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1. Introduction. The result that drives this paper is

(1)

p∑

n=1

e2πi⌊nq/p⌋/q =
1 − e2πi/q

1 − e2πip/q
,

where p and q are relatively prime positive integers and p is the multiplicative
inverse of p mod q. The LHS is complicated by the irregularity arising from
the floor function, while the RHS is complicated by the presence of a modular
inverse; therein lies the beauty and utility of (1).

Before stating the general result of which (1) is a special case (The-

orem 1.1), we need to introduce some notation. We set ω := e2πi/q, and
whenever the range of a summation is not written explicitly, it is to be
taken over all of Zq, the integers modulo q:

∑

x

=
∑

x∈Zq

=

q∑

x=1

=

q−1∑

x=0

.

We use the Fourier transform

f̂(j) :=
∑

x

f(x)ω−jx

(f̂(j) is called the jth Fourier coefficient), the Fourier inversion formula

̂̂
f (x) = qf(x),

convolution
f ∗ g(x) :=

∑

y

f(y)g(x − y)
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and the interchange-of-summations result

f̂ ∗ g(j) = f̂(j)ĝ(j).

Also, let

[[P ]]R :=

{
0 if P is False,

R if P is True.

Note that [[False]]R is defined even if R is not. When R = 1, we omit it from
the notation. We also adopt the common practice of identifying a multiset
with its indicator function, i.e., S(x) is the multiplicity of x in the multiset S.

We distinguish the rational Beatty sets (p, q are any integers, and r any
real number)

Bq
p,r :=

{⌊
n

q

p
+ r

⌋
: n ∈ Z

}
.

Usually, q will be fixed and in this situation we omit it from the notation.
We will always assume that r is an integer (1), and when r = 0 we omit it
from our notation. Note that the density of the set Bq

p,r is p/q.
Note that Bq

p,r consists of p congruence classes modulo q, and so Bq
p,r is

naturally considered as a subset of Zq. If the p points were perfectly evenly
distributed around Zq (as happens if q/p ∈ Z), then the Fourier transform
would be 0 except at multiples of the difference between points. Thus, one
naturally expects that Bp(j) will be small except when jq/p is near an
integer. This is confirmed by Figure 1, which shows the Fourier transform

of B121
24 , and Figures 2 and 3, which show |B̂q

p,r(1)| for small relatively prime

p, q (r is irrelevant). Theorem 1.1 gives an explicit formula for B̂q
p,r which

quantifies the validity of this expectation.
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Fig. 1. The points B̂121
24 (j) (1 ≤ j ≤ 120), shown in the complex plane and labeled by j.

The left graph shows all 120 points. The right graph, which resembles a spider, shows only
those closest to 1.

(1) This is no loss of generality: if n0 is a value of n for which the fractional part
{nq/p + r} is minimal, then Bq

p,r = Bq
p,⌊n0q/p+r⌋.
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Fig. 2. The points (p/q, |B̂q
p(1)|) for gcd(p, q) = 1, 0<p<3q, and 1 ≤ q ≤ 75
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Fig. 3. The points (p/q, |B̂q
p(1)|) for gcd(p, q) = 1, 0 < p < q, 1 < q ≤ 100
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Fig. 4. The points (p/q, |B̂q
p(2)|) for gcd(p, q) = 1, 0 < p < q, 2 < q ≤ 100
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Fig. 5. The points (p/q,
∏n

i=1
|ai|), where [a0; a1, . . . , an] is the NICF of p/q
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Theorem 1.1. Let p 6= 0, q > 1 be integers with g := gcd(p, q), let p
satisfy pp ≡ g (mod q), and let r be any integer. Then

B̂q
p,r(0) = p,

and for j 6≡ 0 (mod q),

B̂q
p,r(j) = [[g | j]]g

1 − ωj

1 − ωjp
ω−jr, |B̂q

p,r(j)| = [[g | j]]g

∣∣∣∣
sin(πj/q)

sin(πjp/q)

∣∣∣∣.

Figure 2 shows |B̂q
p(1)| for relatively prime p and q with 0 < p < 3q

and 1 < q ≤ 75. Figures 3 and 4 show the first and second coefficients
when p and q are relatively prime, 0 < p < q, and q ≤ 100. There are
three symmetries visible to the naked eye. The first (from Figure 2) is that

|B̂q
p+q| = |B̂q

p|. In other words, the function |B̂q
x(j)| is periodic with period q.

This is a consequence of the fact Bq
p+q(x) = 1+Bq

p(x), which we prove along
the way to proving Theorem 1.1.

The second is that

|B̂q
p(j)| = |B̂q

q−p(j)|,

which is seen in the pictures as a symmetry about 1/2. This is a conse-
quence of a theorem of Fraenkel (Corollary 1.2 below) which states that the
complement of a rational Beatty set is a rational Beatty set. We give a new
proof of this in Section 3.

The third symmetry is that the graphs on [1/4, 1/3], on [1/3, 1/2], etc.,
seem to be quite similar. This is essentially the symmetry of the continued-
fraction map x 7→ 1/x (mod1). For each rational p/q, there is a unique finite
sequence [a0; a1, . . . , an] of integers with the properties: for i > 0, |ai| ≥ 2;
for 0 < i < n, if ai = ±2 then aiai+1 is positive; an 6= −2; and

p

q
= a0 +

1

a1 +
1

a2 +
.. . +

1

an

.

This is the nearest-integer continued fraction (commonly abbreviated NICF).
Compare Figure 3 with Figure 5, which shows the points

(p
q ,

∏n
i=1 |ai|

)
: the

points in Figure 5 are located precisely at the bottom of the “cups” in
Figure 3.

We remark that while (1) connects Beatty sequences with density p/q
directly to the inverse of p modulo q, the direct connection between both
objects and continued fractions is well studied. We also note that the inverse
of p modulo q has arisen independently in the recent work of Simpson [7],
in which he uses generating functions to prove necessary and sufficient con-
ditions for two rational Beatty sequences not to intersect.
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The main result in the study of Beatty sequences was discovered by Lord
Rayleigh: If α is irrational and 1/α + 1/β = 1, then the sets {⌊nα⌋ : n ≥ 1},
{⌊nβ⌋ : n ≥ 1} partition Z+. In the 1950s Skolem extended this to non-
homogeneous sets, and in 1969 Fraenkel corrected Skolem’s work and ex-
tended it to include rational α. We direct the reader to [5] for the gen-
eral rational/irrational statement, an elementary proof, and the history of
Fraenkel’s Partition Theorem. The rational case (Corollary 1.2) is an easy
consequence of Theorem 1.1.

Corollary 1.2 (Fraenkel’s Partition Theorem, rational case). The sets

Bq
p1,r1

and Bq
p2,r2

, where q, pk, rk are integers, partition Z if and only if p1 +
p2 = q and

p1r1 + p2r2 ≡ − gcd(p1, q) (mod q).

Attempts to extend this to more than two sequences have had some
success, but a general statement remains elusive. In the early 1970s
(see [1, 2]), Fraenkel was led to conjecture that there was essentially only
one way to partition Z into Beatty sets with distinct densities.

Conjecture 1.3 (Fraenkel’s Conjecture). If the sets

{⌊nα1 + r1⌋ : n ∈ Z}, {⌊nα2 + r2⌋ : n ∈ Z}, . . . , {⌊nαm + rm⌋ : n ∈ Z}

partition Z, m ≥ 3, and 1 < α1 < α2 < · · · < αm, then αk = 2k − 2k−m.

The conjecture has been proven in case any α is irrational (see [3]),
α1 ≤ 1.5 (see [6]), or m ≤ 6 (see [8]), and in several other less-easily-stated
circumstances. The article [9] of R. Tijdeman contains an excellent survey
of the progress on Fraenkel’s Conjecture.

We offer a stronger conjecture, and will apply Theorem 1.1 to prove some
special cases. We say that sets S1, . . . , Sm are a perfect c-fold covering of Z
if S1(x) + · · · + Sm(x) = c for all x ∈ Z, and simply that they are a perfect

covering if we do not wish to specify c.

Conjecture 1.4 (Covering Fraenkel Conjecture). Let q, m ≥ 3, and let

p1, . . . , pm be distinct integers with 0 < pk < q, gcd(q, p1, . . . , pm) = 1, and

with no proper subset I ( [m] having
∑

i∈I pi ≡ 0 (mod q). Let r1, . . . , rm

be arbitrary integers. The sets Bq
pk,rk (1 ≤ k ≤ m) are a perfect covering if

and only if :

(i) q is odd , and m is the order of 2 modulo q;
(ii) the sets can be renumbered so that there are integers δ (relatively

prime to q with modular inverse δ) and γ such that for 1 ≤ k ≤ m,

pk ≡ δ2m−k (mod q) and rk ≡ γ − δ2k−1 (mod q).
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This is admittedly not as pithy as Fraenkel’s Conjecture, but we hope
that its greater generality will shed new light on an old problem. Since
Bq

p,r(x) = 1 + Bq
p+q,r(x), we may assume without loss of generality that

pk < q. We use Theorem 1.1 to prove the “if” claim of the CFC, and in fact
we show that if the covering (with all pk < q) is a perfect c-fold covering,
then c is the number of ones in the binary expansion of δ(2m − 1)/q. We
prove the “only if” part of the CFC under the additional hypothesis that
m ≤ 5, and also under the additional hypotheses that gcd(q, pk) = 1 for
some k and that q is sufficiently large.

We suspect that if m ≥ 3, sequences S(αk, βk) = {⌊nαk + βk⌋ : n ∈ Z}
are a perfect covering and some αk is irrational, then two of the αk’s are in
fact equal. Graham’s proof [3] of this in the 1-covering case does not extend
easily to multiple coverings. We have not investigated this further, and at
any rate this guess does not fall within the scope of the present article.

We will use the following consequence of Theorem 1.1 several times.

Corollary 1.5 (Covering Criterion). The sequences Bq
pk,rk (1≤ k ≤m)

are a perfect c-fold covering of Z if and only if

cq =
m∑

k=1

pk

and for 1 ≤ j < q (with gk = gcd(pk, q)),

0 =
m∑

k=1

[[gk | j]]gk
ω−jrk

1 − ωjpk
.

2. Proof of Theorem 1.1. We will give a kernel function K(x), whose
transform we can compute, such that

(2) Bq
p,r ∗ K(x) = R(x),

where R(x) will also have an easily computed transform. Taking the Fourier

transform of this equation gives B̂q
p,r(j)K̂(j) = R̂(j), which is the same as

B̂q
p,r(j) = R̂(j)(K̂(j))−1. The zeroth coefficient can be dealt with immedi-

ately, and thereafter we demonstrate that we may assume that r = 0, that
gcd(p, q) = 1, and that 0 < p < q. Then we define K and R, show that (2)
holds, and compute the transforms of R and K to complete the proof.

We have

B̂q
p,r(j) :=

∑

x

Bq
p,r(x)ω−jx =

p−1∑

n=0

ω−j⌊nq/p+r⌋.

For j = 0, this gives the first claim of Theorem 1.1: B̂q
p,r(0) = p.
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Since we assume that r is an integer, we also have

B̂q
p,r(j) =

p−1∑

n=0

ω−j⌊nq/p+r⌋ =

p−1∑

n=0

ω−j⌊nq/p⌋−jr = ω−jrB̂q
p,0(j).

Thus, it is sufficient to work with r = 0.
Now we wish to show that we may take p and q to be relatively prime. If

S : Z → C is periodic with period l, and Sl and Skl are the induced functions
on Zl and Zkl, then

Ŝkl(j) = k[[k | j]]Ŝl(j/k).

Thus, if ga = p and gb = q with gcd(a, b) = 1, then

B̂q
p(j) = g[[g | j]]B̂b

a(j/g).

If we assume for the moment that we have proved Theorem 1.1 in the rela-
tively prime case, then we have

B̂q
p(j) = g[[g | j]]

1 − (e2πi/b)j/g

1 − (e2πia/b)j/g
= g[[g | j]]

1 − (e2πi/(bg))j

1 − (e2πia/(bg))j
= g[[g | j]]

1 − ωj

1 − ωja

where ω = e2πi/q and a, the inverse of a = p/g modulo b = q/g, satisfies
pa ≡ g (mod q). Thus, it is sufficient to work with relatively prime p and q.

We may assume that 0 < p < q since

(3) Bq
p+q(x) = 1 + Bq

p(x),

and so the Fourier coefficients (except the zeroth) are sensitive only to
p mod q. To see (3), observe that the function Bq

p(x) takes on only the values
⌊p/q⌋ and ⌈p/q⌉. Moreover, Bq

p(x) = β (with β = ⌈p/q⌉) if and only if there
is an integer n with x ≤ nq/p < (n + β − 1)q/p < x + 1, which is equivalent
to

x
p

q
≤ n < (x + 1)

p

q
− (β − 1) = x

p

q
+

p

q
− β + 1.

This happens if and only if the fractional part {xp/q} is 0 or is strictly
larger than β − p/q = 1 − {p/q}. Thus, the property Bq

p(x) = ⌈p/q⌉ can
be described entirely in terms of the fractional part {xp/q}, which depends
only on p mod q.

Now, we take K to be the set {1 − p, 2 − p, . . . , 0} = (−p, 0], and set
R(x) := |Bp ∩ [x, x + p)|.

We use the following two properties of the Beatty set Bp (with 0 <
p < q). We call the first property “duality”: an integer k is in Bp if and
only if the fractional part of kp/q is 0 or strictly greater than 1 − p/q.
To prove this, simply observe that k ∈ Bp if there is an integer n with
k ≤ nq/p < k + 1, which we rearrange as kp/q ≤ n < kp/q + p/q. This
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happens exactly if the fractional part of kp/q is 0 or strictly greater than
1−p/q. The second property is called “balance”: for all real numbers x < y,
the number |Bp∩ [x, y)| is either ⌊(y−x)p/q⌋ or ⌈(y − x)p/q⌉. To prove this,
observe that we are counting the integers n with x ≤ nq/p < y, which is
equivalent to xp/q ≤ n < yp/q. Since we only care about integral n, we can
write this as ⌈xp/q⌉ ≤ n < ⌈yp/q⌉. Clearly there are ⌈yp/q⌉−⌈xp/q⌉ such n,
and this is

⌈
yp

q

⌉
−

⌈
xp

q

⌉
=

(
yp

q
+ ε1

)
−

(
xp

q
+ ε2

)
= (y − x)

p

q
+ ε1 − ε2,

where the ε’s are both in [0, 1). It follows that the true value is an integer
which is strictly less than 1 away from (y − x)p/q, i.e., either ⌊(y − x)p/q⌋
or ⌈(y − x)p/q⌉.

We will show that

(4) R(x) = ⌊pp/q⌋ + [[x = 0]],

but first we show that R(0) > R(1). Since R(0) counts the number of ele-
ments of Bp = {⌊nq/p⌋ mod q : 1 ≤ n ≤ p} in [0, p) and R(1) counts those
in [1, p], we need to show that 0 ∈ Bp and p 6∈ Bp. Obviously ⌊pq/p⌋ ≡ 0
(mod q), so the substance here is that p 6∈ Bp. By duality, p ∈ Bp if and
only if the fractional part of pp/q is 0 or strictly greater than 1− p/q. Since
pp ≡ 1 (mod q), the fractional part of pp/q is 1/q, which is neither 0 nor
strictly greater than 1 − p/q (because p, q are relatively prime).

We now show (4) by evaluating
∑

x R(x) in two ways. First, every y ∈ Bp

contributes to R(y), R(y − 1), . . . , R(y − p + 1). Thus

(5)
∑

x

R(x) = |Bp|p = pp.

Second, by the balance property of Beatty sets, we know that R(x) is ei-
ther ⌊pp/q⌋ or ⌈pp/q⌉ = ⌊pp/q⌋ + 1, and in particular |R−1(⌊pp/q⌋)| +

|R−1(⌊pp/q⌋ + 1)| = q. Thus
∑

x

R(x) = |R−1(⌊pp/q⌋)|⌊pp/q⌋ + |R−1(⌊pp/q⌋ + 1)|(⌊pp/q⌋ + 1)(6)

= q⌊pp/q⌋ + |R−1(⌊pp/q⌋ + 1)|.

Reducing (5) and (6) modulo q tells us that |R−1(⌊pp/q⌋ + 1)| = 1. Since
R(0) > R(1), we know that R−1(⌊pp/q⌋ + 1) = {0}, whence (4).

Theorem 1.1 now follows from the straightforward calculations (for j 6≡ 0
(mod q))

K̂(j) =
1 − ωjp

1 − ωj
, R̂(j) = 1
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and

Bp ∗ K(x) :=
∑

y

Bp(y)K(x − y) =
∑

y

[[y ∈ Bp]][[−p < x − y ≤ 0]]

=
∑

y

[[y ∈ Bp]][[y ∈ [x, x + p)]] = |Bp ∩ [x, x + p)| = R(x).

2.1. An interesting variation. There is another interesting way to finish
the proof of Theorem 1.1. It plays on another expression of the “balance”
property of Beatty sets: for fixed t, the difference ⌊(n + t)q/p⌋ − ⌊nq/p⌋ is
either ⌊tq/p⌋ or ⌈tq/p⌉.

Assume that j 6≡ 0 (mod q), r = 0, and p < q are relatively prime and
positive.

Let q be the inverse of q modulo p, and let p be the inverse of p modulo q.
We will use the identity

⌊qq/p⌋ = (qq − 1)/p ≡ −p (mod q).

Set b(n) := ⌊nq/p⌋, and

∆(n) := b(n) − b(n − q).

We compute
∑p−1

n=0 ∆(n) in two ways. First, the sum telescopes to

p−1∑

n=0

∆(n) =

p−1∑

n=p−q

b(n) −
−1∑

n=−q

b(n) =
−1∑

n=−q

b(n + p) −
−1∑

n=−q

b(n)

=
−1∑

n=−q

(q + b(n)) −
−1∑

n=−q

b(n) = qq.

Second, note that ∆(n) is either a := ⌊qq/p⌋ or a + 1 = ⌈qq/p⌉, say there
are β integers n inclusively between 0 and p − 1 with ∆(n) = a + 1, and
p − β integers n with ∆(n) = a. We have

p−1∑

n=0

∆(n) = β(a + 1) + (p − β)a = β + pa.

Equating these two evaluations modulo p (and using 0 ≤ β ≤ p), we find
that β = 1. By direct arithmetic, ∆(0) = ⌈qq/p⌉, and so for x 6≡ 0 (modp),
∆(x) = ⌊qq/p⌋.

We now use this information directly (set γ = ω−j):

B̂p(j) =

p∑

n=1

γ⌊nq/p⌋ = 1 +

p−1∑

n=1

γb(n) = 1 +

p−1∑

n=1

γb(n)γb(n−q)−b(n)γ⌊qq/p⌋

= 1 + γ⌊qq/p⌋
p−1∑

n=1

γb(n−q) = 1 + γ⌊qq/p⌋
(( p∑

n=1

γb(n−q)
)
− γb(p−q)

)

= 1 + γ⌊qq/p⌋(B̂p(j) − γ−⌊qq/p⌋−1).
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Solving this equation yields

B̂p(j) =
1 − γ−1

1 − γ⌊qq/p⌋
=

1 − ωj

1 − ω−j⌊qq/p⌋
=

1 − ωj

1 − ωjp
.

3. Proof of Fraenkel’s Partition Theorem. By Corollary 1.5, we
can assume that p1 + p2 = q; we need only show that

(7) 0 = [[g1 | j]]g1
ω−jr1

1 − ωjp1
+ [[g2 | j]]g2

ω−jr2

1 − ωjp2

is satisfied for 1 ≤ j < q if and only if p1r1 + p2r2 ≡ −g1 (mod q).
We first assume that (7) holds for all j ∈ [1, q). In particular, we set

j = p1. Since p1 + p2 = q, we have g1 = g2, g1 | j, and (7) simplifies to

ω−p1r1

1 − ωp1p1
+

ω−p1r2

1 − ωp1p2
= 0.

Rearranging this gives

(8)
ω−p1r2

ω−p1r1
= −

1 − ωp1p2

1 − ωp1p1
.

Since −p1 ≡ p2 (mod q), p1p1 ≡ g1 (mod q), and p1p2 ≡ −p1p1 (mod q),
equality (8) becomes

ωp2r2+p1r1 =
ω−p1r2

ω−p1r1
= −

1 − ω−g1

1 − ωg1
= ω−g1 ,

whence p2r2 + p1r1 ≡ −g1 (mod q). We can read this argument from the
bottom up to see the other half of “if and only if”.

4. Fraenkel’s Covering Conjecture

4.1. Constructions

Lemma 4.1. If q ≥ 3, 2m ≡ 1 (mod q), pk ≡ 2m−k (mod q), and

rk ≡ −2k−1 (mod q), then Bpk,rk
(1 ≤ k ≤ m) is a perfect covering.

Proof. We have
m∑

k=1

pk ≡

m∑

k=1

2m−k = 2m − 1 ≡ 0 (mod q)

so the first equation of the Covering Criterion is satisfied for some c. Our
hypotheses imply that gcd(pk, q) = 1 and pk ≡ 2k (mod q), so we need only
show that

(9) 0 =
m∑

k=1

ω−rk

1 − ωpk
= −

m∑

k=1

ω2k−1

1 − ω2k

holds for ω any qth root of unity except 1.
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Since 1−ω2k
= (1−ω)

∏k−1
s=0(1+ω2s

), we can bring the summands in (9)
over a common denominator:

m∑

k=1

ω2k−1

1 − ω2k =
m∑

k=1

ω2k−1 ∏m−1
s=k (1 + ω2s

)

(1 − ω)
∏m−1

s=0 (1 + ω2s
)
,

and we see that it will suffice to show that

m∑

k=1

ω2k−1

m−1∏

s=k

(1 + ω2s
)

is zero. But

ω2k−1

m−1∏

s=k

(1 + ω2s
) =

∑

a∈Ak

ωa,

where Ak consists of those integers whose binary expansions have the form
(bm−1bm−2 . . . b1b0)2 with b0 = b1 = · · · = bk−2 = 0 and bk−1 = 1. Thus

m∑

k=1

ω2k−1

m−1∏

s=k

(1 + ω2s
) =

m∑

k=1

∑

a∈Ak

ωa =

2m−1∑

x=1

ωx,

and since 2m − 1 is a multiple of q, this is zero.

Theorem 4.2. Suppose that q, m ≥ 3, pk, rk, δ, γ (1 ≤ k ≤ m) satisfy

conditions (i) and (ii) of the CFC , and that 0 < pk < q for 1 ≤ k ≤ m. The

m sequences Bq
pk,rk are a perfect c-fold covering , where c is the number of

ones in the binary expansion of δ(2m − 1)/q.

Proof. This is equivalent to something by the Covering Criterion: the ze-
roth coefficient criterion becomes

∑m
k=1 pk = cq, and the nonzero coefficient

part of the criterion, with an appropriate choice of j and multiplying by
ω−jγ , becomes equivalent to Lemma 4.1. Thus, what remains to be proved
is that

∑m
k=1 pk = cq.

We have

S :=
m∑

k=1

pk ≡
m∑

k=1

δ2m−k = δ(2m − 1) ≡ 0 (mod q)

so S is definitely a multiple of q. Note that ζk defined by

ζk ≡ 2m−kδ(2m − 1)/q (mod2m − 1) and 0 < ζk < 2m

also satisfies ζk = pk(2
m−1)/q. If the binary expansion of ζ1 is (bm−1bm−2 . . .

. . . b1b0)2, then the binary expansion of ζk is (bk−2bk−3 . . . b0bm−1 . . . bk−1)2.
It follows that

∑m
k=1 ζk = (2m − 1)w, where w is the number of 1’s in the

binary expansion of any of the ζk, in particular, in the expansion of ζm =
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δ(2m−1)/q. On the other hand,
∑m

k=1 ζk =
∑m

k=1 pk(2
m−1)/q = c(2m−1).

Consequently, c = w.

According to Fraenkel’s Conjecture, the values of q for which there is a
nontrivial perfect 1-covering by ≥ 3 Beatty sets are of the form 2m − 1. As
a consequence of the preceding result, we can identify those q which allow
for a nontrivial perfect 2-covering.

Corollary 4.3. If q is of the form 2m−1, m ≥ 3, or (22uv − 1)/(2u + 1)
for u, v ≥ 1, then there is a perfect 2-covering by at least three Beatty sets

with period q and distinct densities.

Proof. In this proof, we abbreviate gcd(a, b) as simply (a, b). From The-
orem 4.2, we know that q has a perfect 2-covering if there is a δ < q with
(δ, q) = 1 such that δ(2m − 1)/q = 2s + 1 for some s < m, where m is the
order of 2 modulo q. Let d = (2m − 1, 2s + 1). Since the fractions

(2m − 1)/d

(2s + 1)/d
=

q

δ

are both reduced we see that

q =
2m − 1

(2m − 1, 2s + 1)
.

Using the elementary identity 2(a,b) − 1 = (2a − 1, 2b − 1), we now have

2(m,2s) − 1 = (2m − 1, 22s − 1) = (2m − 1, 2s + 1)(2m − 1, 2s − 1)

= (2m − 1, 2s + 1)(2(m,s) − 1).

There are two possibilities: (m, 2s) = (m, s) or (m, 2s) = 2(m, s). In the first
case, we find that (2m −1, 2s +1) = 1 and so q = 2m −1. It is clear that any
value of m ≥ 3 will work here. In the second case, we must have m = 2M .
Thus, in this case (m, 2s) = (2M, 2s) = 2(M, s) = 2(m, s) by hypothesis,
i.e., (M, s) = (2M, s). Hence, if we let u = (M, s) then M = uv for some v.
This implies that

q =
22uv − 1

2u + 1

for some u, v ≥ 1. This completes the proof.

If our Covering Fraenkel Conjecture is correct, then these are all the
values of q for which there exist nontrivial perfect 2-coverings. Besides the
values of the form 2m − 1, the other values less than 106 given by these
expressions are: 5, 21, 51, 85, 341, 455, 819, 1365, 3855, 5461, 13107, 21845,
29127, 31775, 87381, 209715, 258111, 349525, and 986895.

4.1.1. Wacky trigonometric identities. The computer algebra systems
Mathematica 5.0 and Maple 7.0 will not automatically simplify the two
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expressions (2)
1

sin(π/7)
−

1

sin(2π/7)
−

1

sin(3π/7)

and
1

sin(π/21)
−

1

sin(2π/21)
−

1

sin(4π/21)
−

1

sin(5π/21)

−
1

sin(8π/21)
+

1

sin(10π/21)

to 0, although they can be coaxed into verifying these identities by first
replacing sinx with 1

2i(e
ix − e−ix). But even this algebraification does not

enable the CA systems to verify

−2 =
11∑

k=1

sin(2k+4π/89)

sin(2kπ/89)
.

We will use the construction of perfect covers and Theorem 1.1 (with some
further manipulation) to generate these and other trigonometric identities.

If q ≥ 3 and 2m ≡ 1 (mod q), then (from the proof of Lemma 4.1)

0 =
m∑

k=1

ω2k−1

1 − ω2k =
m−1∑

k=0

1

ω2k
− ω−2k =

m−1∑

k=0

1

2i sin(2k 2π/q)
.

Thus,

0 =

m∑

k=1

1

sin(2kπ/q)
=

m∑

k=1

csc(2kπ/q).

The two expressions given at the beginning of this subsection are this with
(q, m) = (7, 3) and (q, m) = (21, 6) (using sin(x) = sin(π−x) = sin(x+2π)).
We note that Jager & Lenstra [4] showed that all linear dependencies over

Q of csc(π/q), csc(2π/q), . . . , csc
( q−1

2 π/q
)

have this form when q is a prime.
Let us take a closer look at our basic identity, which we can expand as

follows:

0 =
m−1∑

k=0

1

ω2k − ω2−k

= −
m−1∑

k=0

(
ω2k

+ ω3·2k
+ ω5·2k

+ · · · + ω(2t−1)·2k
−

ω2t·2k

ω2k
− ω−2k

)
,

(2) The CASs remain sadly unreliable. For example, Mathematica 5.0 computes the
limit

lim
n→∞

πn/3n

sin(πn/3n)

(
1 +

n − 1

n

)

to be 0. The authors are unaware of any source which documents the mathematical failures
of these often-used rarely-cited closed-source programs.
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for any t with 0 < t ≤ m − 1. Thus,

m−1∑

k=0

ω2t·2k

ω2k
− ω2−k =

m−1∑

k=0

t∑

u=1

ω(2u−1)2k
.

Let Cq(x) denote the (multi-)set {x · 2j mod q : 0 ≤ j < m}. Thus, inter-
changing the order of summation, we have

m−1∑

k=0

ω2t·2k

ω2k − ω2−k =

t∑

u=1

∑

a∈Cq(2u−1)

ωa.

We can rewrite the LHS summand as

ω2t·2k

ω2k − ω2−k
=

cos(2π2t · 2k/q) + i sin(2π2t · 2k/q)

2i sin(2π2k/q)

where we have taken ω = e2πi/q. Thus,

m−1∑

k=0

cos(2π2t · 2k/q)

sin(2π · 2k/q)
= −2ℑ

( t∑

u=1

∑

a∈Cq(2u−1)

ωa
)
,

m−1∑

k=0

sin(2π2t · 2k/q)

sin(2π · 2k/q)
= 2ℜ

( t∑

u=1

∑

a∈Cq(2u−1)

ωa
)
.

Hence, we need to understand the sums

S(q, t) :=
t∑

u=1

∑

a∈Cq(2u−1)

ωa.

To begin with, if −1 ∈ Cq(1) then every term ωa in S will also have
its conjugate ω−a in S as well. This happens exactly when the order of 2
modulo q is even, and in this case we have

m−1∑

k=0

cos(2π2t · 2k/q)

sin(2π · 2k/q)
= 0,

but for the trivial reason that every term in the sum occurs with its negative!
In general, each Cq(2u−1) contains r terms, so that S(q, t) is the sum of

t blocks of r powers of ω. If the union of these blocks is a perfect c-covering
of {ω, ω2, ω3, . . . , ωq−1} then S(q, t) is just equal to −c. For example, for
q = 7, we have C7(1) = {1, 2, 4}, C7(3) = {3, 5, 6}. Thus,

S(7, 2) =
2∑

u=1

∑

a∈C7(2u−1)

ωa = (ω + ω2 + ω4) + (ω3 + ω5 + ω6) = −1,
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so that
2∑

k=0

sin(8π · 2k/7)

sin(2π · 2k/7)
= −2.

Another simple case where this happens is when q ≡ 1 (mod6) is prime,
2 has order (q − 1)/3 modulo q, and 1, 3 and 5 are in distinct Cq(i). In
this case, Cq(1), Cq(3) and Cq(5) are disjoint, so that their union is Zq\{0},
which implies that Sq(3) = −1. Examples of this occur for q = 229, 277, 283,
etc. Note that the real part of ωa is equal to the real part of ω−a. Hence, if
the Cq(bi), 1 ≤ i ≤ (q − 1)/m, form a complete set of disjoint C’s, then in
forming a perfect covering of Zq\{0}, we can use either Cq(bi) or Cq(−bi)
interchangeably, if we only want to control the real part of S(q, t). For ex-
ample, for q = 89, 2 has order 11 modulo 89, and the complete set of disjoint
C’s is C89(1), C89(3), C89(5), C89(9), C89(11), C89(13), C89(19), and C89(33).
However, one can check that −1 ∈ C89(11), −3 ∈ C89(33), −5 ∈ C89(9) and
−13 ∈ C89(19). Thus,

ℜ
( 8∑

u=1

∑

a∈C89(2u−1)

ωa
)

= ℜ
( 88∑

j=1

ωj
)

= −1.

This implies (as usual) the unlikely identity

10∑

k=0

sin(32π · 2k/89)

sin(2π · 2k/89)
= −2.

Using these ideas (and other extensions thereof), many other results of
this type can be derived but we will not pursue these here.

4.2. Bounding q. We assume in this section that the pk are distinct,
0 < pk < q, define gk := gcd(pk, q), assume that gcd(q, p1, . . . , pm) =
gcd(g1, . . . , gm) = 1, rk ∈ Z, that the m sequences Bpk,rk

are a perfect
c-fold covering, and that there is no pair i < j with pi + pj = q (this is
weaker than the hypotheses of the CFC). Let g := min{g1, . . . , gm}, and let
n be the multiplicity of g in {g1, . . . , gm}.

Lemma 4.4. If j 6≡ 0 (mod q) is a multiple of one of g1, . . . , gm, then it

is a multiple of at least three of them.

Proof. Using this j in the second displayed equation in Corollary 1.5, we
have

0 =
∑

k

gk[[gk | j]]
ω−jrk

1 − ωjpk
.

Clearly this sum cannot have only one nonzero term. Suppose that it has
exactly two, say g1 | j and g2 | j. If g1 < g2, then g1 is a multiple of only
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one of g1, . . . , gm, which cannot happen (set j = g1). Thus without loss of
generality we may assume that j = g1 = g2. We have

0 =
ω−jr1

1 − ωjp1
+

ω−jr2

1 − ωjp2
.

Multiply by ωjr2 and clear denominators to get (setting d = r2 − r1)

1 − ωjp1 + ωjd − ωj(p2+d) = 0.

If four complex numbers with the same modulus sum to 0, then we can split
the four into two pairs, each of which sums to 0.

Our first case is 1 = ωjp1 , ωj(p2+d) = ωjd, which is the same as jp1 ≡ 0
(mod q), jp2 + jd ≡ jd (mod q). It follows that jp1 ≡ jp2 (mod q), and we
multiply this congruence by p1p2 (a multiple of j2) to get

j2p2 ≡ j2p1 (mod j2q).

Thus p1 ≡ p2 (mod q), and since 0 < pk < q, we actually have p1 = p2. This
contradicts our hypothesis that the pk are distinct.

Our second case is 1 = −ωjd, ωjp1 = −ωj(p2+d), which forces q to be
even and which is the equivalent to jd ≡ q/2 (mod q), jp1 ≡ q/2 + jp2 + jd
(mod q). It follows that jp1 ≡ jp2 (mod q), which we handled above.

Our third case is 1 = ωj(p2+d), ωjp1 = ωjd, and this is the same as
jp2 +jd ≡ 0 (mod q), jp1 ≡ jd (mod q). Combining these gives jp1 +jp2 ≡ 0
(mod q). Multiply this equation by p1p2 (a multiple of j2) to get

0 ≡ p1p2(jp1 + jp2) ≡ j2p2 + j2p1 (mod j2q),

whence p1 + p2 ≡ 0 (mod q). Since 0 < pk < q, we actually have p1 + p2 = q.
This contradicts our hypothesis that there is no pair of p’s which sum to q.

Lemma 4.5. If n = 3, then q ≤ 7g; if n = 4, then q ≤ 17g; if n = 5
then q ≤ 33g; if n = 6 then q ≤ 730g; and in general

q ≤

((
n

e − 1
+ 1

)n

+ 1

)
g.

Proof. Set j = pk in Corollary 1.5, and subtract 2gkω
−pkrk(1 − ωpkpk)−1

from both sides, to get

−2gk
ω−pkrk

1 − ωpkpk
=

m∑

i=1

(1 − 2[[k = i]])[[gi | pk]]gi
ω−pkri

1 − ωpkpi
.

Taking the absolute value of each side, and using the triangle inequality and
the identity

1 − eis = −2ieis/2 sin(s/2),
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we get

2gk

sin(πgk/q)
≤

m∑

i=1

[[gi | pk]]gi

|sin(πpkpi/q)|

for all k ∈ [m].
Suppose that our numbering has g = gk for k ∈ [n]. For k ∈ [n] we have

the inequalities

2

sin(πg/q)
≤

n∑

i=1

1

|sin(πpkpi/q)|
.

By replacing q with q/g, we can assume without loss of generality that g = 1
(the bound we find for q will in truth be a bound for q/g). We wish to show
that if q is large enough, then the RHS must be small for some choice of k.

Let ‖x‖ be the distance from x to the nearest multiple of q, and let z

satisfy
∑z+n−1

i=z+1 i−1 < 1. Consider the directed graph with vertices p1, . . . , pn,
with an edge from pi to pj if ‖pjpi‖ ≤ z. Every finite directed graph contains
either a sink (a point with no out-edges) or a cycle. If pv1

, pv2
, . . . , pvβ

is a
cycle, then

‖pv2
pv1

‖ · ‖pv3
pv2

‖ · · · ‖pv1
pvβ

‖ ≡ (±pv1
pv2

)(±pv2
pv3

) · · · (±pvβ
pv1

)

≡ ±1 (mod q)

and

1 < ‖pv1
pv2

‖ · ‖pv2
pv3

‖ · · · ‖pvβ
pv1

‖ ≤ zβ ≤ zn.

Therefore, zn ≥ q−1. If pk is a sink, then all (1 ≤ i ≤ n, i 6= k) of ‖pkpi‖ are
strictly greater than z. Since p1, . . . , pn are distinct and there is no solution
to pi + pj = q, the n values ‖pkpi‖ are also distinct. Thus,

(10)
2

sin(π/q)
≤

n∑

i=1

1

|sin(πpkpi/q)|
≤

1

sin(π/q)
+

n−1∑

i=1

1

sin(π(z + i)/q)
.

Using the approximation sinx ≈ x for small x, one sees that (10) bounds
q above. More precisely, if the graph has a cycle, then q ≤ zn + 1, and
otherwise q is bounded by (10). For n = 3, 4, 5, 6, we calculate that z =
1, 2, 2, 3, and consequently q is at most max{2, 7}, max{17, 10}, max{33, 24},
max{730, 3}, respectively.

To prove the “in general” statement, we need only work with n ≥ 7. Let
z = ⌊n/(e − 1) + 1⌋. We define the graph as above, and handle a cycle in
the same way. If pk is a sink, then (10) becomes

1

π/q
≤

1

sin(π/q)
≤

n−1∑

i=1

1

sin(π(z + i)/q)
≤

z + n − 1

sin(π(z + n − 1)/q)

n−1∑

i=1

1

z + i
,
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where we have used the inequalities

x ≥ sinx ≥
sin(π(z + n − 1)/q)

π(z + n − 1)/q
x

for 0 < x < π(z + n − 1)/q. We note that

n−1∑

i=1

1

z + i
≤

z+n−1\
z

dx

x
= ln

(
z + n − 1

z

)
,

so that our inequality can be weakened to read

1 ≤
π(z + n − 1)/q

sin(π(z + n − 1)/q)
ln

(
z + n − 1

z

)
.

This is inconsistent for any z > n/(e − 1), q > zn and n ≥ 4.

Lemma 4.6. If m ≤ 5, then g = 1.

Proof. Renumber so that g = g1 ≤ g2 ≤ · · · ≤ gm. If all the gi are equal,
then g = 1 since gcd{g1, . . . , gm} = 1. Thus we may assume that n < m.

By Lemma 4.4 with j = g, we have n ≥ 3. Since n < m, we may assume
that 4 ≤ m ≤ 6, so that g = g1 = g2 = g3 < g4. Clearly g divides g1, g2, g3 by
definition, and g4, g5 by Lemma 4.4 (with j = g4 and j = g5, respectively).
Since gcd{g1, . . . , gm} = 1, we have shown that g = 1.

Theorem 4.7. The CFC is true for m ≤ 5.

Proof. First, observe that by Lemma 4.6 we may restrict our attention to
sequences Bpk,rk

with p1 relatively prime to q. Moreover, as a consequence of
Corollary 1.5, the sequences Bp1,r1

,Bp2,r2
, . . . ,Bpm,rm are a perfect covering

if and only if the sequences

B1,0,Bp1p2,p1r2
, . . . ,Bp1pm,p1rm

are a perfect covering (3). Thus, we may assume that p1 = 1 and r1 = 0.

Corollary 1.5 also tells us that pm ≡ −
∑m−1

k=1 pk (mod q), and with j = 1
that

(11) 0 =

m∑

k=1

[[gk = 1]]
ω−rk

1 − ωpk
.

This implies that

(12) 1 ≤
m∑

k=2

∣∣∣∣
1 − ω

1 − ωpk

∣∣∣∣ =
m∑

k=2

sin(π/q)

sin(πpk/q)
.

In this expression there are m − 1 degrees of freedom: q, p2, p3, . . . , pm−1.

(3) This will typically affect the multiplicity of the covering.
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Without loss of generality 1 = p1 < p2 < p3 < · · · < pm < q. Also, the
hypotheses of the CFC imply that there is no solution to pi + pj = q, and
Lemma 4.5 (with Lemma 4.6) implies q ≤ 33.

There are only 346 m-tuples (p1, . . . , pm) with m ≤ 5,

1 = p1 < p2 < · · · < pm < q ≤ 33,
∑m

k=1 pk ≡ 0 (mod q), no solution to pi + pj = q, and satisfying (12). We
refine our search by noting that if (pk, q) = 1, then (pkp1, pkp2, . . . , pkpm)
must also be on our list of 346 (this is equivalent to taking values of j other
than 1 in deriving the inequality (12)). This pares the list down to a single
tuple for m = 3, a single tuple for m = 4, and 10 tuples for m = 5. The
tuples predicted by the CFC are on these lists, and the remaining 9 tuples
are eliminated by an exhaustive search for r2, . . . , r5 such that

0 =
1

1 − ω
+

5∑

k=2

ω−rk

1 − ωpk
.

The only perfect coverings with 5 or fewer Beatty sequences are those
predicted by the Covering Fraenkel Conjecture.

We remark that we may similarly reduce the m = 6 case of Fraenkel’s
Conjecture (but not the CFC) to a finite computation. For example, if
m = 6, n = 4, then we may argue as in the m = 5 case of Lemma 4.6
that g = 1, and so by Lemma 4.5 we get the bound q ≤ 730. If m = 6,
n = 3 (so that q ≤ 7g), then we may (using Lemma 4.4) renumber so that
g = g1 = g2 = g3 and h = g4 = g5 = g6, with gcd(g, h) = 1. Since the pk are
distinct, we have p1 +p2 +p3 ≥ g+2g+3g = 6g and p4 +p5 +p6 ≥ 6h > 6g.
Thus q =

∑
pk > 12g, a contradiction. In contrast, for m = 7, we arrive at

the consistent inequalities q ≤ 17g and q =
∑

pk > 16g.

5. Proving Fraenkel’s Conjecture. We envision a noncomputational
proof of Fraenkel’s Conjecture along the following lines. Suppose that Bq

pk,rk

(1 ≤ k ≤ m) partition Z, with p1 < p2 < · · · < pm < q, and suppose that m
is minimal. Let gk := gcd(pk, q).

Now, suppose that g := mink{gk} is larger than 1. The Covering Crite-
rion with j = g yields

0 =

m∑

k=1
gk=g

ω−gvk

1 − ωgpk
.

Let u1, . . . , un be those pk for which gk = g (there are n ≥ 3 of them by
Lemma 4.4, and n < m since gcd{g1, . . . , gm} = 1), and let v1, . . . , vn be the

negatives of the rk for which gk = g. Also replace ω = e2πi/q with x = e2πig/q
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to get

0 =
n∑

k=1

xvk

1 − xuk
.

This seems to imply that the sum vanishes for x any (q/g)th root of unity,
which would imply that these sequences alone form a perfect covering,
whence

∑m
k=1 pk[[gk = g]] ≥ q. This is impossible since n < m. Thus, the

following conjecture implies that, in the present setting, g = 1.

Conjecture 5.1. Suppose that 1 ≤ u1 < u2 < · · · < un < q, with

gcd(uk, q) = 1 for all k, and let v1, . . . , vn be arbitrary integers. If the func-

tion

f(x) :=
n∑

k=1

xvk

1 − xuk

vanishes at x = e2πi/q, then
∑n

k=1 uk ≥ q.

This in turn simplifies the Covering Criterion substantially. Considering
the absolute value of the Covering Criterion as in the proof of Lemma 4.5 (4)
the following conjecture becomes relevant.

Conjecture 5.2. Suppose that p1, . . . , pn are distinct and relatively

prime to q > (7/4)n, with
∑

pk ≤ q, and for each k ∈ [n],

2

sin(π/q)
≤

n∑

i=1

1

|sin(πpkpi/q)|
.

Then q = 2n − 1 and {p1, . . . , pn} ≡ {1, 2, . . . , 2n−1} (mod q).

At this point, we would have shown that a counterexample to Fraenkel’s
Conjecture (with m sequences) must have q < (7/4)m. We envision han-
dling this situation combinatorially, probably in conjunction with Tijde-
man’s combinatorial restrictions. He notes [8, Lemma 4] that if Bpk,rk

and
Bpj ,rj are disjoint, then either pk = pj or ⌊q/pk⌋ 6= ⌊q/pj⌋, and so

⌊q/pm⌋ < · · · < ⌊q/p2⌋ < ⌊q/p1⌋.

Also, his main lemma [8, Lemma 3] can be strengthened (using the same
proof, but in terms of Beatty sequences instead of balanced sequences) to
provide the powerful restriction on the pk’s in a counterexample with min-
imal m: pk ≤ (q − 2gk)/3. Tijdeman used these two lemmas (and some
casework) to show that m ≥ 7. Thus, the remaining situation has many
sequences with small (but spread out) pk’s and quite small q.

(4) In Lemma 4.5 we found that for q > nn (roughly), k could be chosen to make a
particular inequality invalid. Conjecture 5.2 posits that the nn bound can be improved
to 2n, and barring the single exception of q = 2n − 1, it can be improved to (7/4)n. This
is supported by computational investigations.
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6. Refining the conjectures. Ideally, one would like arithmetic condi-
tions on αk, rk for the sequences {⌊nαk+rk⌋ : n ∈ Z} to be a perfect covering,
without assuming that the α are distinct. Morikawa has given such condi-
tions for a small number of sequences to be a perfect 1-cover; see [9] for a
brief description of Morikawa’s work and citations for his many papers on
the topic.

The Covering Fraenkel Conjecture that we have advanced is another step
in this direction. A more ambitious step would be to replace the condition
“with no proper subset I ( [m] having

∑
i∈I pi ≡ 0 (mod q)” with the

weaker condition “with no proper subset of the sequences being a perfect
covering.”

We note that Conjecture 5.1 can likely be strengthened:

Conjecture 6.1. Suppose that 1 ≤ u1 < u2 < · · · < un < q, with

gcd(uk, q) = 1 for all k, and with no subset of the uk’s summing to a multiple

of q, and let v1, . . . , vn be arbitrary integers. If the function

f(x) :=
n∑

k=1

xvk

1 − xuk

vanishes at x = e2πi/q, then it vanishes at all qth roots of unity except x = 1.

Joe Buhler notes that

1

1 − x
+

x5

1 − x2
+

x10

1 − x4
+

x10

1 − x11
+

x5

1 − x13
+

1

1 − x14

vanishes at primitive 15th roots of unity, but not at the primitive 5th roots
of unity, and thus the condition on sums of subsets of the uk’s is necessary.

Acknowledgements. The authors wish to thank the National Science
Foundation for supporting mathematics in general and the authors in partic-
ular. We thank Professor Greg Martin of the University of British Columbia
for supplying the main idea underlying Lemma 4.5.

References
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