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On higher-power moments of ∆(x) (III)
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Wenguang Zhai (Jinan)

1. Introduction and main results. Let d(n) denote the Dirichlet
divisor function and ∆(x) denote the error term of the sum

∑

n≤x d(n) for

a large real variable x. Dirichlet proved that ∆(x) = O(x1/2). The exponent
1/2 was improved by many authors. The latest result reads

∆(x)≪ x131/416(log x)26957/8320,(1.1)

proved by Huxley [3]. It is conjectured that

∆(x) = O(x1/4+ε),(1.2)

which is supported by the classical mean-square result

T\
1

∆2(x) dx =
(ζ(3/2))4

6π2ζ(3)
T 3/2 +O(T log5 T )(1.3)

proved by Tong [10].

Tsang [11] studied the third- and fourth-power moments of ∆(x). He
proved that

T\
2

∆3(x) dx =
3c1
28π3

T 7/4 +O(T 7/4−δ1+ε),(1.4)

T\
2

∆4(x) dx =
3c2
64π4

T 2 +O(T 2−δ2+ε),(1.5)

where δ1 = 1/14, δ2 = 1/23, and

c1 :=
∑

α,β,h∈N

(αβ(α+ β))−3/2h−9/4|µ(h)|d(α2h)d(β2h)d((α+ β)2h),
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c2 :=
∑

n,m,k,l∈N√
n+
√
m=
√
k+
√
l

(nmkl)−3/4d(n)d(m)d(k)d(l).

Recently in [12] the author proved that (1.4) holds for δ1 = 1/4. In a forth-
coming paper, Ivić and Sargos [7] proved that (1.4) holds for δ1 = 7/20.
The author got this exponent independently. However, Professor Ivić kindly
informed the author that the exponent δ1 = 7/20 had already been obtained
by Professor Tsang several years ago but he had never published this result.
Following Tsang’s approach, in [12] the author proved that (1.5) holds

for δ2 = 2/41. This approach used the method of exponential sums. In
particular, if the exponent pair conjecture is true, namely, if (ε, 1/2 + ε) is
an exponent pair, then (1.5) holds for δ2 = 1/14. However, in [7] Ivić and
Sargos ingeniously proved a substantially better result. They proved that
(1.5) holds for δ2 = 1/12.
In this paper, combining the method of [7] and a recent deep result of

Robert and Sargos [9], we shall prove the following

Theorem 1. We have
T\
2

∆4(x) dx =
3c2
64π4

T 2 +O(T 53/28+ε).(1.6)

The theorem is also true for other error terms. Let P (x) denote the error
term of the Gauss circle problem, which is an error term similar to ∆(x).
Let a(n) be the Fourier coefficients of a holomorphic cusp form of weight
κ = 2n ≥ 12 for the full modular group and define

A(x) :=
∑′

n≤x
a(n), x ≥ 2.

We then have the following two corollaries, which improve the previous
results ([2], [11], [12]).

Corollary 1. We have
T\
2

P 4(x) dx = CT 2 +O(T 53/28+ε).(1.7)

Corollary 2. We have
T\
1

A4(x) dx = BκT
2κ +O(T 2κ−3/28+ε).(1.8)

Now consider E(t), defined by

E(t) :=

t\
0

|ζ(1/2 + iu)|2 du− t log(t/2π)− (2γ − 1)t, t ≥ 2.(1.9)
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Tsang [11] also studied the fourth-power moment of E(t) by using Atkinson’s
formula [1] and proved that

T\
2

E4(t) dt =
3

8π
c2T
2 +O(T 2−δ3+ε)(1.10)

with some unspecified constant δ3 > 0.
Ivić [4] used a different way to study the higher power moments of E(t).

His approach is as follows. Let

∆∗(x) :=
1

2

∑

n≤4x
(−1)nd(n)− x(log x+ 2γ − 1), x ≥ 1.(1.11)

Then for 1≪ N ≪ x, we have [6]

(1.12) ∆∗(x) =
1

π
√
2

∑

n≤N
(−1)nd(n)n−3/4x1/4 cos(4π√nx− π/4)

+O(x1/2+εN−1/2).

Jutila [8] proved that

T\
0

(

E(t)− 2π∆∗
(

t

2π

))2

dt≪ T 4/3 log3 T,(1.13)

which means that E(t) is well approximated by 2π∆∗(t/2π) at least in the
mean square sense. From (1.13) Ivić [4] deduced that

T\
0

E4(t) dt = (2π)5
T/2π\
0

(∆∗(t))4 dt+O(T 23/12 log3/2 T ).(1.14)

Thus the fourth-power moment of E(t) was transformed into the fourth-
power moment of ∆∗(t), which can be dealt with in the same way as the
fourth-power moment of ∆(x). By Tsang’s result [11], Ivić deduced from
(1.14) that (1.10) holds for δ3 = 1/23. In [7], Ivić and Sargos proved that
one can take δ3 = 1/12.
It is easy to see that 1/12 is the limit of this approach since it is the

limit of Jutila’s result (1.13). In this paper, we shall use a different way to
prove the following

Theorem 2. We have
T\
2

E4(t) dt =
3

8π
c2T
2 +O(T 53/28+ε).(1.15)

Remark. The proof of Theorem 2 does not use (1.13) and it is actually
a generalization of the approach used in the author’s paper [13]. In [14] the
author used a similar method to study the third-power moment of E(t).
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Notations. Throughout this paper, [x] denotes the integer part of x,
‖x‖ denotes the distance from x to the integer nearest to x, n ∼ N means
N < n ≤ 2N, n ≍ N means C1N < n ≤ C2N for positive constants
C1 < C2, and ε always denotes a small positive constant which may be
different at different places. We shall use the estimate d(n)≪ nε freely.

2. The spacing problem of the square roots. In the proofs of The-
orems 1 and 2, the sums and differences of square roots will appear in the
exponential. Thus we should study the spacing problem of the square roots.
We need the following lemmas. Lemma 1 is a special case of a new result

proved in Robert and Sargos [9], which also plays an important role in this
paper. Lemma 2 is Lemma 3 of Tsang [11]. Lemma 3 provides an upper
bound for the number of solutions of the inequality

|n1/21 + n
1/2
2 ± n

1/2
3 − n

1/2
4 | < ∆, nj ∼ Nj (j = 1, 2, 3, 4),(2.1)

where Nj ≥ 2 (j = 1, 2, 3, 4) are real numbers. Lemma 4 is essentially
Lemma 3 of Ivić and Sargos [7], but we added the case α≪ 1. Lemma 5 is
essentially Lemma 5 of [7], but the term Kmin(M,M ′, L) therein is super-
fluous since we add the condition |√n +√m −

√
k −
√
l| > 0 in Lemma 5,

and so we give a new proof here. Lemma 6 is Lemma 6 of [7].

Lemma 1. Suppose N ≥ 2, ∆ > 0. Let A(N ;∆) denote the number of
solutions of the inequality

|n1/21 + n
1/2
2 − n

1/2
3 − n

1/2
4 | < ∆, nj ∼ N (j = 1, 2, 3, 4).

Then

A(N ;∆)≪ (∆N7/2 +N2)N ε.
Lemma 2. If n,m, k, l ∈ N are such that

√
n+
√
m±
√
k−
√
l 6= 0, then

respectively ,

|√n+√m±
√
k −
√
l| ≫ max(n,m, k, l)−7/2.

Lemma 3. Suppose Nj ≥ 2 (j = 1, 2, 3, 4), ∆ > 0. Let A±(N1, N2, N3,
N4;∆) denote the number of solutions of inequality (2.1). Then

A±(N1, N2, N3, N4;∆)≪
4
∏

j=1

(∆1/4N
7/8
j +N

1/2
j )N

ε
j .

Proof. We use a combinatorial argument. Let {ai} and {bi} be two finite
sequences of real numbers. Let ∆ > 0. Suppose u0 and J (a positive integer)
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are chosen so that {ai} ⊂ (u0, u0 + J∆], {bi} ⊂ (u0, u0 + J∆]. Divide this
interval into the abutting subintervals Ij := (u0 + j∆, u0 + (j + 1)∆] for
j = 0, 1, . . . , J − 1 and then let

Nj(A) := #{i : ai ∈ Ij}, Nj(B) := #{i : bi ∈ Ij}.
If |ar − bs| ≤ ∆, then either both ar and bs lie in the same subinterval Ij ,
or they lie in adjacent subintervals Ij and Ij+1. Hence

#{(r, s) : |ar − bs| ≤ ∆}
≤
∑

j

Nj(A)Nj(B) +
∑

j

Nj(A)Nj+1(B) +
∑

j

Nj+1(A)Nj(B)

≤ 3
(

∑

j

Nj(A)
2
)1/2(∑

j

Nj(B)
2
)1/2

by Cauchy–Schwarz’s inequality. On the other hand, we have
∑

j

Nj(A)
2 =
∑

j

#{(r, r′) : ar, ar′ ∈ Ij} ≤ #{(r, r′) : |ar − ar′ | ≤ ∆},

and similarly for
∑

j Nj(B)
2. Thus

(2.2) #{(r, s) : |ar − bs| ≤ ∆}
≤ 3(#{(r, r′) : |ar − ar′ | ≤ ∆})1/2(#{(s, s′) : |bs − bs′ | ≤ ∆})1/2.

Suppose nj , n
′
j ∼ Nj (j = 1, 2, 3, 4). Applying (2.2) to the sequences

A = {√n1 +
√
n2} and B = {

√
n3 +
√
n4}, we get

(2.3) A−(N1, N2, N3, N4)
= #{(n1, n2, n3, n4) : |n1/21 + n

1/2
2 − n

1/2
3 − n

1/2
4 | ≤ ∆}

≤ 3(#{(n1, n2, n′1, n′2) : |n
1/2
1 + n

1/2
2 − n

′1/2
1 − n′1/22 | ≤ ∆})1/2

× (#{(n3, n4, n′3, n′4) : |n
1/2
3 + n

1/2
4 − n

′1/2
3 − n′1/24 | ≤ ∆})1/2.

Applying the previous bound to the sequences A1 = {n1/21 − n
′1/2
1 }, B1 =

{n1/22 − n
′1/2
2 }, and A2 = {n

1/2
3 − n

′1/2
3 }, B2 = {n

1/2
4 − n

′1/2
4 }, respectively,

we get

A−(N1, N2, N3, N4) ≤ 9
4
∏

j=1

A−(Nj , Nj , Nj , Nj)1/4,(2.4)

which combined with Lemma 1 gives Lemma 3 for the “−” case. The proof
for the “+” case is similar.

Lemma 4. Suppose K ≥ 10, α, β ∈ R, 2K−1/2 ≤ |α| ≪ K1/2 and
0 < δ < 1/2. Then

#{k ∼ K : ‖β + α
√
k‖ < δ} ≪ Kδ +K1/2+ε.
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Proof. Without loss of generality, suppose α > 0. Let N = #{k ∼ K :
‖β+α

√
k‖ < δ}. If 1≪ α≪ K1/2, from Lemma 3 of Ivić and Sargos [7] we

get
N ≪ Kδ + |α|1/2K1/4+ε +K1/2+ε ≪ Kδ +K1/2+ε.

Now suppose 2K−1/2 ≤ α ≪ 1. Since ‖t‖ is a periodic function with
period 1, we suppose 0 < β ≤ 1. If ‖β + α

√
k‖ < δ, then there exists a

unique l ∈ [α
√
K, 2α

√
K + 2] such that

(l − β − δ)2/α2 < k ≤ (l − β + δ)2/α2,
which implies

N ≪
∑

l∼α
√
K

([(l − β + δ)2/α2]− [(l − β − δ)2/α2])

≪
∑

l∼α
√
K

((l − β + δ)2/α2 − (l − β − δ)2/α2 + 1)

≪ Kδ +K1/2

if we notice α≪ 1.
Lemma 5. Suppose 1 ≤ N ≤ M, 1 ≤ L ≤ K, N ≤ L, M ≍ K, 0 <

∆ ≪ K1/2. Let A1(N,M,K,L;∆) denote the number of solutions of the
inequality

0 < |√n+√m−
√
k −
√
l| < ∆

with n ∼ N,m ∼M,k ∼ K, l ∼ L. Then
A1(N,M,K,L;∆)≪ ∆K1/2NML+NLK1/2+ε.

In particular , if ∆K1/2 ≫ 1, then
A1(N,M,K,L;∆)≪ ∆K1/2NML.

Proof. If (n,m, k, l) satisfies |√n+√m−
√
k −
√
l| < ∆, then

m = k + 2k1/2(
√
l −√n) + (

√
l −√n)2 + u

with |u| ≤ C∆K1/2 for some absolute constant C > 0. Hence the quantity
A1(N,M,K,L;∆) does not exceed the number of solutions of the inequality

|2k1/2(
√
l −√n) + (

√
l −√n)2 + k −m| < C∆K1/2(2.5)

with n ∼ N,m ∼M,k ∼ K, l ∼ L.
If ∆K1/2 ≫ 1, then for fixed (n, k, l), the number of m for which (2.5)

holds is ≪ 1 +∆K1/2 ≪ ∆K1/2 if we notice K ≍M. Hence
A1(N,M,K,L;∆)≪ ∆K1/2NML.

Now suppose ∆K1/2 ≤ 1/4C. For fixed (n, k, l), there is at most one m
such that (2.5) holds. If such an m exists, then we have

‖2k1/2(
√
l −√n) + (

√
l −√n)2‖ < C∆K1/2.(2.6)
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We shall use Lemma 4 to bound the number of solutions of (2.6) with
α = 2(

√
l −√n), β = (

√
l −√n)2. Let C1 denote the number of solutions of

(2.6) with |α| ≥ 2K−1/2, and C2 the number of solutions with |α| < 2K−1/2.
By Lemma 4 we get

C1 ≪ ∆K1/2NML+NLK1/2+ε

if we noticeM ≍ K. Now we estimate C2. From |α| < 2K−1/2, we get N ≍ L.
If l = n, from (2.5) we get k = m. This contradicts |√n+√m−

√
k−
√
l| > 0.

Thus l 6= n. From

2K−1/2 > |
√
l −√n| = |l − n|√

l +
√
n
≥ 1√
l +
√
n
≥ 1/2

√
2L

we get L≫ K and thus N ≍M ≍ K ≍ L. So we have
C2 ≪ #{(l, n) : |α| < 2K−1/2} ×#{k} ≪ K2,

which can be absorbed into the estimate of C1. This completes the proof of
Lemma 5.

Lemma 6. Suppose 1 ≤ N ≤ M ≤ K ≍ L, 0 < ∆ ≪ L1/2. Let
A2(N,M,K,L;∆) denote the number of solutions of the inequality

|√n+√m+
√
k −
√
l| < ∆

with n ∼ N,m ∼M,k ∼ K, l ∼ L. Then
A2(N,M,K,L;∆)≪ ∆L1/2NMK +NMK1/2+ε.

In particular , if ∆L1/2 ≫ 1, then
A2(N,M,K,L;∆)≪ ∆L1/2NMK.

3. Proof of Theorem 1. Suppose T ≥ 10. It suffices to evaluate the
integral

T2T
T ∆

4(x) dx. Suppose y = T 3/4. For any T ≤ x ≤ 2T, by the
truncated Voronöı formula, we get

∆(x) =
1√
2π
R+O(x1/2+εy−1/2),(3.1)

where

R := R(x) = x1/4
∑

n≤y

d(n)

n3/4
cos

(

4π
√
xn− π

4

)

.

We have
2T\
T

∆4(x) dx =
1

4π4

2T\
T

R4 dx+O(T 9/4+εy−1/2 + T 3+εy−2)(3.2)

=
1

4π4

2T\
T

R4 dx+O(T 15/8+ε).
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Let

g = g(n,m, k, l) := (nmkl)−3/4d(n)d(m)d(k)d(l) for n,m, k, l ≤ y,
and g = 0 otherwise.

Equation (3.4) of Tsang [11] reads

R4 = S1(x) + S2(x) + S3(x) + S4(x),(3.3)

where

S1(x) :=
3

8

∑

√
n+
√
m=
√
k+
√
l

gx,

S2(x) :=
3

8

∑

√
n+
√
m 6=
√
k+
√
l

gx cos(4π(
√
n+
√
m−
√
k −
√
l)
√
x),

S3(x) :=
1

2

∑

gx sin(4π(
√
n+
√
m+
√
k −
√
l)
√
x),

S4(x) := −
1

8

∑

gx cos(4π(
√
n+
√
m+
√
k +
√
l)
√
x).

From (3.7) of [11] we get

2T\
T

S1(x) dx =
3c2
8

2T\
T

x dx+O(T 2−3/16+ε).(3.4)

From the first derivative test we get

2T\
T

S4(x) dx≪ T 3/2+εy1/2 ≪ T 15/8+ε.(3.5)

Now let us consider the contribution of S2(x). By the first derivative test
we get

2T\
T

S2(x) dx≪
∑

n,m,k,l≤y√
n+
√
m 6=
√
k+
√
l

gmin

(

T 2,
T 3/2

|√n+√m−
√
k −
√
l|

)

(3.6)

≪ T εG(N,M,K,L),
where

G(N,M,K,L) =
∑

1
gmin

(

T 2,
T 3/2

|√n+√m−
√
k −
√
l|

)

,

SC(
∑

1) :
√
n+
√
m 6=
√
k +
√
l, 1 ≤ N ≤M ≤ y, 1 ≤ L ≤ K ≤ y,

N ≤ L, n ∼ N, m ∼M, k ∼ K, l ∼ L.
If M ≥ 100K, then |√n+√m−

√
k −
√
l| ≫ M1/2, so the trivial estimate
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yields

G(N,M,K,L)≪ T 3/2+εNMKL

(NMKL)3/4M1/2
≪ T 3/2+εy1/2 ≪ T 15/8+ε.

If K > 100M, we get the same estimate. So later we always suppose that
M ≍ K.
Let η =

√
n+
√
m−
√
k −
√
l. Write

G(N,M,K,L,R) = G1 +G2 +G3,(3.7)

where

G1 := T
2
∑

|η|≤T−1/2
g,

G2 := T
3/2

∑

T−1/2<|η|≤1
g|η|−1,

G3 := T
3/2
∑

|η|≫1
g|η|−1.

We estimateG1 first. From |η| ≤ T−1/2 we getM ≍ K ≫ T 1/7 via Lemma 2.
By Lemma 5 we get

G1 ≪
T 2+ε

(NMKL)3/4
A1(N,M,K,L;T−1/2)(3.8)

≪ T 2+ε

(NMKL)3/4
(T−1/2K1/2NML+NLK1/2)

≪ T 3/2+ε(NL)1/4 + T 2+ε(NL)1/4K−1

≪ T 3/2+εy1/2 + T 2+ε(NL)1/4K−1

≪ T 15/8+ε + T 2+ε(NL)1/4K−1.
By Lemma 3 we get (notice N ≤ L ≤ K)

(3.9) G1 ≪
T 2+ε

(NMKL)3/4
A−(N,M,K,L;T−1/2)

≪ T 2+ε

(NMKL)3/4
(T−1/8N7/8 +N1/2)(T−1/8L7/8 + L1/2)

× (T−1/4K7/4 +K)

≪ T 2+ε(T−1/8N1/8 +N−1/4)(T−1/8L1/8 + L−1/4)

× (T−1/4K1/4 +K−1/2)

≪ T 2+ε(T−1/4(NL)1/8 + T−1/8L1/8N−1/4 + (NL)−1/4)

× (T−1/4K1/4 +K−1/2)
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≪ T 2+εT−1/4(NL)1/8(T−1/4K1/4 +K−1/2)

+ T 2+ε(T−1/8L3/8(NL)−1/4 + (NL)−1/4)(T−1/4K1/4 +K−1/2)

≪ T 3/2+εy1/2 + T 7/4+εK−1/4

+ T 2+ε(T−1/4K1/4 +K−1/2)(T−1/8K3/8 + 1)(NL)−1/4

≪ T 15/8+ε + T 2+εK−1/2(T−1/4K3/4 + 1)(T−1/8K3/8 + 1)(NL)−1/4

≪ T 15/8+ε + T 2+εK−1/2(T−3/8K9/8 + 1)(NL)−1/4.
From (3.8) and (3.9) we get

G1 ≪ T 15/8+ε(3.10)

+ T 2+εmin((NL)1/4K−1,K−1/2(T−3/8K9/8 + 1)(NL)−1/4)

≪ T 15/8+ε
+ T 2+ε((NL)1/4K−1)1/2(K−1/2(T−3/8K9/8+1)(NL)−1/4)1/2

≪ T 15/8+ε + T 2+εK−3/4(T−3/16K9/16 + 1)
≪ T 15/8+ε + T 2+εK−3/4 ≪ T 53/28+ε

if we notice K ≫ T 1/7.
Now we estimate G2. By a splitting argument we get the estimate

G2 ≪
T 3/2+ε

(NMKL)3/4δ

∑

δ<|η|≤2δ
η 6=0

1(3.11)

for some T−1/2 ≤ δ ≤ 1. By Lemma 5 we get

G2 ≪
T 3/2+ε

(NMKL)3/4δ
A1(N,M,K,L; 2δ)(3.12)

≪ T 3/2+ε

(NMKL)3/4δ
(δK1/2NML+NLK1/2)

≪ T 3/2+εy1/2 + T 3/2+ε(Kδ)−1(NL)1/4

≪ T 15/8+ε + T 3/2+ε(Kδ)−1(NL)1/4.
By Lemma 3 we get (notice N ≤ L ≤ K)

(3.13) G2 ≪
T 3/2+ε

(NMKL)3/4δ
A−(N,M,K,L; 2δ)

≪ T 3/2+ε

(NMKL)3/4δ
(δ1/4N7/8 +N1/2)(δ1/4L7/8 + L1/2)

× (δ1/2K7/4 +K)
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≪ T 3/2+ε(N1/8 +N−1/4δ−1/4)(L1/8 + L−1/4δ−1/4)

× (K1/4 +K−1/2δ−1/2)

≪ T 3/2+ε((NL)1/8 + L1/8N−1/4δ−1/4 + (NL)−1/4δ−1/2)

× (K1/4 +K−1/2δ−1/2)

≪ T 3/2+ε(NL)1/8K1/4 + T 3/2+ε(NL)1/8K−1/2δ−1/2

+ T 3/2+ε(K1/4 +K−1/2δ−1/2)(L3/8δ1/4 + 1)(NL)−1/4δ−1/2

≪ T 3/2+εy1/2 + T 3/2+εδ−1/2

+ T 3/2+εK−1/2δ−1(K3/4δ1/2 + 1)(K3/8δ1/4 + 1)(NL)−1/4

≪ T 15/8+ε + T 3/2+εK−1/2δ−1(K9/8δ3/4 + 1)(NL)−1/4,

where the bound δ ≫ T−1/2 was applied to the term T 3/2+εδ−1/2.
From (3.12) and (3.13) we get

G2 ≪ T 15/8+ε +
T 3/2+ε

δ
min

(

(NL)1/4

K
,
K9/8δ3/4 + 1

K1/2(NL)1/4

)

(3.14)

≪ T 15/8+ε + T
3/2+ε

δ

(

(NL)1/4

K

)1/2(K9/8δ3/4 + 1

K1/2(NL)1/4

)1/2

≪ T 15/8+ε + T 3/2+εδ−1K−3/4(K9/16δ3/8 + 1).
If δ ≫ K−3/2, then (3.14) implies (recall δ ≫ T−1/2)

G2 ≪ T 15/8+ε + T 3/2+εK−3/16δ−5/8 ≪ T 15/8+ε.(3.15)

If δ ≪ K−3/2, then (3.14) becomes

G2 ≪ T 15/8+ε + T 3/2+εδ−1K−3/4.(3.16)

Since δ ≫ K−7/2 by Lemma 2 and δ ≫ T−1/2, we get
δ−1 ≪ min(K7/2, T 1/2)

and thus from (3.16) we get

G2 ≪ T 15/8+ε +min(T 2+εK−3/4, T 3/2+εK11/4)(3.17)

≪ T 15/8+ε + (T 2+εK−3/4)11/14(T 3/2+εK11/4)3/14

≪ T 53/28+ε.

For G3, by a splitting argument and Lemma 5 again (notice |η| ≫ 1)
we get
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G3 ≪
T 3/2+ε

(NMKL)3/4δ

∑

δ<|η|≤2δ, δ≫1
1(3.18)

≪ T 3/2+ε

(NMKL)3/4
K1/2NML≪ T 3/2+εy1/2 ≪ T 15/8+ε.

Combining (3.6), (3.7), (3.10) and (3.15)–(3.18) we get

2T\
T

S2(x) dx≪ T 53/28+ε.(3.19)

In the same way, by Lemmas 3 and 6, we can show that

2T\
T

S3(x) dx≪ T 53/28+ε.(3.20)

From (3.2)–(3.5), (3.19) and (3.20) we get

2T\
T

∆4(x) dx =
3c2
32π4

2T\
T

x dx+O(T 53/28+ε),(3.21)

which implies Theorem 1 immediately.

4. Preliminary lemmas for Theorem 2. In order to prove Theo-
rem 2, we need the following lemmas.

Lemma 7. We have

E(t) = Σ1(t) +Σ2(t) +O(log
2 t)

with

Σ1(t) :=
1√
2

∑

n≤N
h(t, n) cos(f(t, n)),(4.1)

Σ2(t) := −2
∑

n≤N ′
d(n)n−1/2

(

log
t

2πn

)−1
cos

(

t log
t

2πn
− t+ π

4

)

,(4.2)

h(t, n) := (−1)nd(n)n−1/2
(

t

2πn
+
1

4

)−1/4
(g(t, n))−1,(4.3)

g(t, n) := arsinh

((

πn

2t

)1/2)

,(4.4)

f(t, n) := 2tg(t, n) + (2πnt+ π2n2)1/2 − π/4,(4.5)

At ≤ N ≤ A′t, N ′ := t/2π +N/2− (N2/4 +Nt/2π)1/2,(4.6)

where 0 < A < A′ are any fixed constants.
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Proof. This is the famous Atkinson formula (see Atkinson [1] or Ivić [5,
Theorem 15.1]).

Lemma 8. Suppose Y > 1. Define

c∗2 :=
∑

√
n+
√
m=
√
k+
√
l

(−1)n+m+k+ld(n)d(m)d(k)d(l)
(nmkl)3/4

,

c∗2(Y ) :=
∑

√
n+
√
m=
√
k+
√
l

n,m,k,l≤Y

(−1)n+m+k+ld(n)d(m)d(k)d(l)
(nmkl)3/4

,

c2(Y ) :=
∑

√
n+
√
m=
√
k+
√
l

n,m,k,l≤Y

d(n)d(m)d(k)d(l)

(nmkl)3/4
.

Then

c2 = c
∗
2, c2(Y ) = c

∗
2(Y ), |c2 − c2(Y )| ≪ Y −1/2+ε.

Proof. The estimate |c2−c2(Y )|≪Y −1/2+ε is a special case of Lemma 3.1
of [13]. The equalities c2 = c

∗
2 and c2(Y ) = c

∗
2(Y ) follow from the fact that if√

n1+
√
n2 =

√
n3+
√
n4, then n1+n2+n3+n4 must be an even number.

Lemma 9. If Y > 1, then

H1(Y ) :=
∑

√
n+
√
m=
√
k+
√
l

n,m,k,l≤Y

d(n)d(m)d(k)d(l)max(n,m, k, l)3

(nmkl)3/4
≪ Y 5/2+ε.

Proof. If
√
n+
√
m =
√
k +
√
l, then either

(1) n = k,m = l or n = l,m = k, or

(2) n 6= k, l.
If (2) holds, then by a classical result of Besicovitch, we know that

n = n21h, m = m
2
1h, k = k

2
1h, l = l

2
1h, n1+m1 = k1+ l1, µ(h) 6= 0.

Thus we get

H1(Y )≪ Σ1 +Σ2,

Σ1 ≪
∑

n,k≤Y

d2(n)d2(m)max(n, k)3

(nk)3/2
≪ Y 5/2 log3 Y,

Σ2 ≪ Y ε
∑

h<Y

∑

n1+m1=k1+l1
n1,m1,k1,l1≤Y 1/2h−1/2

max(n1,m1, k1, l1)
6

(n1m1k1l1)3/2
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≪ Y ε
∑

h<Y

∑

n1+m1=k1+l1
n1,m1,l1≤k1≤Y 1/2h−1/2

k
9/2
1

(n1m1l1)3/2

≪ Y ε
∑

h<Y

∑

l1

l
−3/2
1

∑

n1+m1>k1
n1,m1≤k1≤Y 1/2h−1/2

k
9/2
1

(n1m1)3/2

≪ Y ε
∑

h<Y

∑

l1

l
−3/2
1

∑

n1

n
−3/2
1

∑

k1≪m1≤k1≤Y 1/2h−1/2
k31

≪ Y ε
∑

h<Y

(Y 1/2h−1/2)5 ≪ Y 5/2+ε.

Lemma 10. If Y > 1, then

H2(Y ) :=
∑

√
n+
√
m+
√
k=
√
l

n,m,k,l≤Y

d(n)d(m)d(k)d(l)l3/4

(nmk)3/4
≪ Y 1/2+ε.

Proof. If
√
n+
√
m+
√
k =
√
l, then

n = n21h, m = m
2
1h, k = k

2
1h, l = l

2
1h, n1+m1+k1 = l1, µ(h) 6= 0.

Thus we get

H2(Y )≪ Y ε
∑

h(n1+m1+k1)2≤Y

(n1 +m1 + k1)
3/2

h3/2(n1m1k1)3/2

≪ Y ε
∑

h<Y

h−3/2
∑

n1≤m1≤k1≤Y 1/2h−1/2
n
−3/2
1 m

−3/2
1 ≪ Y 1/2+ε.

Lemma 11. Suppose fj(t) (1 ≤ j ≤ k) and g(t) are continuous, mono-
tonic real-valued functions on [a, b] and let g(t) have a continuous, mono-
tonic derivative on [a, b]. If |fj(t)| ≤ Aj (1 ≤ j ≤ k), |g′(t)| ≫ ∆ for any
t ∈ [a, b], then

b\
a

f1(t) · · · fk(t)e(g(t)) dt≪ A1 · · ·Ak∆−1.

Proof. This is Lemma 15.3 of Ivić [5].

5. Proof of Theorem 2. Suppose T ≥ 10. It suffices to evaluateT2T
T E

4(t) dt. Let y := T 1/3−ε. For any T ≤ t ≤ 2T, define

E1(t) :=
1√
2

∑

n≤y
h(t, n) cos(f(t, n)), E2(t) := E(t)− E1(t).
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From the inequality (a+ b)4 − a4 ≪ |b|3|a|+ |b|4, we get

(5.1)

2T\
T

E4(t) dt

=

2T\
T

E41 (t) dt+O
(

2T\
T

|E1(t)|3|E2(t)| dt
)

+O
(

2T\
T

|E2(t)|4 dt
)

.

5.1. Evaluation of
T2T
T E41 (t) dt. In this subsection, we shall evaluate the

integral
T2T
T E41 (t) dt. Similarly to Tsang [11], we can write

E41 (t) =
3

32
S5(t) +

3

32
S6(t) +

1

8
S7(t) +

1

8
S8(t) +

1

32
S9(t),(5.2)

where

S5(t) :=
∑

n,m,k,l≤y√
n+
√
m=
√
k+
√
l

H(t;n,m, k, l) cos(F1(t;n,m, k, l)),

S6(t) :=
∑

n,m,k,l≤y√
n+
√
m 6=
√
k+
√
l

H(t;n,m, k, l) cos(F1(t;n,m, k, l)),

S7(t) :=
∑

n,m,k,l≤y√
n+
√
m+
√
k=
√
l

H(t;n,m, k, l) cos(F2(t;n,m, k, l)),

S8(t) :=
∑

n,m,k,l≤y√
n+
√
m+
√
k 6=
√
l

H(t;n,m, k, l) cos(F2(t;n,m, k, l)),

S9(t) :=
∑

n,m,k,l≤y
H(t;n,m, k, l) cos(F3(t;n,m, k, l)),

H(t;n,m, k, l) := h(t, n)h(t,m)h(t, k)h(t, l),

F1(t;n,m, k, l) := f(t, n) + f(t,m)− f(t, k)− f(t, l),
F2(t;n,m, k, l) := f(t, n) + f(t,m) + f(t, k)− f(t, l),
F3(t;n,m, k, l) := f(t, n) + f(t,m) + f(t, k) + f(t, l).

We first estimate the integral
T2T
T S5(t) dt. For n ≤ y, it is easy to check

that

h(t, n) =
23/4

π1/4
(−1)nd(n)
n3/4

t1/4
(

1 +O

(

n

t

))

,(5.3)

f(t, n) = 23/2(πnt)1/2 − π/4 +O(n3/2t−1/2),(5.4)

f ′(t, n) = 21/2(πn)1/2t−1/2 +O(n3/2t−3/2).(5.5)
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If
√
n+
√
m =
√
k +
√
l, then

cos(F1(n,m, k, l)) = cos

(

O

(

D3/2

t1/2

))

= 1 +O

(

D3

t

)

,(5.6)

where D := max(n,m, k, l). So from (5.3), (5.6), and Lemmas 8 and 9 we get

(5.7)

2T\
T

S5(t) dt

=
∑

n,m,k,l≤y√
n+
√
m=
√
k+
√
l

2T\
T

H(t;n,m, k, l) cos(F1(t;n,m, k, l)) dt

=
8

π

∑

n,m,k,l≤y√
n+
√
m=
√
k+
√
l

(−1)n+m+k+ld(n)d(m)d(k)d(l)
(nmkl)3/4

×
2T\
T

t

(

1 +O

(

D

t

))(

1 +

(

D3

t

))

dt

=
8

π

∑

n,m,k,l≤y√
n+
√
m=
√
k+
√
l

(−1)n+m+k+ld(n)d(m)d(k)d(l)
(nmkl)3/4

×
2T\
T

t

(

1 +

(

D3

t

))

dt

=
8

π

∑

n,m,k,l≤y√
n+
√
m=
√
k+
√
l

(−1)n+m+k+ld(n)d(m)d(k)d(l)
(nmkl)3/4

2T\
T

t dt+O(TH1(y))

=
8c2
π

2T\
T

t dt+O(T 1+εy5/2 + T 2+εy−1/2)

=
8c2
π

2T\
T

t dt+O(T 11/6+ε).

Now we estimate
T2T
T S6(t) dt. From (5.5) we get

F ′1(t;n,m, k, l) = (2π)
1/2ηt−1/2 +O(D3/2t−3/2),

where η =
√
n+
√
m−
√
k −
√
l. Write
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2T\
T

S6(t) dt =
\

|η|≤T−1/2
S6(t) dt+

\
|η|>T−1/2

S6(t) dt.(5.8)

If |η| ≤ T−1/2, then by (5.3) and the trivial estimate we get\
|η|≤T−1/2

S6(t) dt≪ T 2
∑

n,m,k,l≤y; |η|≤T−1/2√
n+
√
m 6=
√
k+
√
l

d(n)d(m)d(k)d(l)

(nmkl)3/4
.(5.9)

If |η| > T−1/2, then |F ′1(t;n,m, k, l)| ≫ |η|T−1/2, thus from (5.3) and
Lemma 11 we get\

|η|>T−1/2
S6(t) dt≪ T 3/2

∑

n,m,k,l≤y; |η|>T−1/2√
n+
√
m 6=
√
k+
√
l

d(n)d(m)d(k)d(l)

(nmkl)3/4|η| .(5.10)

From (5.9), (5.10) and the estimate in Section 3 we get

2T\
T

S6(t) dt≪
∑

n,m,k,l≤y√
n+
√
m 6=
√
k+
√
l

d(n)d(m)d(k)d(l)

(nmkl)3/4
min(T 2, T 3/2|η|−1)(5.11)

≪ T 53/28+ε.
If
√
n+
√
m+
√
k =
√
l, then from (5.4) we have

F2(t;n,m, k, l) = −π/2 +O(l3/2t−1/2), cos(F2(t;n,m, k, l))≪ l3/2t−1/2.
Thus from (5.3), the trivial estimate and Lemma 10 we get

2T\
T

S7(t) dt≪ T 3/2H2(y)≪ T 3/2y1/2+ε ≪ T 5/3+ε.(5.12)

Similarly to the integral
T2T
T S6(t) dt, we have

2T\
T

S8(t) dt≪ T 53/28+ε.(5.13)

From (5.5) we get

F ′3(t;n,m, k, l)≫ (
√
n+
√
m+
√
k +
√
l)T−1/2,

which together with (5.3) and Lemma 11 implies

(5.14)

2T\
T

S9(t) dt

≪
∑

n,m,k,l

d(n)d(m)d(k)d(l)T 3/2

(nmkl)3/4(
√
n+
√
m+
√
k +
√
l)
≪ T 3/2+εy1/2 ≪ T 5/3+ε.
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From (5.2), (5.7), (5.11)–(5.14) we get

2T\
T

E41 (t) dt =
3c2
4π

2T\
T

t dt+O(T 53/28+ε).(5.15)

5.2. Completion of proof of Theorem 2. Let A0 = 35/8. Ivić [5, Thm.
15.7] proved the estimate

T\
1

|E(t)|A0 dt≪ T 1+A0/4+ε.(5.16)

By his method we can show

2T\
T

|E1(t)|A0 dt≪ T 1+A0/4+ε.(5.17)

Thus
2T\
T

|E2(t)|A0 dt≪ T 1+A0/4+ε.(5.18)

We also have
2T\
T

|E2(t)|2 dt≪ T 3/2+εy−1/2,(5.19)

which is formula (4.15) of [14]. From (5.18), (5.19) and Hölder’s inequality
the estimate

2T\
T

|E2(t)|A dt≪ T 1+A/4+εy−(A0−A)/2(A0−2)(5.20)

holds for any 2 < A < A0. The details can be found in [14].

From (5.17), (5.20) and Hölder’s inequality we get

2T\
T

|E31 (t)E2(t)| dt≪
(

T\
1

|E1(t)|A0 dt
)3/A0(

T\
1

|E2(t)|A0/(A0−3) dt
)(A0−3)/A0

(5.21)

≪ T 2+εy−(A0−4)/2(A0−2) ≪ T 2−19/108+ε.

From (5.1), (5.15), (5.20) with A = 4 and (5.21) we get

2T\
T

E4(t) dt =
3c2
4π

2T\
T

t dt+O(T 53/28+ε)(5.22)

and Theorem 2 follows.
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