mathbf{P}}$ respectively. The reader is referred to [Fa] for the definitions of dimensions.

Using Theorem 1.1 it is easy to find the packing dimension of the set R.

COROLLARY 1.2. The packing dimension of the set R equals 1, i.e.

 $\dim_{\mathbf{P}} R = 1.$

Proof. Recall that if C is a compact subset of \mathbb{R} and M is a subset of C with dimp $M < \dim_{\mathbb{P}} C$, then M is of the first category in C (see [Ed, Exercise (1.8.4)]). Combined with Theorem 1.1, this implies that dimp $R = \dim_{\mathbb{P}}([0,1]) = 1$.

Now we compare this with the Hausdorff dimension of R. It follows from [OW] that dim_H R = 0. Hence, in terms of dimensions, the size of R varies between "very big" and "very small" depending on the exact viewpoint, but it follows from Theorem 1.1 that R is always "very big" topologically.

This contrast between the topological and measure-theoretical viewpoints is also emphasized by Borel's Normal Number Theorem, which states that

$$\Pi_i(x;n) \to \frac{1}{N}$$

for Lebesgue almost all $x \in [0, 1]$. It follows from Borel's Normal Number Theorem that for Lebesgue almost all $x \in [0, 1]$, the sequence $(\Pi_i(x; n))_n$ has only one accumulation point (namely 1/N). This contrasts vastly with the topological point of view. Namely, Theorem 1.1 states that for a typical x, the set of accumulation points of $(\Pi_i^{(k)}(x; n))_n$ equals the simplex of Ndimensional probability vectors for all $k \in \mathbb{N}$.

2. Proof of Theorem 1.1. Throughout the proof, we will work with a subset of [0, 1], namely

 $\mathbb{I} = [0,1] \setminus \{x \in [0,1] \mid x \text{ has a terminating } N \text{-adic expansion} \}.$

To simplify the notation in our proof, we define the function $\varphi_1(x) = 2^x$ and $\varphi_m(x) = \varphi_1(\varphi_{m-1}(x))$ for $m \ge 2$. For brevity, write $\mathbb{D} = (\mathbb{Q}^N \cap \Delta_N) \setminus \{(1,0,0,\ldots,0)\}$. (We exclude one particular vector for technical reasons, which become apparent in the proof of Claim 2.) We define the property P as follows. We say that a sequence $(\boldsymbol{x}_n)_n$ in \mathbb{R}^N has property P if for all $\boldsymbol{q} \in \mathbb{D}, m \in \mathbb{N}, i \in \mathbb{N}$, and $\epsilon > 0$, there exists $j \in \mathbb{N}$ satisfying:

(i)
$$j \ge i$$
,
(ii) $j/2^j < \epsilon$,
(iii) if $j < n < \varphi_m(j)$ then $|\boldsymbol{x}_n - \boldsymbol{q}| < \epsilon$

Our proof of Theorem 1.1 will consist of three lemmas:

- (1) First we will prove that the set
- (2.1) $A = \{ x \in \mathbb{I} \mid (\boldsymbol{\Pi}^{(1)}(x;n))_{n=1}^{\infty} \text{ has property P} \}$

is residual.

- (2) Then we will show that if $(\boldsymbol{\Pi}^{(k)}(x;n))_{n=1}^{\infty}$ has property P, then $(\boldsymbol{\Pi}^{(k+1)}(x;n))_{n=1}^{\infty}$ also has property P.
- (3) Finally, we will show that $A \subseteq R$ (recall that R is defined in Theorem 1.1).

LEMMA 2.1. The set A is residual (recall that A is defined in (2.1)).

Proof. For fixed $h, m, i \in \mathbb{N}$ and $\boldsymbol{q} \in \mathbb{D}$, we define property $P_{h,m,\boldsymbol{q},i}$, as follows. We say that a sequence $(\boldsymbol{x}_n)_n$ has property $P_{h,m,\boldsymbol{q},i}$ if for every $\epsilon > 1/h$, there exists $j \in \mathbb{N}$ satisfying:

(i) $j \ge i$, (ii) $j/2^j < \epsilon$, (iii) $j < n < \varphi_m(2^j) \Rightarrow |\boldsymbol{x}_n - \boldsymbol{q}| < \epsilon$. Let $G_{h,m,\boldsymbol{q},i} = \{x \in \mathbb{I} \mid (\boldsymbol{\Pi}^{(1)}(x;n))_{n=1}^{\infty} \text{ has property } \mathcal{P}_{h,m,\boldsymbol{q},i}\}$. Clearly,

$$\bigcap_{h\in\mathbb{N}}\bigcap_{m\in\mathbb{N}}\bigcap_{q\in\mathbb{D}}\bigcap_{i\in\mathbb{N}}G_{h,m,q,i}=A.$$

CLAIM 1. $G_{h,m,q,i}$ is open.

Proof. Let $x \in G_{h,m,q,i}$. Since $x \in G_{h,m,q,i}$, there exists a positive integer j such that $j \ge i, j/2^j < 1/h$, and if $j < n < \varphi_m(2^j)$, then $|\mathbf{\Pi}^{(1)}(x;n) - \mathbf{q}| < 1/h$.

We now choose δ to equal $1/N^{\varphi_m(2^j)+1}$ if the 2^j th digit of x is neither 0 nor N-1, otherwise we choose it to be $1/N^a$ where a is any integer such that the (a-1)st and (a-2)nd digits are not both either 0 or N-1, and that $a > \varphi_m(2^j) + 1$. Then all $y \in B(x, \delta)$ have their first $\varphi_m(2^j)$ digits the same as x, and so $B(x, \delta) \subseteq G_{h,m,q,i}$. This completes the proof of Claim 1.

CLAIM 2. $G_{h,m,\boldsymbol{q},i}$ is dense.

Proof. Let $x \in \mathbb{I}$ and $\delta > 0$. We must now find $y \in B(x, \delta) \cap G_{h,m,q,i}$. Let $t \in \mathbb{N}$ be such that $1/N^t < \delta$. We can clearly choose a positive integer $s \in \mathbb{N}$ and $z_1, \ldots, z_s \in \{0, 1, \ldots, N-1\}$ such that if $z = z_1/N + z_2/N^2 + \cdots + z_s/N^s$ then $\boldsymbol{\Pi}^{(1)}(z;s) = \boldsymbol{q}$. Let

$$y = \frac{d_1(x)}{N} + \dots + \frac{d_t(x)}{N^t} + \sum_{i=0}^{\infty} \left(\frac{z_1}{N^{t+is+1}} + \frac{z_2}{N^{t+is+2}} + \dots + \frac{z_s}{N^{t+is+s}} \right)$$

Then $y \in B(x, \delta)$ (as y has the first t digits the same as x).

Next we show that $y \in G_{h,m,q,i}$. All z_i 's cannot be 0, because we excluded the vector $(1, 0, \ldots, 0)$. Therefore, y has a non-terminating N-adic

expansion. Let $\epsilon \geq 1/h$, and choose j such that

$$\frac{j}{2^j} < \epsilon \quad \text{and} \quad j \ge N \max\left(\max_{l \in \{0,1,\dots,N-1\}} \left|\frac{N_l(z;s)(2+t/s) + N_l(y;t)}{\epsilon}\right|, i, t\right)$$

where $N_l(x;n) = |\{0 < j \le n \mid d_j(x) = l\}|$. Fix a positive integer n with $j < n < \varphi_m(2^j)$ and observe that we can find integers r and b, with $0 \le r < s$ and $0 \le b < N_l(z;s)$, such that $n = t + \lfloor (n-t)/s \rfloor s + r$, and $N_l(y;n) = N_l(y;t) + \lfloor (n-t)/s \rfloor N_l(z;s) + b$. We now have

$$\begin{split} |\boldsymbol{\Pi}^{(1)}(y;n) - \boldsymbol{q}| &= N \max_{l} \left| \boldsymbol{\Pi}_{l}^{(1)}(y;n) - \frac{N_{l}(z;s)}{s} \right| \\ &= N \max_{l} \left| \frac{N_{l}(y;n)}{n} - \frac{n \frac{N_{l}(z;s)}{s}}{n} \right| \\ &= N \max_{l} \left| \frac{N_{l}(y;t) + \left\lfloor \frac{n-t}{s} \right\rfloor N_{l}(z;s) + b}{n} - \frac{\left(t + \left\lfloor \frac{n-t}{s} \right\rfloor s + r\right) \frac{N_{l}(z;s)}{s}}{n} \right| \\ &\leq N \max_{l} \left(\left| \frac{\left\lfloor \frac{n-t}{s} \right\rfloor N_{l}(z;s) - \frac{N_{l}(z;s)}{s}(t+r) - N_{l}(z;s) \right\lfloor \frac{n-t}{s} \right\rfloor \right| + \frac{N_{l}(y;t) + b}{n} \right) \\ &\leq N \max_{l} \left(\left| \frac{-\frac{N_{l}(z;s)}{s}(t+r)}{n} \right| + \frac{N_{l}(y;t) + N_{l}(z;s)}{n} \right) \\ &\leq N \max_{l} \left(\frac{\frac{N_{l}(z;s)}{s}(t+r) + N_{l}(y;t) + N_{l}(z;s)}{n} \right) \\ &\leq N \max_{l} \left(\frac{\frac{N_{l}(z;s)}{s}(t+s) + N_{l}(y;t) + N_{l}(z;s)}{j} \right) \\ &\leq N \max_{l} \left(\frac{N_{l}(z;s)(2+t/s) + N_{l}(y;t)}{j} \right) \leq \epsilon, \end{split}$$

where the maximum is over $l \in \{0, 1, ..., N-1\}$. This shows that $y \in G_{h,m,q,i}$, and completes the proof of Claim 2.

It follows from Claims 1 and 2 that A is the countable intersection of open and dense sets, and hence residual. This completes the proof of Lemma 2.1.

LEMMA 2.2. If $(\boldsymbol{\Pi}^{(k)}(x;n))_{n=1}^{\infty}$ has property P, then $(\boldsymbol{\Pi}^{(k+1)}(x;n))_{n=1}^{\infty}$ also has property P.

Proof. Let $(\boldsymbol{\Pi}^{(k)}(x;n))_{n=1}^{\infty}$ have property P, and fix $\epsilon > 0, \boldsymbol{q} \in \mathbb{D}, i \in \mathbb{N}$ and $m \in \mathbb{N}$. Since $(\boldsymbol{\Pi}^{(k)}(x;n))_{n=1}^{\infty}$ has property P, there exists $j' \in \mathbb{N}$ with $j' \geq i, j'/2^{j'} < \epsilon/3$, and such that if $j' < n < \varphi_{m+1}(2^{j'})$ then $|\boldsymbol{\Pi}^{(k)}(x;n)-\boldsymbol{q}| < \epsilon/3$. Let $j = 2^{j'}$. For all $j < n < \varphi_m(2^j)$ (i.e. $2^{j'} < n < \varphi_{m+1}(2^{j'})$), we have

$$\begin{split} |\boldsymbol{\Pi}^{(k+1)}(x;n) - \boldsymbol{q}| &= \left| \frac{\boldsymbol{\Pi}^{(k)}(x;1) + \boldsymbol{\Pi}^{(k)}(x;2) + \dots + \boldsymbol{\Pi}^{(k)}(x;n)}{n} - \boldsymbol{q} \right| \\ &= \left| \frac{\boldsymbol{\Pi}^{(k)}(x;1) + \dots + \boldsymbol{\Pi}^{(k)}(x;j')}{n} \\ &+ \frac{\boldsymbol{\Pi}^{(k)}(x;j'+1) + \dots + \boldsymbol{\Pi}^{(k)}(x;n) - (n-j')\boldsymbol{q}}{n} - \frac{j'\boldsymbol{q}}{n} \right| \\ &\leq \frac{|\boldsymbol{\Pi}^{(k)}(x;1) + \dots + \boldsymbol{\Pi}^{(k)}(x;j')|}{n} \\ &+ \frac{|\boldsymbol{\Pi}^{(k)}(x;j'+1) - \boldsymbol{q}| + \dots + |\boldsymbol{\Pi}^{(k)}(x;n) - \boldsymbol{q}|}{n} + \frac{|j'\boldsymbol{q}|}{n} \\ &\leq \frac{j'}{n} + \frac{\epsilon}{3} \frac{n-j'}{n} + \frac{j'}{n} \leq \frac{j'}{2^{j'}} + \frac{\epsilon}{3} + \frac{j'}{2^{j'}} \leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{split}$$

This completes the proof of Lemma 2.2. \blacksquare

LEMMA 2.3. The set A is a subset of R (recall that R is defined in Theorem 1.1).

Proof. Let $x \in A$. By Lemma 2.2, we deduce that $(\boldsymbol{\Pi}^{(k)}(x;n))_n$ has property P for all k. We now want to show that $x \in R$, i.e. the set of accumulation points of $(\boldsymbol{\Pi}^{(k)}(x;n))_n$ equals Δ_N . It is clear that the set of accumulation points of $(\boldsymbol{\Pi}^{(k)}(x;n))_n$ is a subset of Δ_N . Hence, it suffices to show that each $\boldsymbol{p} \in \Delta_N$ is an accumulation point of $(\boldsymbol{\Pi}^{(k)}(x;n))_n$. Therefore, let $\boldsymbol{p} \in \Delta_N$. Fix $l \in \mathbb{N}$ and $\boldsymbol{q} \in \mathbb{D}$ such that $|\boldsymbol{p} - \boldsymbol{q}| \leq 1/l$.

We first observe that we can find $n_l > l$ such that

$$(2.2) |\boldsymbol{q} - \boldsymbol{\Pi}^{(k)}(x; n_l)| \le 1/l$$

We now prove (2.2). Indeed, since $x \in A$, we conclude from Lemma 2.2 that $(\boldsymbol{\Pi}^{(k)}(x;n))_n$ has property P. In particular, we can find $j \in \mathbb{N}$ with $l \leq j$ and such that if $j < n < \varphi_m(2^j)$ then $|\boldsymbol{\Pi}^{(k)}(x;n) - \boldsymbol{q}| < 1/l$. Hence if n_l is any integer with $j < n_l < \varphi_m(2^j)$ then $|\boldsymbol{\Pi}^{(k)}(x;n_l) - \boldsymbol{q}| < 1/l$.

Hence, the sequence $(n_l)_l$ satisfies n_l and

(2.3)
$$|\boldsymbol{p} - \boldsymbol{\Pi}^{(k)}(x; n_l)| \le |\boldsymbol{p} - \boldsymbol{q}| + |\boldsymbol{\Pi}^{(k)}(x; n_l) - \boldsymbol{q}| \le 2/l.$$

Since $n_l > l$, we can extract an increasing subsequence $(n_{l_u})_u$ of $(n_l)_l$. It now follows from (2.3) that $\mathbf{\Pi}^{(k)}(x; n_{l_u}) \to \mathbf{p}$. Hence \mathbf{p} is an accumulation point of $(\mathbf{\Pi}^{(k)}(x; n_{l_u}))_{u=1}^{\infty}$. This completes the proof of Lemma 2.3.

Proof of Theorem 1.1. It follows from Lemma 2.3 that $A \subseteq R$. By Lemma 2.1, A is residual in \mathbb{I} . Since it is easily seen that $[0,1] \setminus \mathbb{I}$ is a countable union of nowhere dense sets, A is residual in [0,1]. Hence, we conclude that R is residual.

Acknowledgments. The fifth-named author is supported by the Carnegie Trust.

References

- [APT] S. Albeverio, M. Pratsiovytyi and G. Torbin, *Topological and fractal properties of subsets of real numbers which are not normal*, Bull. Sci. Math. 129 (2005), 615–630.
- [Bi] P. Billingsley, *Probability and Measure*, 2nd ed., Wiley, New York, 1986.
- [CZ] C. Calude and T. Zamfirescu, Most numbers obey no probability laws, in: Automata and Formal Languages, VIII (Salgótarján, 1996), Publ. Math. Debrecen 54 (1999), suppl., 619–623.
- [Ed] G. A. Edgar, Integral, Probability, and Fractal Measures, Springer, New York, 1998.
- [Fa] K. J. Falconer, *Fractal Geometry*, Wiley, 1990.
- [HI] E. Hlawka, Theorie der Gleichverteilung, Bibliographisches Institut Wissenschaftsverlag, Mannheim, 1979.
- [OI] L. Olsen, Extremely non-normal numbers, Math. Proc. Cambridge Philos. Soc. 137 (2004), 43–53.
- [OW] L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. 67 (2003), 103– 122.
- [Ox] J. C. Oxtoby, *Measure and Category*, 2nd ed., Springer, New York, 1996.
- [Sa1] T. Salát, A remark on normal numbers, Rev. Roumaine Math. Pures Appl. 11 (1966), 53–56.
- [Ša2] —, Über die Cantorschen Reihen, Czechoslovak Math. J. 18 (93) (1968), 25–56.
- [SŠ] F. Schweiger and T. Šalát, Some sets of sequences of positive integers and normal numbers, Rev. Roumaine Math. Pures Appl. 26 (1981), 1255–1264.
- [Si] K. Sigmund, Nombres normaux et théorie ergodique, in: Théorie ergodique (Actes Journées Ergodiques, Rennes, 1973/1974), Lecture Notes in Math. 532, Springer, Berlin, 1976, 202–215.
- [Vo] B. Volkmann, Gewinnmengen, Arch. Math. (Basel) 10 (1959), 235–240.

J. Hyde, L. Olsen, I. Petrykiewicz, A. Shaw	V. Laschos
Department of Mathematics	Department of Mathematics
University of St Andrews	University of Bath
St Andrews, Fife KY16 9SS, Scotland	Bath, BA2 7AY, England
E-mail: jth4@st-and.ac.uk	E-mail: V.Laschos@bath.ac.uk
lo@st-and.ac.uk	
ip46@st-and.ac.uk	
afs8@st-and.ac.uk	

Received on 14.9.2009 and in revised form on 14.1.2010 (6148)