On higher-power moments of $\Delta(x)$ (III)

by

Wenguang Zhai (Jinan)

1. Introduction and main results. Let $d(n)$ denote the Dirichlet divisor function and $\Delta(x)$ denote the error term of the sum $\sum_{n \leq x} d(n)$ for a large real variable x. Dirichlet proved that $\Delta(x)=O\left(x^{1 / 2}\right)$. The exponent $1 / 2$ was improved by many authors. The latest result reads

$$
\begin{equation*}
\Delta(x) \ll x^{131 / 416}(\log x)^{26957 / 8320} \tag{1.1}
\end{equation*}
$$

proved by Huxley [3]. It is conjectured that

$$
\begin{equation*}
\Delta(x)=O\left(x^{1 / 4+\varepsilon}\right) \tag{1.2}
\end{equation*}
$$

which is supported by the classical mean-square result

$$
\begin{equation*}
\int_{1}^{T} \Delta^{2}(x) d x=\frac{(\zeta(3 / 2))^{4}}{6 \pi^{2} \zeta(3)} T^{3 / 2}+O\left(T \log ^{5} T\right) \tag{1.3}
\end{equation*}
$$

proved by Tong [10].
Tsang [11] studied the third- and fourth-power moments of $\Delta(x)$. He proved that

$$
\begin{align*}
& \int_{2}^{T} \Delta^{3}(x) d x=\frac{3 c_{1}}{28 \pi^{3}} T^{7 / 4}+O\left(T^{7 / 4-\delta_{1}+\varepsilon}\right) \tag{1.4}\\
& \int_{2}^{T} \Delta^{4}(x) d x=\frac{3 c_{2}}{64 \pi^{4}} T^{2}+O\left(T^{2-\delta_{2}+\varepsilon}\right) \tag{1.5}
\end{align*}
$$

where $\delta_{1}=1 / 14, \delta_{2}=1 / 23$, and

$$
c_{1}:=\sum_{\alpha, \beta, h \in \mathbb{N}}(\alpha \beta(\alpha+\beta))^{-3 / 2} h^{-9 / 4}|\mu(h)| d\left(\alpha^{2} h\right) d\left(\beta^{2} h\right) d\left((\alpha+\beta)^{2} h\right),
$$

[^0]$$
c_{2}:=\sum_{\substack{n, m, k, l \in \mathbb{N} \\ \sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l}}}(n m k l)^{-3 / 4} d(n) d(m) d(k) d(l)
$$

Recently in [12] the author proved that (1.4) holds for $\delta_{1}=1 / 4$. In a forthcoming paper, Ivić and Sargos [7] proved that (1.4) holds for $\delta_{1}=7 / 20$. The author got this exponent independently. However, Professor Ivić kindly informed the author that the exponent $\delta_{1}=7 / 20 \mathrm{had}$ already been obtained by Professor Tsang several years ago but he had never published this result.

Following Tsang's approach, in [12] the author proved that (1.5) holds for $\delta_{2}=2 / 41$. This approach used the method of exponential sums. In particular, if the exponent pair conjecture is true, namely, if $(\varepsilon, 1 / 2+\varepsilon)$ is an exponent pair, then (1.5) holds for $\delta_{2}=1 / 14$. However, in [7] Ivić and Sargos ingeniously proved a substantially better result. They proved that (1.5) holds for $\delta_{2}=1 / 12$.

In this paper, combining the method of [7] and a recent deep result of Robert and Sargos [9], we shall prove the following

Theorem 1. We have

$$
\begin{equation*}
\int_{2}^{T} \Delta^{4}(x) d x=\frac{3 c_{2}}{64 \pi^{4}} T^{2}+O\left(T^{53 / 28+\varepsilon}\right) \tag{1.6}
\end{equation*}
$$

The theorem is also true for other error terms. Let $P(x)$ denote the error term of the Gauss circle problem, which is an error term similar to $\Delta(x)$. Let $a(n)$ be the Fourier coefficients of a holomorphic cusp form of weight $\kappa=2 n \geq 12$ for the full modular group and define

$$
A(x):=\sum_{n \leq x}^{\prime} a(n), \quad x \geq 2
$$

We then have the following two corollaries, which improve the previous results ([2], [11], [12]).

Corollary 1. We have

$$
\begin{equation*}
\int_{2}^{T} P^{4}(x) d x=C T^{2}+O\left(T^{53 / 28+\varepsilon}\right) \tag{1.7}
\end{equation*}
$$

Corollary 2. We have

$$
\begin{equation*}
\int_{1}^{T} A^{4}(x) d x=B_{\kappa} T^{2 \kappa}+O\left(T^{2 \kappa-3 / 28+\varepsilon}\right) \tag{1.8}
\end{equation*}
$$

Now consider $E(t)$, defined by

$$
\begin{equation*}
E(t):=\int_{0}^{t}|\zeta(1 / 2+i u)|^{2} d u-t \log (t / 2 \pi)-(2 \gamma-1) t, \quad t \geq 2 \tag{1.9}
\end{equation*}
$$

Tsang [11] also studied the fourth-power moment of $E(t)$ by using Atkinson's formula [1] and proved that

$$
\begin{equation*}
\int_{2}^{T} E^{4}(t) d t=\frac{3}{8 \pi} c_{2} T^{2}+O\left(T^{2-\delta_{3}+\varepsilon}\right) \tag{1.10}
\end{equation*}
$$

with some unspecified constant $\delta_{3}>0$.
Ivić [4] used a different way to study the higher power moments of $E(t)$. His approach is as follows. Let

$$
\begin{equation*}
\Delta^{*}(x):=\frac{1}{2} \sum_{n \leq 4 x}(-1)^{n} d(n)-x(\log x+2 \gamma-1), \quad x \geq 1 \tag{1.11}
\end{equation*}
$$

Then for $1 \ll N \ll x$, we have [6]

$$
\begin{align*}
\Delta^{*}(x)=\frac{1}{\pi \sqrt{2}} \sum_{n \leq N}(-1)^{n} d(n) n^{-3 / 4} x^{1 / 4} \cos (4 & \pi \sqrt{n x}-\pi / 4) \tag{1.12}\\
& +O\left(x^{1 / 2+\varepsilon} N^{-1 / 2}\right)
\end{align*}
$$

Jutila [8] proved that

$$
\begin{equation*}
\int_{0}^{T}\left(E(t)-2 \pi \Delta^{*}\left(\frac{t}{2 \pi}\right)\right)^{2} d t \ll T^{4 / 3} \log ^{3} T \tag{1.13}
\end{equation*}
$$

which means that $E(t)$ is well approximated by $2 \pi \Delta^{*}(t / 2 \pi)$ at least in the mean square sense. From (1.13) Ivić [4] deduced that

$$
\begin{equation*}
\int_{0}^{T} E^{4}(t) d t=(2 \pi)^{5} \int_{0}^{T / 2 \pi}\left(\Delta^{*}(t)\right)^{4} d t+O\left(T^{23 / 12} \log ^{3 / 2} T\right) \tag{1.14}
\end{equation*}
$$

Thus the fourth-power moment of $E(t)$ was transformed into the fourthpower moment of $\Delta^{*}(t)$, which can be dealt with in the same way as the fourth-power moment of $\Delta(x)$. By Tsang's result [11], Ivić deduced from (1.14) that (1.10) holds for $\delta_{3}=1 / 23$. In [7], Ivić and Sargos proved that one can take $\delta_{3}=1 / 12$.

It is easy to see that $1 / 12$ is the limit of this approach since it is the limit of Jutila's result (1.13). In this paper, we shall use a different way to prove the following

Theorem 2. We have

$$
\begin{equation*}
\int_{2}^{T} E^{4}(t) d t=\frac{3}{8 \pi} c_{2} T^{2}+O\left(T^{53 / 28+\varepsilon}\right) \tag{1.15}
\end{equation*}
$$

Remark. The proof of Theorem 2 does not use (1.13) and it is actually a generalization of the approach used in the author's paper [13]. In [14] the author used a similar method to study the third-power moment of $E(t)$.

Acknowledgements. I am very grateful to the referee for many valuable suggestions. In particular, he gave a direct proof of Lemma 3, which is much easier than my previous one. I wish to thank Professor Ivić and Professor Robert, who kindly sent me the papers [7] and [9], respectively.

Notations. Throughout this paper, $[x]$ denotes the integer part of x, $\|x\|$ denotes the distance from x to the integer nearest to $x, n \sim N$ means $N<n \leq 2 N, n \asymp N$ means $C_{1} N<n \leq C_{2} N$ for positive constants $C_{1}<C_{2}$, and ε always denotes a small positive constant which may be different at different places. We shall use the estimate $d(n) \ll n^{\varepsilon}$ freely.
2. The spacing problem of the square roots. In the proofs of Theorems 1 and 2 , the sums and differences of square roots will appear in the exponential. Thus we should study the spacing problem of the square roots.

We need the following lemmas. Lemma 1 is a special case of a new result proved in Robert and Sargos [9], which also plays an important role in this paper. Lemma 2 is Lemma 3 of Tsang [11]. Lemma 3 provides an upper bound for the number of solutions of the inequality

$$
\begin{equation*}
\left|n_{1}^{1 / 2}+n_{2}^{1 / 2} \pm n_{3}^{1 / 2}-n_{4}^{1 / 2}\right|<\Delta, \quad n_{j} \sim N_{j} \quad(j=1,2,3,4) \tag{2.1}
\end{equation*}
$$

where $N_{j} \geq 2(j=1,2,3,4)$ are real numbers. Lemma 4 is essentially Lemma 3 of Ivić and Sargos [7], but we added the case $\alpha \ll 1$. Lemma 5 is essentially Lemma 5 of [7], but the term $K \min \left(M, M^{\prime}, L\right)$ therein is superfluous since we add the condition $|\sqrt{n}+\sqrt{m}-\sqrt{k}-\sqrt{l}|>0$ in Lemma 5 , and so we give a new proof here. Lemma 6 is Lemma 6 of [7].

Lemma 1. Suppose $N \geq 2, \Delta>0$. Let $\mathcal{A}(N ; \Delta)$ denote the number of solutions of the inequality

$$
\left|n_{1}^{1 / 2}+n_{2}^{1 / 2}-n_{3}^{1 / 2}-n_{4}^{1 / 2}\right|<\Delta, \quad n_{j} \sim N \quad(j=1,2,3,4)
$$

Then

$$
\mathcal{A}(N ; \Delta) \ll\left(\Delta N^{7 / 2}+N^{2}\right) N^{\varepsilon}
$$

Lemma 2. If $n, m, k, l \in \mathbb{N}$ are such that $\sqrt{n}+\sqrt{m} \pm \sqrt{k}-\sqrt{l} \neq 0$, then respectively,

$$
|\sqrt{n}+\sqrt{m} \pm \sqrt{k}-\sqrt{l}| \gg \max (n, m, k, l)^{-7 / 2}
$$

Lemma 3. Suppose $N_{j} \geq 2(j=1,2,3,4), \Delta>0$. Let $\mathcal{A}_{ \pm}\left(N_{1}, N_{2}, N_{3}\right.$, $\left.N_{4} ; \Delta\right)$ denote the number of solutions of inequality (2.1). Then

$$
\mathcal{A}_{ \pm}\left(N_{1}, N_{2}, N_{3}, N_{4} ; \Delta\right) \ll \prod_{j=1}^{4}\left(\Delta^{1 / 4} N_{j}^{7 / 8}+N_{j}^{1 / 2}\right) N_{j}^{\varepsilon}
$$

Proof. We use a combinatorial argument. Let $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ be two finite sequences of real numbers. Let $\Delta>0$. Suppose u_{0} and J (a positive integer)
are chosen so that $\left\{a_{i}\right\} \subset\left(u_{0}, u_{0}+J \Delta\right],\left\{b_{i}\right\} \subset\left(u_{0}, u_{0}+J \Delta\right]$. Divide this interval into the abutting subintervals $I_{j}:=\left(u_{0}+j \Delta, u_{0}+(j+1) \Delta\right]$ for $j=0,1, \ldots, J-1$ and then let

$$
N_{j}(A):=\#\left\{i: a_{i} \in I_{j}\right\}, \quad N_{j}(B):=\#\left\{i: b_{i} \in I_{j}\right\}
$$

If $\left|a_{r}-b_{s}\right| \leq \Delta$, then either both a_{r} and b_{s} lie in the same subinterval I_{j}, or they lie in adjacent subintervals I_{j} and I_{j+1}. Hence

$$
\begin{aligned}
& \#\{(r, s)\left.:\left|a_{r}-b_{s}\right| \leq \Delta\right\} \\
& \leq \sum_{j} N_{j}(A) N_{j}(B)+\sum_{j} N_{j}(A) N_{j+1}(B)+\sum_{j} N_{j+1}(A) N_{j}(B) \\
& \quad \leq 3\left(\sum_{j} N_{j}(A)^{2}\right)^{1 / 2}\left(\sum_{j} N_{j}(B)^{2}\right)^{1 / 2}
\end{aligned}
$$

by Cauchy-Schwarz's inequality. On the other hand, we have

$$
\sum_{j} N_{j}(A)^{2}=\sum_{j} \#\left\{\left(r, r^{\prime}\right): a_{r}, a_{r^{\prime}} \in I_{j}\right\} \leq \#\left\{\left(r, r^{\prime}\right):\left|a_{r}-a_{r^{\prime}}\right| \leq \Delta\right\}
$$

and similarly for $\sum_{j} N_{j}(B)^{2}$. Thus

$$
\begin{align*}
& \#\left\{(r, s):\left|a_{r}-b_{s}\right| \leq \Delta\right\} \tag{2.2}\\
& \quad \leq 3\left(\#\left\{\left(r, r^{\prime}\right):\left|a_{r}-a_{r^{\prime}}\right| \leq \Delta\right\}\right)^{1 / 2}\left(\#\left\{\left(s, s^{\prime}\right):\left|b_{s}-b_{s^{\prime}}\right| \leq \Delta\right\}\right)^{1 / 2}
\end{align*}
$$

Suppose $n_{j}, n_{j}^{\prime} \sim N_{j}(j=1,2,3,4)$. Applying (2.2) to the sequences $A=\left\{\sqrt{n_{1}}+\sqrt{n_{2}}\right\}$ and $B=\left\{\sqrt{n_{3}}+\sqrt{n_{4}}\right\}$, we get

$$
\begin{align*}
\mathcal{A}_{-} & \left(N_{1}, N_{2}, N_{3}, N_{4}\right) \tag{2.3}\\
& =\#\left\{\left(n_{1}, n_{2}, n_{3}, n_{4}\right):\left|n_{1}^{1 / 2}+n_{2}^{1 / 2}-n_{3}^{1 / 2}-n_{4}^{1 / 2}\right| \leq \Delta\right\} \\
\leq & 3\left(\#\left\{\left(n_{1}, n_{2}, n_{1}^{\prime}, n_{2}^{\prime}\right):\left|n_{1}^{1 / 2}+n_{2}^{1 / 2}-n_{1}^{\prime 1 / 2}-n_{2}^{\prime / 2}\right| \leq \Delta\right\}\right)^{1 / 2} \\
& \quad \times\left(\#\left\{\left(n_{3}, n_{4}, n_{3}^{\prime}, n_{4}^{\prime}\right):\left|n_{3}^{1 / 2}+n_{4}^{1 / 2}-n_{3}^{\prime 1 / 2}-n_{4}^{\prime 1 / 2}\right| \leq \Delta\right\}\right)^{1 / 2}
\end{align*}
$$

Applying the previous bound to the sequences $A_{1}=\left\{n_{1}^{1 / 2}-n_{1}^{1 / 2}\right\}, B_{1}=$ $\left\{n_{2}^{1 / 2}-n_{2}^{\prime 1 / 2}\right\}$, and $A_{2}=\left\{n_{3}^{1 / 2}-n_{3}^{\prime 1 / 2}\right\}, B_{2}=\left\{n_{4}^{1 / 2}-n_{4}^{\prime 1 / 2}\right\}$, respectively, we get

$$
\begin{equation*}
\mathcal{A}_{-}\left(N_{1}, N_{2}, N_{3}, N_{4}\right) \leq 9 \prod_{j=1}^{4} \mathcal{A}_{-}\left(N_{j}, N_{j}, N_{j}, N_{j}\right)^{1 / 4} \tag{2.4}
\end{equation*}
$$

which combined with Lemma 1 gives Lemma 3 for the "-" case. The proof for the "+" case is similar.

Lemma 4. Suppose $K \geq 10, \alpha, \beta \in \mathbb{R}, 2 K^{-1 / 2} \leq|\alpha| \ll K^{1 / 2}$ and $0<\delta<1 / 2$. Then

$$
\#\{k \sim K:\|\beta+\alpha \sqrt{k}\|<\delta\} \ll K \delta+K^{1 / 2+\varepsilon}
$$

Proof. Without loss of generality, suppose $\alpha>0$. Let $\mathcal{N}=\#\{k \sim K$: $\|\beta+\alpha \sqrt{k}\|<\delta\}$. If $1 \ll \alpha \ll K^{1 / 2}$, from Lemma 3 of Ivić and Sargos [7] we get

$$
\mathcal{N} \ll K \delta+|\alpha|^{1 / 2} K^{1 / 4+\varepsilon}+K^{1 / 2+\varepsilon} \ll K \delta+K^{1 / 2+\varepsilon}
$$

Now suppose $2 K^{-1 / 2} \leq \alpha \ll 1$. Since $\|t\|$ is a periodic function with period 1, we suppose $0<\beta \leq 1$. If $\|\beta+\alpha \sqrt{k}\|<\delta$, then there exists a unique $l \in[\alpha \sqrt{K}, 2 \alpha \sqrt{K}+2]$ such that

$$
(l-\beta-\delta)^{2} / \alpha^{2}<k \leq(l-\beta+\delta)^{2} / \alpha^{2}
$$

which implies

$$
\begin{aligned}
\mathcal{N} & \ll \sum_{l \sim \alpha \sqrt{K}}\left(\left[(l-\beta+\delta)^{2} / \alpha^{2}\right]-\left[(l-\beta-\delta)^{2} / \alpha^{2}\right]\right) \\
& \ll \sum_{l \sim \alpha \sqrt{K}}\left((l-\beta+\delta)^{2} / \alpha^{2}-(l-\beta-\delta)^{2} / \alpha^{2}+1\right) \\
& \ll K \delta+K^{1 / 2}
\end{aligned}
$$

if we notice $\alpha \ll 1$.
Lemma 5. Suppose $1 \leq N \leq M, 1 \leq L \leq K, N \leq L, M \asymp K, 0<$ $\Delta \ll K^{1 / 2}$. Let $\mathcal{A}_{1}(N, M, K, L ; \Delta)$ denote the number of solutions of the inequality

$$
0<|\sqrt{n}+\sqrt{m}-\sqrt{k}-\sqrt{l}|<\Delta
$$

with $n \sim N, m \sim M, k \sim K, l \sim L$. Then

$$
\mathcal{A}_{1}(N, M, K, L ; \Delta) \ll \Delta K^{1 / 2} N M L+N L K^{1 / 2+\varepsilon}
$$

In particular, if $\Delta K^{1 / 2} \gg 1$, then

$$
\mathcal{A}_{1}(N, M, K, L ; \Delta) \ll \Delta K^{1 / 2} N M L
$$

Proof. If (n, m, k, l) satisfies $|\sqrt{n}+\sqrt{m}-\sqrt{k}-\sqrt{l}|<\Delta$, then

$$
m=k+2 k^{1 / 2}(\sqrt{l}-\sqrt{n})+(\sqrt{l}-\sqrt{n})^{2}+u
$$

with $|u| \leq C \Delta K^{1 / 2}$ for some absolute constant $C>0$. Hence the quantity $\mathcal{A}_{1}(N, M, K, L ; \Delta)$ does not exceed the number of solutions of the inequality

$$
\begin{equation*}
\left|2 k^{1 / 2}(\sqrt{l}-\sqrt{n})+(\sqrt{l}-\sqrt{n})^{2}+k-m\right|<C \Delta K^{1 / 2} \tag{2.5}
\end{equation*}
$$

with $n \sim N, m \sim M, k \sim K, l \sim L$.
If $\Delta K^{1 / 2} \gg 1$, then for fixed (n, k, l), the number of m for which (2.5) holds is $\ll 1+\Delta K^{1 / 2} \ll \Delta K^{1 / 2}$ if we notice $K \asymp M$. Hence

$$
\mathcal{A}_{1}(N, M, K, L ; \Delta) \ll \Delta K^{1 / 2} N M L
$$

Now suppose $\Delta K^{1 / 2} \leq 1 / 4 C$. For fixed (n, k, l), there is at most one m such that (2.5) holds. If such an m exists, then we have

$$
\begin{equation*}
\left\|2 k^{1 / 2}(\sqrt{l}-\sqrt{n})+(\sqrt{l}-\sqrt{n})^{2}\right\|<C \Delta K^{1 / 2} \tag{2.6}
\end{equation*}
$$

We shall use Lemma 4 to bound the number of solutions of (2.6) with $\alpha=2(\sqrt{l}-\sqrt{n}), \beta=(\sqrt{l}-\sqrt{n})^{2}$. Let \mathcal{C}_{1} denote the number of solutions of (2.6) with $|\alpha| \geq 2 K^{-1 / 2}$, and \mathcal{C}_{2} the number of solutions with $|\alpha|<2 K^{-1 / 2}$. By Lemma 4 we get

$$
\mathcal{C}_{1} \ll \Delta K^{1 / 2} N M L+N L K^{1 / 2+\varepsilon}
$$

if we notice $M \asymp K$. Now we estimate \mathcal{C}_{2}. From $|\alpha|<2 K^{-1 / 2}$, we get $N \asymp L$. If $l=n$, from (2.5) we get $k=m$. This contradicts $|\sqrt{n}+\sqrt{m}-\sqrt{k}-\sqrt{l}|>0$. Thus $l \neq n$. From

$$
2 K^{-1 / 2}>|\sqrt{l}-\sqrt{n}|=\frac{|l-n|}{\sqrt{l}+\sqrt{n}} \geq \frac{1}{\sqrt{l}+\sqrt{n}} \geq 1 / 2 \sqrt{2 L}
$$

we get $L \gg K$ and thus $N \asymp M \asymp K \asymp L$. So we have

$$
\mathcal{C}_{2} \ll \#\left\{(l, n):|\alpha|<2 K^{-1 / 2}\right\} \times \#\{k\} \ll K^{2}
$$

which can be absorbed into the estimate of \mathcal{C}_{1}. This completes the proof of Lemma 5.

Lemma 6. Suppose $1 \leq N \leq M \leq K \asymp L, 0<\Delta \ll L^{1 / 2}$. Let $\mathcal{A}_{2}(N, M, K, L ; \Delta)$ denote the number of solutions of the inequality

$$
|\sqrt{n}+\sqrt{m}+\sqrt{k}-\sqrt{l}|<\Delta
$$

with $n \sim N, m \sim M, k \sim K, l \sim L$. Then

$$
\mathcal{A}_{2}(N, M, K, L ; \Delta) \ll \Delta L^{1 / 2} N M K+N M K^{1 / 2+\varepsilon}
$$

In particular, if $\Delta L^{1 / 2} \gg 1$, then

$$
\mathcal{A}_{2}(N, M, K, L ; \Delta) \ll \Delta L^{1 / 2} N M K
$$

3. Proof of Theorem 1. Suppose $T \geq 10$. It suffices to evaluate the integral $\int_{T}^{2 T} \Delta^{4}(x) d x$. Suppose $y=T^{3 / 4}$. For any $T \leq x \leq 2 T$, by the truncated Voronoï formula, we get

$$
\begin{equation*}
\Delta(x)=\frac{1}{\sqrt{2} \pi} \mathcal{R}+O\left(x^{1 / 2+\varepsilon} y^{-1 / 2}\right) \tag{3.1}
\end{equation*}
$$

where

$$
\mathcal{R}:=\mathcal{R}(x)=x^{1 / 4} \sum_{n \leq y} \frac{d(n)}{n^{3 / 4}} \cos \left(4 \pi \sqrt{x n}-\frac{\pi}{4}\right)
$$

We have

$$
\begin{align*}
\int_{T}^{2 T} \Delta^{4}(x) d x & =\frac{1}{4 \pi^{4}} \int_{T}^{2 T} \mathcal{R}^{4} d x+O\left(T^{9 / 4+\varepsilon} y^{-1 / 2}+T^{3+\varepsilon} y^{-2}\right) \tag{3.2}\\
& =\frac{1}{4 \pi^{4}} \int_{T}^{2 T} \mathcal{R}^{4} d x+O\left(T^{15 / 8+\varepsilon}\right)
\end{align*}
$$

Let
$g=g(n, m, k, l):=(n m k l)^{-3 / 4} d(n) d(m) d(k) d(l) \quad$ for $n, m, k, l \leq y$, and $g=0$ otherwise.

Equation (3.4) of Tsang [11] reads

$$
\begin{equation*}
\mathcal{R}^{4}=S_{1}(x)+S_{2}(x)+S_{3}(x)+S_{4}(x) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{1}(x):=\frac{3}{8} \sum_{\sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l}} g x, \\
& S_{2}(x):=\frac{3}{8} \sum_{\sqrt{n}+\sqrt{m} \neq \sqrt{k}+\sqrt{l}} g x \cos (4 \pi(\sqrt{n}+\sqrt{m}-\sqrt{k}-\sqrt{l}) \sqrt{x}) \\
& S_{3}(x):=\frac{1}{2} \sum g x \sin (4 \pi(\sqrt{n}+\sqrt{m}+\sqrt{k}-\sqrt{l}) \sqrt{x}) \\
& S_{4}(x):=-\frac{1}{8} \sum g x \cos (4 \pi(\sqrt{n}+\sqrt{m}+\sqrt{k}+\sqrt{l}) \sqrt{x}) .
\end{aligned}
$$

From (3.7) of [11] we get

$$
\begin{equation*}
\int_{T}^{2 T} S_{1}(x) d x=\frac{3 c_{2}}{8} \int_{T}^{2 T} x d x+O\left(T^{2-3 / 16+\varepsilon}\right) \tag{3.4}
\end{equation*}
$$

From the first derivative test we get

$$
\begin{equation*}
\int_{T}^{2 T} S_{4}(x) d x \ll T^{3 / 2+\varepsilon} y^{1 / 2} \ll T^{15 / 8+\varepsilon} \tag{3.5}
\end{equation*}
$$

Now let us consider the contribution of $S_{2}(x)$. By the first derivative test we get

$$
\begin{align*}
\int_{T}^{2 T} S_{2}(x) d x & \ll \sum_{\substack{n, m, k, l \leq y \\
\sqrt{n}+\sqrt{m} \neq \sqrt{k}+\sqrt{l}}} g \min \left(T^{2}, \frac{T^{3 / 2}}{|\sqrt{n}+\sqrt{m}-\sqrt{k}-\sqrt{l}|}\right) \tag{3.6}\\
& \ll T^{\varepsilon} G(N, M, K, L)
\end{align*}
$$

where

$$
\begin{gathered}
G(N, M, K, L)=\sum_{1} g \min \left(T^{2}, \frac{T^{3 / 2}}{|\sqrt{n}+\sqrt{m}-\sqrt{k}-\sqrt{l}|}\right) \\
\mathrm{SC}\left(\sum_{1}\right): \sqrt{n}+\sqrt{m} \neq \sqrt{k}+\sqrt{l}, 1 \leq N \leq M \leq y, 1 \leq L \leq K \leq y \\
N \leq L, n \sim N, m \sim M, k \sim K, l \sim L
\end{gathered}
$$

If $M \geq 100 K$, then $|\sqrt{n}+\sqrt{m}-\sqrt{k}-\sqrt{l}| \gg M^{1 / 2}$, so the trivial estimate
yields

$$
G(N, M, K, L) \ll \frac{T^{3 / 2+\varepsilon} N M K L}{(N M K L)^{3 / 4} M^{1 / 2}} \ll T^{3 / 2+\varepsilon} y^{1 / 2} \ll T^{15 / 8+\varepsilon}
$$

If $K>100 M$, we get the same estimate. So later we always suppose that $M \asymp K$.

Let $\eta=\sqrt{n}+\sqrt{m}-\sqrt{k}-\sqrt{l}$. Write

$$
\begin{equation*}
G(N, M, K, L, R)=G_{1}+G_{2}+G_{3} \tag{3.7}
\end{equation*}
$$

where

$$
\begin{aligned}
G_{1} & :=T^{2} \sum_{|\eta| \leq T^{-1 / 2}} g \\
G_{2} & :=T^{3 / 2} \sum_{T^{-1 / 2}<|\eta| \leq 1} g|\eta|^{-1} \\
G_{3} & :=T^{3 / 2} \sum_{|\eta| \gg 1} g|\eta|^{-1}
\end{aligned}
$$

We estimate G_{1} first. From $|\eta| \leq T^{-1 / 2}$ we get $M \asymp K \gg T^{1 / 7}$ via Lemma 2 . By Lemma 5 we get

$$
\begin{align*}
G_{1} & \ll \frac{T^{2+\varepsilon}}{(N M K L)^{3 / 4}} \mathcal{A}_{1}\left(N, M, K, L ; T^{-1 / 2}\right) \tag{3.8}\\
& \ll \frac{T^{2+\varepsilon}}{(N M K L)^{3 / 4}}\left(T^{-1 / 2} K^{1 / 2} N M L+N L K^{1 / 2}\right) \\
& \ll T^{3 / 2+\varepsilon}(N L)^{1 / 4}+T^{2+\varepsilon}(N L)^{1 / 4} K^{-1} \\
& \ll T^{3 / 2+\varepsilon} y^{1 / 2}+T^{2+\varepsilon}(N L)^{1 / 4} K^{-1} \\
& \ll T^{15 / 8+\varepsilon}+T^{2+\varepsilon}(N L)^{1 / 4} K^{-1}
\end{align*}
$$

By Lemma 3 we get (notice $N \leq L \leq K$)

$$
\begin{align*}
G_{1} \ll & \frac{T^{2+\varepsilon}}{(N M K L)^{3 / 4}} \mathcal{A}_{-}\left(N, M, K, L ; T^{-1 / 2}\right) \tag{3.9}\\
\ll & \frac{T^{2+\varepsilon}}{(N M K L)^{3 / 4}}\left(T^{-1 / 8} N^{7 / 8}+N^{1 / 2}\right)\left(T^{-1 / 8} L^{7 / 8}+L^{1 / 2}\right) \\
& \times\left(T^{-1 / 4} K^{7 / 4}+K\right) \\
\ll & T^{2+\varepsilon}\left(T^{-1 / 8} N^{1 / 8}+N^{-1 / 4}\right)\left(T^{-1 / 8} L^{1 / 8}+L^{-1 / 4}\right) \\
& \times\left(T^{-1 / 4} K^{1 / 4}+K^{-1 / 2}\right) \\
\ll & T^{2+\varepsilon}\left(T^{-1 / 4}(N L)^{1 / 8}+T^{-1 / 8} L^{1 / 8} N^{-1 / 4}+(N L)^{-1 / 4}\right) \\
& \times\left(T^{-1 / 4} K^{1 / 4}+K^{-1 / 2}\right)
\end{align*}
$$

$$
\begin{aligned}
\ll & T^{2+\varepsilon} T^{-1 / 4}(N L)^{1 / 8}\left(T^{-1 / 4} K^{1 / 4}+K^{-1 / 2}\right) \\
& +T^{2+\varepsilon}\left(T^{-1 / 8} L^{3 / 8}(N L)^{-1 / 4}+(N L)^{-1 / 4}\right)\left(T^{-1 / 4} K^{1 / 4}+K^{-1 / 2}\right) \\
\ll & T^{3 / 2+\varepsilon} y^{1 / 2}+T^{7 / 4+\varepsilon} K^{-1 / 4} \\
& +T^{2+\varepsilon}\left(T^{-1 / 4} K^{1 / 4}+K^{-1 / 2}\right)\left(T^{-1 / 8} K^{3 / 8}+1\right)(N L)^{-1 / 4} \\
\ll & T^{15 / 8+\varepsilon}+T^{2+\varepsilon} K^{-1 / 2}\left(T^{-1 / 4} K^{3 / 4}+1\right)\left(T^{-1 / 8} K^{3 / 8}+1\right)(N L)^{-1 / 4} \\
\ll & T^{15 / 8+\varepsilon}+T^{2+\varepsilon} K^{-1 / 2}\left(T^{-3 / 8} K^{9 / 8}+1\right)(N L)^{-1 / 4} .
\end{aligned}
$$

From (3.8) and (3.9) we get
(3.10) $\quad G_{1} \ll T^{15 / 8+\varepsilon}$

$$
\begin{aligned}
& +T^{2+\varepsilon} \min \left((N L)^{1 / 4} K^{-1}, K^{-1 / 2}\left(T^{-3 / 8} K^{9 / 8}+1\right)(N L)^{-1 / 4}\right) \\
\ll & T^{15 / 8+\varepsilon} \\
& +T^{2+\varepsilon}\left((N L)^{1 / 4} K^{-1}\right)^{1 / 2}\left(K^{-1 / 2}\left(T^{-3 / 8} K^{9 / 8}+1\right)(N L)^{-1 / 4}\right)^{1 / 2} \\
\ll & T^{15 / 8+\varepsilon}+T^{2+\varepsilon} K^{-3 / 4}\left(T^{-3 / 16} K^{9 / 16}+1\right) \\
\ll & T^{15 / 8+\varepsilon}+T^{2+\varepsilon} K^{-3 / 4} \ll T^{53 / 28+\varepsilon}
\end{aligned}
$$

if we notice $K \gg T^{1 / 7}$.
Now we estimate G_{2}. By a splitting argument we get the estimate

$$
\begin{equation*}
G_{2} \ll \frac{T^{3 / 2+\varepsilon}}{(N M K L)^{3 / 4} \delta} \sum_{\substack{\delta<|\eta| \leq 2 \delta \\ \eta \neq 0}} 1 \tag{3.11}
\end{equation*}
$$

for some $T^{-1 / 2} \leq \delta \leq 1$. By Lemma 5 we get

$$
\begin{align*}
G_{2} & \ll \frac{T^{3 / 2+\varepsilon}}{(N M K L)^{3 / 4} \delta} \mathcal{A}_{1}(N, M, K, L ; 2 \delta) \tag{3.12}\\
& \ll \frac{T^{3 / 2+\varepsilon}}{(N M K L)^{3 / 4} \delta}\left(\delta K^{1 / 2} N M L+N L K^{1 / 2}\right) \\
& \ll T^{3 / 2+\varepsilon} y^{1 / 2}+T^{3 / 2+\varepsilon}(K \delta)^{-1}(N L)^{1 / 4} \\
& \ll T^{15 / 8+\varepsilon}+T^{3 / 2+\varepsilon}(K \delta)^{-1}(N L)^{1 / 4}
\end{align*}
$$

By Lemma 3 we get (notice $N \leq L \leq K$)

$$
\begin{align*}
G_{2} \ll & \frac{T^{3 / 2+\varepsilon}}{(N M K L)^{3 / 4} \delta} \mathcal{A}_{-}(N, M, K, L ; 2 \delta) \tag{3.13}\\
\ll & \frac{T^{3 / 2+\varepsilon}}{(N M K L)^{3 / 4} \delta}\left(\delta^{1 / 4} N^{7 / 8}+N^{1 / 2}\right)\left(\delta^{1 / 4} L^{7 / 8}+L^{1 / 2}\right) \\
& \times\left(\delta^{1 / 2} K^{7 / 4}+K\right)
\end{align*}
$$

$$
\begin{aligned}
\ll & T^{3 / 2+\varepsilon}\left(N^{1 / 8}+N^{-1 / 4} \delta^{-1 / 4}\right)\left(L^{1 / 8}+L^{-1 / 4} \delta^{-1 / 4}\right) \\
& \times\left(K^{1 / 4}+K^{-1 / 2} \delta^{-1 / 2}\right) \\
\ll & T^{3 / 2+\varepsilon}\left((N L)^{1 / 8}+L^{1 / 8} N^{-1 / 4} \delta^{-1 / 4}+(N L)^{-1 / 4} \delta^{-1 / 2}\right) \\
& \times\left(K^{1 / 4}+K^{-1 / 2} \delta^{-1 / 2}\right) \\
\ll & T^{3 / 2+\varepsilon}(N L)^{1 / 8} K^{1 / 4}+T^{3 / 2+\varepsilon}(N L)^{1 / 8} K^{-1 / 2} \delta^{-1 / 2} \\
& +T^{3 / 2+\varepsilon}\left(K^{1 / 4}+K^{-1 / 2} \delta^{-1 / 2}\right)\left(L^{3 / 8} \delta^{1 / 4}+1\right)(N L)^{-1 / 4} \delta^{-1 / 2} \\
\ll & T^{3 / 2+\varepsilon} y^{1 / 2}+T^{3 / 2+\varepsilon} \delta^{-1 / 2} \\
& +T^{3 / 2+\varepsilon} K^{-1 / 2} \delta^{-1}\left(K^{3 / 4} \delta^{1 / 2}+1\right)\left(K^{3 / 8} \delta^{1 / 4}+1\right)(N L)^{-1 / 4} \\
\ll & T^{15 / 8+\varepsilon}+T^{3 / 2+\varepsilon} K^{-1 / 2} \delta^{-1}\left(K^{9 / 8} \delta^{3 / 4}+1\right)(N L)^{-1 / 4}
\end{aligned}
$$

where the bound $\delta \gg T^{-1 / 2}$ was applied to the term $T^{3 / 2+\varepsilon} \delta^{-1 / 2}$.
From (3.12) and (3.13) we get

$$
\begin{align*}
G_{2} & \ll T^{15 / 8+\varepsilon}+\frac{T^{3 / 2+\varepsilon}}{\delta} \min \left(\frac{(N L)^{1 / 4}}{K}, \frac{K^{9 / 8} \delta^{3 / 4}+1}{K^{1 / 2}(N L)^{1 / 4}}\right) \tag{3.14}\\
& \ll T^{15 / 8+\varepsilon}+\frac{T^{3 / 2+\varepsilon}}{\delta}\left(\frac{(N L)^{1 / 4}}{K}\right)^{1 / 2}\left(\frac{K^{9 / 8} \delta^{3 / 4}+1}{K^{1 / 2}(N L)^{1 / 4}}\right)^{1 / 2} \\
& \ll T^{15 / 8+\varepsilon}+T^{3 / 2+\varepsilon} \delta^{-1} K^{-3 / 4}\left(K^{9 / 16} \delta^{3 / 8}+1\right)
\end{align*}
$$

If $\delta \gg K^{-3 / 2}$, then (3.14) implies (recall $\delta \gg T^{-1 / 2}$)

$$
\begin{equation*}
G_{2} \ll T^{15 / 8+\varepsilon}+T^{3 / 2+\varepsilon} K^{-3 / 16} \delta^{-5 / 8} \ll T^{15 / 8+\varepsilon} \tag{3.15}
\end{equation*}
$$

If $\delta \ll K^{-3 / 2}$, then (3.14) becomes

$$
\begin{equation*}
G_{2} \ll T^{15 / 8+\varepsilon}+T^{3 / 2+\varepsilon} \delta^{-1} K^{-3 / 4} \tag{3.16}
\end{equation*}
$$

Since $\delta \gg K^{-7 / 2}$ by Lemma 2 and $\delta \gg T^{-1 / 2}$, we get

$$
\delta^{-1} \ll \min \left(K^{7 / 2}, T^{1 / 2}\right)
$$

and thus from (3.16) we get

$$
\begin{align*}
G_{2} & \ll T^{15 / 8+\varepsilon}+\min \left(T^{2+\varepsilon} K^{-3 / 4}, T^{3 / 2+\varepsilon} K^{11 / 4}\right) \tag{3.17}\\
& \ll T^{15 / 8+\varepsilon}+\left(T^{2+\varepsilon} K^{-3 / 4}\right)^{11 / 14}\left(T^{3 / 2+\varepsilon} K^{11 / 4}\right)^{3 / 14} \\
& \ll T^{53 / 28+\varepsilon} .
\end{align*}
$$

For G_{3}, by a splitting argument and Lemma 5 again (notice $|\eta| \gg 1$) we get

$$
\begin{align*}
G_{3} & \ll \frac{T^{3 / 2+\varepsilon}}{(N M K L)^{3 / 4} \delta} \sum_{\delta<|\eta| \leq 2 \delta, \delta \gg 1} 1 \tag{3.18}\\
& \ll \frac{T^{3 / 2+\varepsilon}}{(N M K L)^{3 / 4}} K^{1 / 2} N M L \ll T^{3 / 2+\varepsilon} y^{1 / 2} \ll T^{15 / 8+\varepsilon}
\end{align*}
$$

Combining (3.6), (3.7), (3.10) and (3.15)-(3.18) we get

$$
\begin{equation*}
\int_{T}^{2 T} S_{2}(x) d x \ll T^{53 / 28+\varepsilon} \tag{3.19}
\end{equation*}
$$

In the same way, by Lemmas 3 and 6, we can show that

$$
\begin{equation*}
\int_{T}^{2 T} S_{3}(x) d x \ll T^{53 / 28+\varepsilon} \tag{3.20}
\end{equation*}
$$

From (3.2)-(3.5), (3.19) and (3.20) we get

$$
\begin{equation*}
\int_{T}^{2 T} \Delta^{4}(x) d x=\frac{3 c_{2}}{32 \pi^{4}} \int_{T}^{2 T} x d x+O\left(T^{53 / 28+\varepsilon}\right) \tag{3.21}
\end{equation*}
$$

which implies Theorem 1 immediately.
4. Preliminary lemmas for Theorem 2. In order to prove Theorem 2, we need the following lemmas.

Lemma 7. We have

$$
E(t)=\Sigma_{1}(t)+\Sigma_{2}(t)+O\left(\log ^{2} t\right)
$$

with

$$
\begin{align*}
& \Sigma_{1}(t):=\frac{1}{\sqrt{2}} \sum_{n \leq N} h(t, n) \cos (f(t, n)) \tag{4.1}\\
& \Sigma_{2}(t):=-2 \sum_{n \leq N^{\prime}} d(n) n^{-1 / 2}\left(\log \frac{t}{2 \pi n}\right)^{-1} \cos \left(t \log \frac{t}{2 \pi n}-t+\frac{\pi}{4}\right) \tag{4.2}
\end{align*}
$$

$$
\begin{equation*}
h(t, n):=(-1)^{n} d(n) n^{-1 / 2}\left(\frac{t}{2 \pi n}+\frac{1}{4}\right)^{-1 / 4}(g(t, n))^{-1} \tag{4.3}
\end{equation*}
$$

$$
\begin{align*}
g(t, n) & :=\operatorname{arsinh}\left(\left(\frac{\pi n}{2 t}\right)^{1 / 2}\right) \tag{4.4}\\
f(t, n) & :=2 t g(t, n)+\left(2 \pi n t+\pi^{2} n^{2}\right)^{1 / 2}-\pi / 4 \tag{4.5}
\end{align*}
$$

$$
\begin{equation*}
\text { where } 0<A<A^{\prime} \text { are any fixed constants. } \tag{4.6}
\end{equation*}
$$

Proof. This is the famous Atkinson formula (see Atkinson [1] or Ivic [5, Theorem 15.1]).

Lemma 8. Suppose $Y>1$. Define

$$
\begin{aligned}
c_{2}^{*} & :=\sum_{\sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l}} \frac{(-1)^{n+m+k+l} d(n) d(m) d(k) d(l)}{(n m k l)^{3 / 4}}, \\
c_{2}^{*}(Y) & :=\sum_{\substack{\sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l} \\
n, m, k, l \leq Y}} \frac{(-1)^{n+m+k+l} d(n) d(m) d(k) d(l)}{(n m k l)^{3 / 4}}, \\
c_{2}(Y) & :=\sum_{\substack{\sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l} \\
n, m, k, l \leq Y}} \frac{d(n) d(m) d(k) d(l)}{(n m k l)^{3 / 4}} .
\end{aligned}
$$

Then

$$
c_{2}=c_{2}^{*}, \quad c_{2}(Y)=c_{2}^{*}(Y), \quad\left|c_{2}-c_{2}(Y)\right| \ll Y^{-1 / 2+\varepsilon}
$$

Proof. The estimate $\left|c_{2}-c_{2}(Y)\right| \ll Y^{-1 / 2+\varepsilon}$ is a special case of Lemma 3.1 of [13]. The equalities $c_{2}=c_{2}^{*}$ and $c_{2}(Y)=c_{2}^{*}(Y)$ follow from the fact that if $\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}+\sqrt{n_{4}}$, then $n_{1}+n_{2}+n_{3}+n_{4}$ must be an even number.

Lemma 9. If $Y>1$, then

$$
H_{1}(Y):=\sum_{\substack{\sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l} \\ n, m, k, l \leq Y}} \frac{d(n) d(m) d(k) d(l) \max (n, m, k, l)^{3}}{(n m k l)^{3 / 4}} \ll Y^{5 / 2+\varepsilon}
$$

Proof. If $\sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l}$, then either
(1) $n=k, m=l$ or $n=l, m=k$, or
(2) $n \neq k, l$.

If (2) holds, then by a classical result of Besicovitch, we know that $n=n_{1}^{2} h, \quad m=m_{1}^{2} h, \quad k=k_{1}^{2} h, \quad l=l_{1}^{2} h, \quad n_{1}+m_{1}=k_{1}+l_{1}, \quad \mu(h) \neq 0$.

Thus we get

$$
\begin{aligned}
H_{1}(Y) & \ll \Sigma_{1}+\Sigma_{2}, \\
\Sigma_{1} & \ll \sum_{n, k \leq Y} \frac{d^{2}(n) d^{2}(m) \max (n, k)^{3}}{(n k)^{3 / 2}} \ll Y^{5 / 2} \log ^{3} Y, \\
\Sigma_{2} & \ll Y^{\varepsilon} \sum_{h<Y} \sum_{\substack{n_{1}+m_{1}=k_{1}+l_{1} \\
n_{1}, m_{1}, k_{1}, l_{1} \leq Y^{1 / 2} h^{-1 / 2}}} \frac{\max \left(n_{1}, m_{1}, k_{1}, l_{1}\right)^{6}}{\left(n_{1} m_{1} k_{1} l_{1}\right)^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \ll Y^{\varepsilon} \sum_{h<Y} \sum_{\substack{n_{1}+m_{1}=k_{1}+l_{1} \\
n_{1}, m_{1}, l_{1} \leq k_{1} \leq Y^{1 / 2} h^{-1 / 2}}} \frac{k_{1}^{9 / 2}}{\left(n_{1} m_{1} l_{1}\right)^{3 / 2}} \sum_{\substack{n_{1}+m_{1}>k_{1}}} \sum_{\substack{n_{1}, m_{1} \leq k_{1} \leq Y^{1 / 2} h^{-1 / 2}}}^{\left(n_{1} m_{1}\right)^{3 / 2}} \\
& \ll Y^{\varepsilon} \sum_{h<Y} \sum_{l_{1}} l_{1}^{-3 / 2} \sum_{\substack{ }}<Y^{\varepsilon} \sum_{h<Y} \sum_{l_{1}} l_{1}^{-3 / 2} \sum_{n_{1}}^{3} n_{1}^{-3 / 2} k_{1}^{3} \\
& \ll Y^{\varepsilon} \sum_{h<Y}\left(Y^{1 / 2} h^{-1 / 2}\right)^{5} \ll Y^{5 / 2+\varepsilon} .
\end{aligned}
$$

Lemma 10. If $Y>1$, then

$$
H_{2}(Y):=\sum_{\substack{\sqrt{n}+\sqrt{m}+\sqrt{k}=\sqrt{l} \\ n, m, k, l \leq Y}} \frac{d(n) d(m) d(k) d(l) l^{3 / 4}}{(n m k)^{3 / 4}} \ll Y^{1 / 2+\varepsilon} .
$$

Proof. If $\sqrt{n}+\sqrt{m}+\sqrt{k}=\sqrt{l}$, then

$$
n=n_{1}^{2} h, \quad m=m_{1}^{2} h, \quad k=k_{1}^{2} h, \quad l=l_{1}^{2} h, \quad n_{1}+m_{1}+k_{1}=l_{1}, \quad \mu(h) \neq 0
$$

Thus we get

$$
\begin{aligned}
H_{2}(Y) & \ll Y^{\varepsilon} \sum_{h\left(n_{1}+m_{1}+k_{1}\right)^{2} \leq Y} \frac{\left(n_{1}+m_{1}+k_{1}\right)^{3 / 2}}{h^{3 / 2}\left(n_{1} m_{1} k_{1}\right)^{3 / 2}} \\
& \ll Y^{\varepsilon} \sum_{h<Y} h^{-3 / 2} \sum_{n_{1} \leq m_{1} \leq k_{1} \leq Y^{1 / 2} h^{-1 / 2}} n_{1}^{-3 / 2} m_{1}^{-3 / 2} \ll Y^{1 / 2+\varepsilon}
\end{aligned}
$$

Lemma 11. Suppose $f_{j}(t)(1 \leq j \leq k)$ and $g(t)$ are continuous, monotonic real-valued functions on $[a, b]$ and let $g(t)$ have a continuous, monotonic derivative on $[a, b]$. If $\left|f_{j}(t)\right| \leq A_{j}(1 \leq j \leq k),\left|g^{\prime}(t)\right| \gg \Delta$ for any $t \in[a, b]$, then

$$
\int_{a}^{b} f_{1}(t) \cdots f_{k}(t) e(g(t)) d t \ll A_{1} \cdots A_{k} \Delta^{-1}
$$

Proof. This is Lemma 15.3 of Ivić [5].
5. Proof of Theorem 2. Suppose $T \geq 10$. It suffices to evaluate $\int_{T}^{2 T} E^{4}(t) d t$. Let $y:=T^{1 / 3-\varepsilon}$. For any $T \leq t \leq 2 T$, define

$$
\mathcal{E}_{1}(t):=\frac{1}{\sqrt{2}} \sum_{n \leq y} h(t, n) \cos (f(t, n)), \quad \mathcal{E}_{2}(t):=E(t)-\mathcal{E}_{1}(t) .
$$

From the inequality $(a+b)^{4}-a^{4} \ll|b|^{3}|a|+|b|^{4}$, we get

$$
\begin{align*}
& \int_{T}^{2 T} E^{4}(t) d t \tag{5.1}\\
& \quad=\int_{T}^{2 T} \mathcal{E}_{1}^{4}(t) d t+O\left(\int_{T}^{2 T}\left|\mathcal{E}_{1}(t)\right|^{3}\left|\mathcal{E}_{2}(t)\right| d t\right)+O\left(\int_{T}^{2 T}\left|\mathcal{E}_{2}(t)\right|^{4} d t\right)
\end{align*}
$$

5.1. Evaluation of $\int_{T}^{2 T} \mathcal{E}_{1}^{4}(t) d t$. In this subsection, we shall evaluate the integral $\int_{T}^{2 T} \mathcal{E}_{1}^{4}(t) d t$. Similarly to Tsang [11], we can write

$$
\begin{equation*}
\mathcal{E}_{1}^{4}(t)=\frac{3}{32} S_{5}(t)+\frac{3}{32} S_{6}(t)+\frac{1}{8} S_{7}(t)+\frac{1}{8} S_{8}(t)+\frac{1}{32} S_{9}(t) \tag{5.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{5}(t):=\sum_{\substack{n, m, k, l \leq y \\
\sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l}}} H(t ; n, m, k, l) \cos \left(F_{1}(t ; n, m, k, l)\right), \\
& S_{6}(t):=\sum_{\substack{n, m, k, l \leq y \\
\sqrt{n}+\sqrt{m} \neq \sqrt{k}+\sqrt{l}}} H(t ; n, m, k, l) \cos \left(F_{1}(t ; n, m, k, l)\right), \\
& S_{7}(t):=\sum_{\substack{n, m, k, l \leq y \\
\sqrt{n}+\sqrt{m}+\sqrt{k}=\sqrt{l}}} H(t ; n, m, k, l) \cos \left(F_{2}(t ; n, m, k, l)\right), \\
& S_{8}(t):=\sum_{\substack{n, m, k, l \leq y \\
\sqrt{n}+\sqrt{m}+\sqrt{k} \neq \sqrt{l}}} H(t ; n, m, k, l) \cos \left(F_{2}(t ; n, m, k, l)\right), \\
& S_{9}(t):=\sum_{n, m, k, l \leq y} H(t ; n, m, k, l) \cos \left(F_{3}(t ; n, m, k, l)\right), \\
& H(t ; n, m, k, l):=h(t, n) h(t, m) h(t, k) h(t, l) \text {, } \\
& F_{1}(t ; n, m, k, l):=f(t, n)+f(t, m)-f(t, k)-f(t, l), \\
& F_{2}(t ; n, m, k, l):=f(t, n)+f(t, m)+f(t, k)-f(t, l), \\
& F_{3}(t ; n, m, k, l):=f(t, n)+f(t, m)+f(t, k)+f(t, l) .
\end{aligned}
$$

We first estimate the integral $\int_{T}^{2 T} S_{5}(t) d t$. For $n \leq y$, it is easy to check that

$$
\begin{align*}
h(t, n) & =\frac{2^{3 / 4}}{\pi^{1 / 4}} \frac{(-1)^{n} d(n)}{n^{3 / 4}} t^{1 / 4}\left(1+O\left(\frac{n}{t}\right)\right) \tag{5.3}\\
f(t, n) & =2^{3 / 2}(\pi n t)^{1 / 2}-\pi / 4+O\left(n^{3 / 2} t^{-1 / 2}\right) \tag{5.4}\\
f^{\prime}(t, n) & =2^{1 / 2}(\pi n)^{1 / 2} t^{-1 / 2}+O\left(n^{3 / 2} t^{-3 / 2}\right) \tag{5.5}
\end{align*}
$$

If $\sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l}$, then

$$
\begin{equation*}
\cos \left(F_{1}(n, m, k, l)\right)=\cos \left(O\left(\frac{D^{3 / 2}}{t^{1 / 2}}\right)\right)=1+O\left(\frac{D^{3}}{t}\right) \tag{5.6}
\end{equation*}
$$

where $D:=\max (n, m, k, l)$. So from (5.3), (5.6), and Lemmas 8 and 9 we get

$$
\begin{equation*}
\int_{T}^{2 T} S_{5}(t) d t \tag{5.7}
\end{equation*}
$$

$=\sum_{\substack{n, m, k, l \leq y \\ \sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l}}} \int_{T}^{2 T} H(t ; n, m, k, l) \cos \left(F_{1}(t ; n, m, k, l)\right) d t$
$=\frac{8}{\pi} \sum_{\substack{n, m, k, l \leq y \\ \sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l}}} \frac{(-1)^{n+m+k+l} d(n) d(m) d(k) d(l)}{(n m k l)^{3 / 4}}$

$$
\times \int_{T}^{2 T} t\left(1+O\left(\frac{D}{t}\right)\right)\left(1+\left(\frac{D^{3}}{t}\right)\right) d t
$$

$$
=\frac{8}{\pi} \sum_{\substack{n, m, k, l \leq y \\ \sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l}}} \frac{(-1)^{n+m+k+l} d(n) d(m) d(k) d(l)}{(n m k l)^{3 / 4}}
$$

$$
\times \int_{T}^{2 T} t\left(1+\left(\frac{D^{3}}{t}\right)\right) d t
$$

$$
=\frac{8}{\pi} \sum_{\substack{n, m, k, l \leq y \\ \sqrt{n}+\sqrt{m}=\sqrt{k}+\sqrt{l}}} \frac{(-1)^{n+m+k+l} d(n) d(m) d(k) d(l)}{(n m k l)^{3 / 4}} \int_{T}^{2 T} t d t+O\left(T H_{1}(y)\right)
$$

$$
=\frac{8 c_{2}}{\pi} \int_{T}^{2 T} t d t+O\left(T^{1+\varepsilon} y^{5 / 2}+T^{2+\varepsilon} y^{-1 / 2}\right)
$$

$$
=\frac{8 c_{2}}{\pi} \int_{T}^{2 T} t d t+O\left(T^{11 / 6+\varepsilon}\right)
$$

Now we estimate $\int_{T}^{2 T} S_{6}(t) d t$. From (5.5) we get

$$
F_{1}^{\prime}(t ; n, m, k, l)=(2 \pi)^{1 / 2} \eta t^{-1 / 2}+O\left(D^{3 / 2} t^{-3 / 2}\right)
$$

where $\eta=\sqrt{n}+\sqrt{m}-\sqrt{k}-\sqrt{l}$. Write

$$
\begin{equation*}
\int_{T}^{2 T} S_{6}(t) d t=\int_{|\eta| \leq T^{-1 / 2}} S_{6}(t) d t+\int_{|\eta|>T^{-1 / 2}} S_{6}(t) d t \tag{5.8}
\end{equation*}
$$

If $|\eta| \leq T^{-1 / 2}$, then by (5.3) and the trivial estimate we get

$$
\begin{equation*}
\int_{|\eta| \leq T^{-1 / 2}} S_{6}(t) d t \ll T^{2} \sum_{\substack{n, m, k, l \leq y ;|\eta| \leq T^{-1 / 2} \\ \sqrt{n}+\sqrt{m} \neq \sqrt{k}+\sqrt{l}}} \frac{d(n) d(m) d(k) d(l)}{(n m k l)^{3 / 4}} \tag{5.9}
\end{equation*}
$$

If $|\eta|>T^{-1 / 2}$, then $\left|F_{1}^{\prime}(t ; n, m, k, l)\right| \gg|\eta| T^{-1 / 2}$, thus from (5.3) and Lemma 11 we get

$$
\begin{equation*}
\int_{\substack{|\eta|>T^{-1 / 2}}} S_{6}(t) d t \ll T^{3 / 2} \sum_{\substack{n, m, k, l \leq y ;|\eta|>T^{-1 / 2} \\ \sqrt{n}+\sqrt{m} \neq \sqrt{k}+\sqrt{l}}} \frac{d(n) d(m) d(k) d(l)}{(n m k l)^{3 / 4}|\eta|} \tag{5.10}
\end{equation*}
$$

From (5.9), (5.10) and the estimate in Section 3 we get

$$
\begin{align*}
\int_{T}^{2 T} S_{6}(t) d t & \ll \sum_{\substack{n, m, k, l \leq y \\
\sqrt{n}+\sqrt{m} \neq \sqrt{k}+\sqrt{l}}} \frac{d(n) d(m) d(k) d(l)}{(n m k l)^{3 / 4}} \min \left(T^{2}, T^{3 / 2}|\eta|^{-1}\right) \tag{5.11}\\
& \ll T^{53 / 28+\varepsilon} .
\end{align*}
$$

If $\sqrt{n}+\sqrt{m}+\sqrt{k}=\sqrt{l}$, then from (5.4) we have
$F_{2}(t ; n, m, k, l)=-\pi / 2+O\left(l^{3 / 2} t^{-1 / 2}\right), \quad \cos \left(F_{2}(t ; n, m, k, l)\right) \ll l^{3 / 2} t^{-1 / 2}$.
Thus from (5.3), the trivial estimate and Lemma 10 we get

$$
\begin{equation*}
\int_{T}^{2 T} S_{7}(t) d t \ll T^{3 / 2} H_{2}(y) \ll T^{3 / 2} y^{1 / 2+\varepsilon} \ll T^{5 / 3+\varepsilon} \tag{5.12}
\end{equation*}
$$

Similarly to the integral $\int_{T}^{2 T} S_{6}(t) d t$, we have

$$
\begin{equation*}
\int_{T}^{2 T} S_{8}(t) d t \ll T^{53 / 28+\varepsilon} \tag{5.13}
\end{equation*}
$$

From (5.5) we get

$$
F_{3}^{\prime}(t ; n, m, k, l) \gg(\sqrt{n}+\sqrt{m}+\sqrt{k}+\sqrt{l}) T^{-1 / 2}
$$

which together with (5.3) and Lemma 11 implies

$$
\begin{align*}
& \int_{T}^{2 T} S_{9}(t) d t \tag{5.14}\\
\ll & \sum_{n, m, k, l} \frac{d(n) d(m) d(k) d(l) T^{3 / 2}}{(n m k l)^{3 / 4}(\sqrt{n}+\sqrt{m}+\sqrt{k}+\sqrt{l})} \ll T^{3 / 2+\varepsilon} y^{1 / 2} \ll T^{5 / 3+\varepsilon} .
\end{align*}
$$

From (5.2), (5.7), (5.11)-(5.14) we get

$$
\begin{equation*}
\int_{T}^{2 T} \mathcal{E}_{1}^{4}(t) d t=\frac{3 c_{2}}{4 \pi} \int_{T}^{2 T} t d t+O\left(T^{53 / 28+\varepsilon}\right) \tag{5.15}
\end{equation*}
$$

5.2. Completion of proof of Theorem 2. Let $A_{0}=35 / 8$. Ivić [5, Thm. 15.7] proved the estimate

$$
\begin{equation*}
\int_{1}^{T}|E(t)|^{A_{0}} d t \ll T^{1+A_{0} / 4+\varepsilon} . \tag{5.16}
\end{equation*}
$$

By his method we can show

$$
\begin{equation*}
\int_{T}^{2 T}\left|\mathcal{E}_{1}(t)\right|^{A_{0}} d t \ll T^{1+A_{0} / 4+\varepsilon} \tag{5.17}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{T}^{2 T}\left|\mathcal{E}_{2}(t)\right|^{A_{0}} d t \ll T^{1+A_{0} / 4+\varepsilon} \tag{5.18}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\int_{T}^{2 T}\left|\mathcal{E}_{2}(t)\right|^{2} d t \ll T^{3 / 2+\varepsilon} y^{-1 / 2} \tag{5.19}
\end{equation*}
$$

which is formula (4.15) of [14]. From (5.18), (5.19) and Hölder's inequality the estimate

$$
\begin{equation*}
\int_{T}^{2 T}\left|\mathcal{E}_{2}(t)\right|^{A} d t \ll T^{1+A / 4+\varepsilon} y^{-\left(A_{0}-A\right) / 2\left(A_{0}-2\right)} \tag{5.20}
\end{equation*}
$$

holds for any $2<A<A_{0}$. The details can be found in [14].
From (5.17), (5.20) and Hölder's inequality we get

$$
\begin{align*}
\int_{T}^{2 T}\left|\mathcal{E}_{1}^{3}(t) \mathcal{E}_{2}(t)\right| d t & \ll\left(\int_{1}^{T}\left|\mathcal{E}_{1}(t)\right|^{A_{0}} d t\right)^{3 / A_{0}}\left(\int_{1}^{T}\left|\mathcal{E}_{2}(t)\right|^{A_{0} /\left(A_{0}-3\right)} d t\right)^{\left(A_{0}-3\right) / A_{0}} \tag{5.21}\\
& \ll T^{2+\varepsilon} y^{-\left(A_{0}-4\right) / 2\left(A_{0}-2\right)} \ll T^{2-19 / 108+\varepsilon}
\end{align*}
$$

From (5.1), (5.15), (5.20) with $A=4$ and (5.21) we get

$$
\begin{equation*}
\int_{T}^{2 T} E^{4}(t) d t=\frac{3 c_{2}}{4 \pi} \int_{T}^{2 T} t d t+O\left(T^{53 / 28+\varepsilon}\right) \tag{5.22}
\end{equation*}
$$

and Theorem 2 follows.

References

[1] F. V. Atkinson, The mean-value of the Riemann zeta-function, Acta Math. 81 (1949), 353-376.
[2] Y. C. Cai, On the third and fourth power moments of Fourier coefficients of cusp forms, Acta Math. Sinica (N.S.) 13 (1997), 443-452.
[3] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. (3) 87 (2003), 591-609.
[4] A. Ivić, On some problems involving the mean square of $\zeta(1 / 2+i t)$, Bull. Cl. Sci. Math. Nat. Sci. Math. 23 (1998), 71-76.
[5] -, The Riemann Zeta-Function, Wiley, 1985.
[6] -, Lectures on Mean Values of the Riemann Zeta-Function, Tata Inst. Fund. Res. Lectures on Math. and Phys. 82, Bombay, 1991.
[7] A. Ivić and P. Sargos, On the higher power moments of the error term in the divisor problem, to appear.
[8] M. Jutila, On a formula of Atkinson, in: Topics in Classical Number Theory (Budapest, 1981), Vols. I, II, Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984, 807-823.
[9] O. Robert and P. Sargos, Three-dimensional exponential sums with monomials, J. Reine Angew. Math., in print.
[10] K. C. Tong, On divisor problem III, Acta Math. Sinica 6 (1956), 515-541.
[11] K. M. Tsang, Higher-power moments of $\Delta(x), E(t)$ and $P(x)$, Proc. London Math. Soc. (3) 65 (1992), 65-84.
[12] W. G. Zhai, On higher-power moments of $\Delta(x)$, Acta Arith. 112 (2004), 367-395.
[13] -, On higher-power moments of $\Delta(x)$ (II), ibid. 114 (2004), 35-54.
[14] -, On higher-power moments of $E(t)$, ibid. 115 (2004), 329-348.
Department of Mathematics
Shandong Normal University
Jinan 250014, P.R. China
E-mail: zhaiwg@hotmail.com

Received on 20.5.2004
and in revised form on 24.12.2004

[^0]: 2000 Mathematics Subject Classification: 11N37, 11M06.
 Key words and phrases: power moment, Dirichlet divisor problem, Riemann zetafunction.

 This work is supported by National Natural Science Foundation of China (Grant No. 10301018).

