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Billiard and diophantine approximation

by

Jan Florek (Wrocław)

1. Introduction. For a real number x, [x] is the integral part of x, {x}
is the fractional part of x and ‖x‖ = min({x}, 1− {x}) is the distance of x
to the nearest integer.

Let 0 < θ < 1 and 0 ≤ α < 1. A fraction p/q, q > 0, is called a best
α-approximation to θ (homogeneous for α = 0) (see [4]) if

‖qθ − α‖ = |qθ − α− p|,
and if

‖jθ − α‖ > ‖qθ − α‖ for 0 < j < q.

Notice that if ‖qθ − α‖ = 0 for some q ∈ N, then the set of all best α-
approximations to θ is finite. It is well known [4] that the best homogeneous
approximations to θ are given by the continued fraction process. Namely, the
convergents pn/qn to θ are the best homogeneous approximations to θ, for
n ≥ 1 if 0 < θ ≤ 1/2 and for n ≥ 2 if 1/2 < θ < 1 (see Remark 3.3). The idea
of a best inhomogeneous approximation (α > 0) has been investigated by
several authors, for example Khintchine [7], Barnes and Swinnerton-Dyer [2],
Cassels [3], Sós [11], Cusick, Rockett and Szüsz [5] or Komatsu [8].

We say that an index q is a critical index of a real-valued sequence G(j),
j ∈ N, if

G(j) > G(q) for 0 < j < q.

We say that sequences G(j) and H(j), j ∈ N, are diophantine equivalent if
they have the same set of critical indices and are equal on this set. Note that
a fraction p/q is a best α-approximation to θ iff q is a critical index of the
sequence ‖jθ−α‖, j ∈ N. Hence, the sequence of the best α-approximations
to θ is determined by any sequence diophantine equivalent to the sequence
‖jθ − α‖, j ∈ N.

2000 Mathematics Subject Classification: 11A55, 11J20, 37A99.
Key words and phrases: inhomogeneous diophantine approximation, five distance the-

orem.

[317] c© Instytut Matematyczny PAN, 2008



318 J. Florek

A (θ, α)-billiard sequence (homogeneous for α = 0) is a sequence F (j) ∈
[0, 1), j ∈ N, which satisfies the following conditions:

F (1) = α/2,
F (j) + F (j + 1) = θ or 1 + θ for j odd,
F (j) + F (j + 1) = 1 or 0 for j even.

Note that if α and θ are rational, then F (j) is a periodic sequence. We
consider a billiard table rectangle with the bottom left vertex labelled v0,
and the others, in a clockwise direction, v1, v2 and v3. The distance from v0
to v1 is θ/2. We describe the position of points on the perimeter by their
distance around the perimeter measured in a clockwise direction from v0, so
that v1 is at position θ/2, v2 at 1/2 and v3 at (θ+1)/2. If a billiard ball is sent
out from position F (1) = α/2 at an angle of π/4, then the ball will rebound
against the sides of the rectangle consecutively at points F (2), F (3), . . . .

Let F (j), j ∈ N, be a (θ, α)-billiard sequence. We define the following
sequences:

A(j) =
{

min{‖F (j)− vi‖ : 0 ≤ i ≤ 3} for j > 1,
min{‖F (j)− vi‖ : i = 1, 3} for j = 1,

B(j) = min{‖F (j)− vi‖ : 1 ≤ i ≤ 3}, j ∈ N,
C(j) = min{‖F (k)− F (l)‖ : 1 ≤ k < l ≤ j + 1}, j ∈ N.

Since ‖x− y‖ = min({x− y}, 1−{x− y}) is the shortest perimeter distance
between x, y ∈ [0, 1), the value A(j), j > 1, is the distance between the
rebound F (j) and the set of vertices of the rectangle, and C(j) is the minimal
distance between any two rebounds F (k) and F (l) for 1 ≤ k < l ≤ j + 1.

In Theorem 3.1(1) we prove that ‖jθ − α‖ = ‖F (j) − F (j + 1)‖ for
j ∈ N. The main aim of this paper is to prove Theorem 3.2: the sequences
‖jθ−α‖, 2A(j) are diophantine equivalent, and so too are the sequences C(j),
min(2A(j), ‖F (j + 1) − F (1)‖). In the homogeneous case all the above se-
quences are diophantine equivalent to the sequence 2B(j), j ∈ N.

In Theorem 3.3 we prove that if p/q, q > 1, is a best α-approximation
to θ, then the numbers (−1)p, (−1)q determine the unique vertex v(q) such
that ‖qθ − α‖ = 2‖F (q) − v(q)‖. In Corollaries 3.2 and 3.3 we consider
the homogeneous case: if pn/qn and an, n ∈ N, are the sequences of conver-
gents and partial quotients to θ < 1/2, then the sequences v(qn) and
sgn(F (qn) − v(qn)) are determined by the sequence (−1)an , n ∈ N. On the
other hand,

an =
[
‖qn−1θ‖
‖qnθ‖

]
=
[
‖F (qn−1)− v(qn−1)‖
‖F (qn)− v(qn)‖

]
for n > 1.

The following theorem is known as the Steinhaus conjecture or the three
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distance theorem: there are at most three lengths when the unit circle is
partitioned by the points {jθ} for 1 ≤ j ≤ n. This theorem was first proved
by Sós [11], [12] and then by Świerczkowski [14] and Surányi [13] (see also [1]).
Surányi formulates this result in terms of n-Farey points. Ravenstein [10]
gives solutions in terms of “best” and “second best” rational approximations
to θ. Geelen and Simpson [6] prove the following five distance theorem: there
are at most five lengths when the unit circle is partitioned by the points {jθ}
and {jθ + β} for 0 ≤ j ≤ n.

In Theorem 2.1 we give an explicit formula for a (θ, α)-billiard sequence.
It follows that the five (three) distance theorem is equivalent to the following:
there are at most five lengths (three if F (1) = 0) when the perimeter of
the rectangle is partitioned by a finite sequence of successive rebounds of a
billiard ball.

2. Billiard and the five distance theorem. For real numbers x, y we
write

x ≡ y iff x− y is an integral number.

Theorem 2.1. Let 0 < θ < 1 and 0 ≤ α < 1. A sequence F (j) ∈ [0, 1),
j ∈ N, is a (θ, α)-billiard sequence iff it satisfies the following conditions:

F (2n) = {nθ − α/2} for n ∈ N,
F (2n+ 1) = {−nθ + α/2} for n ∈ N ∪ {0}.

Proof. If the above equalities are satisfied, then

F (2n− 1) + F (2n) ≡ −(n− 1)θ + α/2 + nθ − α/2 = θ,

F (2n) + F (2n+ 1) ≡ nθ − α/2− nθ + α/2 = 0.

Since 0 ≤ F (2n − 1) + F (2n) < 2, we get F (2n − 1) + F (2n) = θ or 1 + θ.
Since 0 ≤ F (2n) + F (2n+ 1) < 2, we get F (2n) + F (2n+ 1) = 0 or 1.

Conversely, we prove, by induction, that the (θ, α)-billiard sequence sat-
isfies the condition of Theorem 2.1:

F (2n) ≡ −F (2n− 1) + θ ≡ (n− 1)θ − α/2 + θ = nθ − α/2,
F (2n+ 1) ≡ −F (2n) ≡ −nθ + α/2.

This theorem shows that the set of values of a (θ, α)-billiard sequence is
the union of two sets of points placed consecutively around the circle an angle
θ apart in two opposite directions. Hence the five (three) distance theorem
is equivalent to the following corollary:

Corollary 2.1. There are at most five lengths (three if F (1) = 0) when
the perimeter of the rectangle is partitioned by a finite sequence of succes-
sive rebounds of a billiard ball. Here “length” means the distance around the
perimeter between adjacent rebound points.
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For a family L of sets, a member S ∈ L is defined to be a minimal set if
it does not contain any other member of L.

Corollary 2.2. The trajectory obtained by a finite sequence of succes-
sive rebounds of a billiard ball “draws” at most 15 incongruent and minimal
rectangles: 5 squares and

(
5
2

)
non-square rectangles (at most 3 +

(
3
2

)
= 6 if

F (1) = 0).

Remark 2.1. Consider a general case, when the initial angle of the ball’s
motion is not π/4. By a linear transformation L (compressing or stretch-
ing) we can change the billiard table rectangle, so that the general case is
transformed to the π/4 case of Corollary 2.2. Any square which appears in
Corollary 2.2 is transformed by L−1 into a rhombus. By analogy, any pair
of rectangles with the perpendicular sides of the same length is transformed
into a pair of parallelograms which are mirror images of each other. Thus
we get at most 25 incongruent and minimal parallelograms: 5 rhombi and
10 pairs of parallelograms which are mirror images of each other. There are
also at most 5 incongruent triangles adjacent to the perimeter in the π/4
case and 10 in the general case.

3. Billiard and the best approximations. Let 0 < θ < 1, 0 ≤ α < 1,
let F (j) be the (θ, α)-billiard sequence, and let A(j), B(j), C(j), j ∈ N, be
the sequences defined in the Introduction.

Lemma 3.1. For a real number x,

‖x‖ = min
(
2
∥∥1

2x
∥∥, 2∥∥1

2(x− 1)
∥∥).

Proof. If 2n < x < 2n+ 1, n ∈ Z, then
{x} = x− 2n = 2

∥∥1
2x
∥∥ and {−x} = 2n− (x− 1) = 2

∥∥1
2(x− 1)

∥∥.
If 2n− 1 < x < 2n, n ∈ Z, then

{x} = x+ 1− 2n = 2
∥∥1

2(x+ 1)
∥∥ and {−x} = 2n− x = 2

∥∥1
2x
∥∥.

Hence
‖x‖ = min({x}, {−x}) = min

(
2
∥∥1

2x
∥∥, 2∥∥1

2(x− 1)
∥∥).

Notice that ‖x‖ = ‖y‖ iff x ≡ y or x ≡ −y.
Theorem 3.1.

(1) ‖jθ − α‖ = ‖F (j)− F (j + 1)‖.

(2) ‖jθ − α‖ =
{

min
(
2
∥∥F (j)− 1

2θ
∥∥, 2∥∥F (j)− 1

2(1 + θ)
∥∥) for j odd,

min
(
2‖F (j)‖, 2

∥∥F (j)− 1
2

∥∥) for j even.

Proof. By Theorem 2.1 we have the following equalities:

F (2n+ 1)− F (2n+ 2) ≡ −nθ + α/2− [(n+ 1)θ − α/2] = −(2n+ 1)θ + α,
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F (2n)− F (2n+ 1) ≡ nθ − α/2− (−nθ + α/2) = 2nθ − α.
Hence (1) follows.

Theorem 2.1 also yields the following equalities:

2F (2n+ 1)− θ ≡ −(2n+ 1)θ + α, 2F (2n) ≡ 2nθ − α.
Hence by Lemma 3.1 we obtain (2).

Lemma 3.2. Sequences G(j) and H(j), j ∈ N, are diophantine equivalent
iff for every j ∈ N there exist j1, j2 ≤ j such that

G(j1) ≤ H(j) and H(j2) ≤ G(j).

Proof. Assume that G(j) and H(j), j ∈ N, are diophantine equivalent.
If j is not a critical index, then there exists a critical index q < j such
that H(q) = G(q) ≤ min{H(j), G(j)}. If j is a critical index then both
inequalities are satisfied with j1 = j2 = j.

Now we prove the converse. Let q be a critical index for the sequenceG(j).
Since G(j1) ≤ H(j2) ≤ G(q) for some 1 ≤ j1 ≤ j2 ≤ q, we have j1 = j2 = q
and H(q) = G(q). If q is not a critical index for the sequence H(j), then we
obtain the contradiction G(i1) ≤ H(i2) ≤ H(q) = G(q) for some 1 ≤ i1 ≤
i2 < q. By analogy, if q is a critical index for H(j), then H(q) = G(q) and q
is a critical index for G(j).

By the definition of a (θ, α)-billiard sequence we obtain the following:

Remark 3.1. For j even,

F (j)− 1
2θ ≡

1
2θ − F (j − 1) and F (j)− 1

2(θ + 1) ≡ 1
2(θ + 1)− F (j − 1).

For j > 1 odd,

F (j) ≡ −F (j − 1) and F (j)− 1
2 ≡

1
2 − F (j − 1).

Remark 3.2.

F (k)− F (l) ≡
{
F (l − 1)− F (k + 1) for 1 ≤ k < l of different parity,
F (l + 1)− F (k + 1) for 1 ≤ k < l of the same parity.

Lemma 3.3. Let j ∈ N.

(1) There exists 1 ≤ j1 ≤ j such that

C(j) = min(‖F (j1 + 1)− F (j1)‖, ‖F (j1 + 1)− F (1)‖).
(2) If F (1) = 0, then there exists 1 ≤ j2 ≤ j such that

C(j) = ‖F (j2 + 1)− F (j2)‖ and ‖F (j2)‖ 6= 0 for j2 > 1.

Proof. By Remark 3.2 we have

‖F (k)− F (l)‖ =
{∥∥F (k + l−k+1

2

)
− F

(
l − l−k+1

2

)∥∥ for 0 < l − k odd,
‖F (1)− F (l − k + 1)‖ for 0 < l − k even.

Hence (1) follows.
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Let F (1) = 0. If 0 < l − k is even, then by Remarks 3.2 and 3.1,

‖F (k)− F (l)‖ = ‖F (1)− F (l − k + 1)‖ = ‖F (1)− F (l − k)‖
=
∥∥F (1 + l−k

2

)
− F

(
l−k
2

)∥∥.
Hence there exists the minimal number 1 ≤ j2 ≤ j such that ‖F (j2 + 1)
− F (j2)‖ = C(j). If j2 > 1 and F (j2) = 0, then by Remark 3.1 there exists
an even i ≤ j2 such that F (i) = 0. Thus by Remark 3.2 we obtain a contra-
diction 0 = ‖F (i)−F (1)‖ =

∥∥F (1
2 i+1

)
−F

(
1
2 i
)∥∥ > C(j). This yields (2).

Theorem 3.2.

(1) The sequences ‖jθ−α‖ and 2A(j), j ∈ N, are diophantine equivalent.
(2) The sequences C(j) and min(2A(j), ‖F (j + 1) − F (1)‖), j ∈ N, are

diophantine equivalent.
(3) If F (1) = 0, then the sequences ‖jθ‖, C(j) and 2B(j), j ∈ N, are

diophantine equivalent.

Proof. By Remark 3.1 we have:

min
(
2
∥∥F (j)− 1

2θ
∥∥, 2∥∥F (j)− 1

2(1 + θ)
∥∥)

= min
(
2
∥∥F (j − 1)− 1

2θ
∥∥, 2∥∥F (j − 1)− 1

2(1 + θ)
∥∥)

for j even, and

min
(
2‖F (j)‖, 2

∥∥F (j)− 1
2

∥∥) = min
(
2‖F (j − 1)‖, 2

∥∥F (j − 1)− 1
2

∥∥)
for j > 1 odd. Hence by Theorem 3.1(2) we have

(i)
{

2A(j) = min(‖(j − 1)θ − α‖, ‖jθ − α‖) for j > 1,
2A(1) = ‖θ − α‖.

Thus by Lemma 3.2 condition (1) holds.
By Theorem 3.1(1) and (i) we have

(ii) C(j) ≤ min(2A(j), ‖F (j + 1)− F (1)‖) for j ∈ N.
By Lemma 3.3(1) and Theorem 3.1, for every j ∈ N there exists 1 ≤ j1 ≤ j
such that
C(j) = min(‖F (j1 + 1)− F (j1)‖, ‖F (j1 + 1)− F (1)‖)

=


min

(
2
∥∥F (j1)− 1

2θ
∥∥, 2∥∥F (j1)− 1

2(1 + θ)
∥∥, ‖F (j1 + 1)− F (1)‖

)
for j1 odd,

min
(
2‖F (j1)‖, 2

∥∥F (j1)− 1
2

∥∥, ‖F (j1 + 1)− F (1)‖
)

for j1 even
≥ min(2A(j1), ‖F (j1 + 1)− F (1)‖).

Hence by Lemma 3.2 and (ii) condition (2) is satisfied.
Let F (1) = 0. By (ii) we have

(iii) C(j) ≤ 2A(j) ≤ 2B(j) for j ∈ N.
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By Lemma 3.3(2) and Theorem 3.1, for every j ∈ N there exists 1 ≤ j2 ≤ j
such that

C(j) = ‖F (j2 + 1)− F (j2)‖

=

{
min

(
2
∥∥F (j2)− 1

2θ
∥∥, 2∥∥F (j2)− 1

2(1 + θ)
∥∥) for j2 odd,

min
(
2‖F (j2)‖, 2

∥∥F (j2)− 1
2

∥∥) for j2 even.

Since C(j) ≤ ‖F (j2)‖ 6= 0 for j2 > 1, we have

C(j) ≥ 2B(j2).

Hence, by Lemma 3.2, (iii) and (1), condition (3) holds.

By Theorem 3.2(3) we obtain the following Dirichlet approximation the-
orem [4].

Corollary 3.1. Let θ and Θ > 1 be real. Then there is an integer q
such that

0 < q < Θ, ‖qθ‖ ≤ Θ−1.

Proof. If F (1) = 0 and qn, n ∈ N, is the increasing sequence of all critical
indices of the sequence C(j), j ∈ N, then by Theorem 3.2(3), ‖qnθ‖ = C(qn).
Consider n such that qn < Θ ≤ qn+1. Since C(j) ≤ (j + 1)−1 for j ∈ N, we
have

‖qnθ‖ = C(qn) ≤ C(qn+1 − 1) ≤ q−1
n+1 ≤ Θ

−1.

Remark 3.3 (see [4]). Let integers pn, qn, an be defined by

CF(1)
{
p0 = 1, q0 = 0,
p1 = 0, q1 = 1,

{
pn+1 = anpn + pn−1,

qn+1 = anqn + qn−1 for n ≥ 1,

where

an =
[
|qn−1θ − pn−1|
|qnθ − pn|

]
if qnθ 6= pn, and the process stops with pn, qn if qnθ = pn. Then the pn/qn
are the best homogeneous approximations to θ for n ≥ 1 if 0 < θ ≤ 1/2 and
for n ≥ 2 if 1/2 < θ < 1. Further,

CF(2) (−1)n(qnθ − pn) ≥ 0,

CF(3) qn+1pn − qnpn+1 = (−1)n.

It is usual to speak of the pn/qn as the nth convergents to θ and to call the
an the partial quotients. Since the an are determined by θ and θ = lim pn/qn,
we may write θ = [0; a1, a2, . . .].

Remark 3.4. Let 0 < θ < 1/2. Homogeneous θ and (1 − θ)-billiard
sequences have symmetrical interpretation in the billiard rectangle with sides
of length 1

2θ and 1
2(1− θ). Hence by Theorem 3.2(3) the sequences ‖jθ‖ and

‖j(1− θ)‖, j ∈ N, have the same set of critical indices. One can confirm this
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in terms of convergents to θ and to 1 − θ. Let pn/qn and pn/qn, n ∈ N, be
the nth convergents to θ and 1− θ respectively. If θ = [0; a1, a2, . . .], a1 > 1,
then by the Lagrange formula [9], 1 − θ = [0; a1, a2, . . .] = [0; 1, a1 − 1,
a2, a3, . . .]. Hence, by CF(1) and by induction we obtain

q2 = a1q1 + q0 = 1 = q1,
q3 = a2q2 + q1 = (a1 − 1)q1 + 1 = a1 = q2,

qn+1 = anqn + qn−1 = an−1qn−1 + qn−2 = qn for n ≥ 3.

Lemma 3.4. If qθ − α = p+ 2d, where q ∈ N, p ∈ N ∪ {0}, then

F (q) ≡


d for p and q both even,
θ/2− d for p even and q odd,
1/2 + d for p odd and q even,
1
2(1 + θ)− d for p and q both odd.

Proof. By Theorem 2.1, we obtain

F (q) ≡ 1
2(qθ − α) = p/2 + d ≡ d for p and q both even,

F (q) ≡ 1
2(θ − qθ + α) = θ/2− p/2− d ≡ θ/2− d for p even and q odd,

F (q) ≡ 1
2(qθ − α) = p/2 + d ≡ 1/2 + d for p odd and q even,

F (q) ≡ 1
2(θ − qθ + α) = θ/2− p/2− d

≡ 1
2(1 + θ)− d for p and q both odd.

Theorem 3.3. Let p/q, q > 1 be a best α-approximation to θ.

(1) There exists exactly one vertex v(q) with ‖qθ−α‖ = 2‖F (q)− v(q)‖,
and

v(q) =


v0 for p and q both even,
v1 for p even and q odd ,
v2 for p odd and q even,
v3 for p and q both odd.

(2) If F (1) = 0, then

F (q) =


v1 − d for p even and q odd ,
v2 + d for p odd and q even,
v3 − d for p and q both odd ,

where 2d = qθ − p.
Proof. Let q > 1. Since p/q is a best α-approximation to θ, q is a critical

index of the sequence ‖jθ − α‖. By Theorem 3.2(1), q is a critical index
of the sequence A(j), j ∈ N, and ‖qθ − α‖ = 2A(q). Hence there exists a
vertex v(q) ∈

{
0, 1

2θ,
1
2 ,

1
2(1 + θ)

}
such that ‖qθ − α‖ = 2‖F (q)− v(q)‖. By

Remark 3.1, ‖F (q)‖ = ‖F (q−1)‖ and
∥∥F (q)− 1

2

∥∥ =
∥∥F (q−1)− 1

2

∥∥ for q odd,
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and
∥∥F (q)− θ

2

∥∥ =
∥∥F (q−1)− θ

2

∥∥ and ∥∥F (q)− 1
2(1+θ)

∥∥ =
∥∥F (q−1)− 1

2(1+θ)
∥∥

for q even. Hence we have

(i)

{
v(q) ∈

{
θ
2 ,

1
2(1 + θ)

}
for q odd,

v(q) ∈
{
0, 1

2

}
for q even.

Since
∥∥F (q) − θ

2

∥∥ +
∥∥F (q) − 1

2(1 + θ)
∥∥ = ‖F (q)‖ +

∥∥F (q) − 1
2

∥∥ = 1
2 and

‖F (q) − v(q)‖ = 1
2‖qθ − α‖ <

1
2‖θ − α‖ ≤

1
4 , v(q) is uniquely determined

by (i). Thus by Lemma 3.4 we obtain condition (1).
If F (1) = 0, then by CF(3) of Remark 3.3, p, q are relatively prime. Since

|qθ−p| = ‖qθ‖ < ‖θ‖, we obtain 1
2(1+θ+|qθ−p|) < 1 and 1

2(θ−|qθ−p|) > 0.
Hence by Lemma 3.4 we obtain condition (2).

Example 3.1. Let F (1) = 0 and θ = t/m be a fraction in lowest terms.
Since m is the last critical index of the sequence ‖jt/m‖, j ∈ N, Theo-
rem 3.2(3) implies that C(j) > 0 and B(j) > 0 for 1 ≤ j < m. Hence by
Theorem 2.1 we obtain the following conditions (1) and (2). Theorem 3.3(2)
yields (3).

(1) {F (1), F (2), . . . , F (m)} =
{
0, 1

m , . . . ,
m−1
m

}
,

(2) min
(∥∥F (j)− t

2m

∥∥,∥∥F (j)− 1
2

∥∥,∥∥F (j)− 1
2

(
1+ t

m

)∥∥) ≥ 1
2m , 1 ≤ j < m,

(3) F (m) =


t

2m for t even,
1
2 for m even,
1
2

(
1 + t

m

)
for t and m both odd.

By condition CF(1) one may state the results of Theorem 3.3 in terms
of partial quotients.

Corollary 3.2. Let F (1) = 0 and θ = [0; a1, a2, . . .] < 1/2. If qn is the
increasing sequence of all critical indices of the sequence ‖jθ‖, j ∈ N, and
v(qn), n ∈ N, is the sequence of vertices such that ‖qnθ‖ = 2‖F (qn)−v(qn)‖,
then

(1) v(q1) = θ/2, v(q2) =

{
1
2 for a1 even,
1
2(1 + θ) for a1 odd ,

(2) v(qn+2) = v(qn) iff an+1 is even,

(3) v(qn+1) 6= v(qn).

Proof. Let pn/qn be the nth convergent to θ. By CF(1), p1 = 0, p2 = 1
and q2 = a1. Hence by Theorem 3.3 we obtain (1).

If an+1 is even, then by CF(1), pn+2 ≡ pn and qn+2 ≡ qn. Thus, by
Theorem 3.3, v(qn+2) = v(qn). If an+1 is odd, then CF(1) yields pn+2 ≡
pn+1+pn and qn+2 ≡ qn+1+qn. Since pn+1 or qn+1 is odd, we have pn+2 6≡ pn
or qn+2 6≡ qn. Thus, v(qn+2) 6= v(qn) by Theorem 3.3.
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We prove (3) by induction. Notice that v(q2) 6= v(q1). Assume that
v(qn+1) 6= v(qn). If an+1 is even, then v(qn+2) = v(qn) 6= v(qn+1) by (2).
If an+1 is odd, then by CF(1) we have v(qn+2) 6= v(qn+1) analogously as
in (2).

Corollary 3.3. Let F (1) = 0 and let θ < 1/2 be irrational. If qn is an
increasing sequence of critical indices of the sequence ‖jθ‖, j ∈ N, and v(qn)
is a sequence of vertices such that ‖qnθ‖ = 2‖F (qn)− v(qn)‖, then
(∗) sgn(F (qn+1)− v(qn+1)) = sgn(F (qn)− v(qn)) iff

v(qn+1) = 1/2 or v(qn) = 1/2.

Proof. By Corollary 3.2(3), v(qn+1) 6= v(qn). Hence by Theorem 3.3(2)
and condition CF(2) we obtain (∗).

This corollary shows that a billiard ball, starting from vertex 0, changes
the orientation of its trajectory at the points F (qn) by the rule (∗).

Example 3.2. Suppose F (1) = 0, θ = [0; a1, a2, . . .] < 1/2, a1 is even
and an is odd for n ≥ 2. If qn, n ∈ N, is the increasing sequence of all critical
indices of the sequence ‖jθ‖, j ∈ N, then by Corollary 3.2 the sequence v(qn),
n ∈ N, is 3-periodic:

v(q1) = θ/2, v(q2) = 1/2, v(q3) = 1
2(1 + θ),

and by Corollary 3.3 the sequence sgn(F (qn)− v(qn)), n ∈ N, is 6-periodic:
sgn(F (q1)− v(q1)) = sgn(F (q2)− v(q2)) = sgn(F (q3)− v(q3)) = −1,
sgn(F (q4)− v(q4)) = sgn(F (q5)− v(q5)) = sgn(F (q6)− v(q6)) = 1.

References

[1] P. Alessandri and V. Berthe, Three distance theorem and combinatorics on words,
Enseign. Math. 44 (1988), 103–132.

[2] E. S. Barnes and H. P. F. Swinnerton-Dyer, The inhomogeneous minima of bi-
nary quadratic forms, I–III, Acta Math. 87 (1952), 259–323; 88 (1952), 279–316; 92
(1954), 199–234.

[3] J. W. S. Cassels, Über limx→+∞ x|ϑx+ α− y|, Math. Ann. 127 (1954), 288–304.
[4] —, An Introduction to Diophantine Approximation, Cambridge Univ. Press, 1957.
[5] T. W. Cusick, A. M. Rockett and P. Szüsz, On inhomogeneous Diophantine appro-

ximation, J. Number Theory 48 (1994), 259–283.
[6] J. F. Geelen and R. J. Simpson, A two dimensional Steinhaus theorem, Australas.

J. Combin. 8 (1993), 169–197.
[7] A. Ya. Khintchine, Über eine Klasse linearer diophantischer Approximationen,

Rend. Circ. Mat. Palermo 50 (1926), 170–195.
[8] T. Komatsu, On inhomogeneous diophantine approximation and the Nishioka–Shio-

kawa–Tamura algorithm, Acta Arith. 86 (1998), 305–324.
[9] J. L. Lagrange, Traité de la résolution des équations numériques de tous les degrés,

1st ed., Paris, 1798; 2nd ed., 1808; reprinted 1826, Chapter VI, §68.



Billiard and diophantine approximation 327

[10] T. van Ravenstein, The three gap theorem (Steinhaus conjecture), J. Austral. Math.
Soc. Ser. A 45 (1988), 360–370.

[11] V. T. Sós, On the theory of Diophantine approximations I, II, Acta Math. Acad.
Sci. Hungar. 8 (1957), 461–472; 9 (1958), 229–241.

[12] —, On the distribution mod 1 of the sequence nα, Ann. Univ. Sci. Budapest. Eötvös
Sect. Math. 1 (1958), 127–134.

[13] J. Surányi, Über die Anordnung der Vielfachen einer reellen Zahl mod 1, ibid.,
107–111.

[14] S. Świerczkowski, On successive settings of an arc on the circumference of a circle,
Fund. Math. 46 (1958), 187–189.

Institute of Mathematics
University of Economics
Komandorska 118/120
53–345 Wrocław, Poland
E-mail: jan.florek@ae.wroc.pl

Received on 8.6.2007
and in revised form on 30.4.2008 (5459)


