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1. Introduction. Let n, d, k > 2 and y be positive integers such that
gcd(n, d) = 1. For an integer ν > 1, we denote by P (ν) the greatest prime
factor of ν and we put P (1) = 1. Let b be a squarefree positive integer such
that P (b) ≤ k. We consider the equation

n(n+ d) · · · (n+ (k − 1)d) = by2(1)

in n, d, k and y.
A celebrated theorem of Erdős and Selfridge [7] states that the product

of consecutive positive integers is never a perfect power. An old, difficult
conjecture states that even a product of consecutive terms of an arithmetic
progression of length k > 3 and difference d ≥ 1 is never a perfect power.
Euler proved (see [6, pp. 440 and 635]) that a product of four terms in
arithmetic progression is never a square solving equation (1) with b = 1 and
k = 4. Obláth [10] obtained a similar statement for b = 1, k = 5. Bennett,
Bruin, Győry and Hajdu [1] solved (1) with b = 1 and 6 ≤ k ≤ 11. For more
results on this topic see [1], [8] and the references given there.

We write
n+ id = aix

2
i for 0 ≤ i < k(2)

where ai are squarefree integers such that P (ai) ≤ max(P (b), k − 1) and xi
are positive integers. Every solution to (1) yields a k-tuple (a0, a1, . . . , ak−1).
Recently Hirata-Kohno, Laishram, Shorey and Tijdeman [8] proved the fol-
lowing theorem.

Theorem A (Hirata-Kohno, Laishram, Shorey, Tijdeman). Equa-
tion (1) with d > 1, P (b) = k and 7 ≤ k ≤ 100 implies that (a0, a1, . . . , ak−1)
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is among the following tuples or their mirror images:

k = 7 : (2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10),

k = 13 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15),

(1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1),

k = 19 : (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22),

k = 23 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).

For k = 5 Mukhopadhyay and Shorey [9] proved the following result.

Theorem B (Mukhopadhyay, Shorey). If n and d are coprime nonzero
integers, then the Diophantine equation

n(n+ d)(n+ 2d)(n+ 3d)(n+ 4d) = by2

has no solutions in nonzero integers b, y and P (b) ≤ 3.

In this article we solve (1) with k = 5 and P (b) = 5, and we handle
the eight special cases mentioned in Theorem A. We prove the following
theorems.

Theorem 1. Equation (1) with d > 1, P (b) = k and 7 ≤ k ≤ 100 has
no solutions.

Theorem 2. Equation (1) with d > 1, k = 5 and P (b) = 5 implies that
(n, d) ∈ {(−12, 7), (−4, 3)}.

2. Preliminary lemmas. In the proofs of Theorems 2 and 1 we need
several results using the elliptic Chabauty method (see [4], [5]). Bruin’s
routines related to the elliptic Chabauty method are contained in Magma [2].
Here we only indicate the main steps without explaining the background
theory. To see how the method works in practice, in particular with the
help of Magma, [3] is an excellent source. For the method to work, the rank
of the elliptic curve (defined over the number field K) should be strictly
less than the degree of K. In the present cases it turns out that the ranks
of the elliptic curves are either 0 or 1, so the elliptic Chabauty method is
applicable. Further, the procedure PseudoMordellWeilGroup of Magma is
able to find a subgroup of the Mordell–Weil group of finite odd index. We
also need to check that the index is not divisible by some prime numbers
provided by the procedure Chabauty. This last step can be done by the
inbuilt function IsPSaturated.

Lemma 1. Equation (1) with k= 7 and (a0, a1, . . . , a6)=(1,5,6,7,2,1,10)
implies that n = 2, d = 1.
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Proof. Using the fact that n = x2
0 and d = (x2

5 − x2
0)/5 we obtain the

following system of equations:

x2
5 + 4x2

0 = 25x2
1,

4x2
5 + x2

0 = 10x2
4,

6x2
5 − x2

0 = 50x2
6.

The second equation implies that x0 is even, say x0 = 2z with z ∈ Z. By
standard factorization argument in the Gaussian integers we get

(x5 + 4iz)(x5 + iz) = δ�,

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}. Thus putting X = x5/z it is
sufficient to find all points (X,Y ) on the curves

Cδ : δ(X + i)(X + 4i)(3X2 − 2) = Y 2,(3)

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}, for which X ∈ Q and Y ∈ Q(i).
Note that if (X,Y ) ∈ Cδ then (X, iY ) ∈ C−δ. We will use this isomorphism
later on to reduce the number of curves to be examined. Hence we need to
consider the curve Cδ for δ ∈ {1− 3i, 1 + 3i, 3− i, 3 + i}.

I. δ = 1− 3i. In this case C1−3i is isomorphic to the elliptic curve

E1−3i : y2 = x3 + ix2 + (−17i− 23)x+ (2291i+ 1597).

Using Magma we find that the rank of E1−3i is 0 and there is no point on
C1−3i for which X ∈ Q.

II. δ = 1+3i. Here E1+3i : y2 = x3− ix2 +(17i−23)x+(−2291i+1597).
The rank of this curve is 0 and there is no point on C1+3i for which X ∈ Q.

III. δ = 3 − i. Then E3−i : y2 = x3 + x2 + (−17i + 23)x + (−1597i −
2291). We have E3−i(Q(i)) ' Z2⊕Z as an Abelian group. Applying elliptic
Chabauty with p = 13, we get x5/z = −3. Thus n = 2 and d = 1.

IV. δ = 3 + i. Then E3+i : y2 = x3 + x2 + (17i+ 23)x+ (1597i− 2291).
The rank of this curve is 1 and applying elliptic Chabauty again with p = 13
we obtain x5/z = 3. This implies that n = 2 and d = 1.

Lemma 2. Equation (1) with k= 7 and (a0, a1, . . . , a6) = (2, 3, 1, 5, 6, 7, 2)
implies that n = 2, d = 1.

Proof. In this case we have the following system of equations:

x2
4 + x2

0 = 2x2
1,

9x2
4 + x2

0 = 10x2
3,

9x2
4 − x2

0 = 2x2
6.

The same argument as in the proof of Theorem 1 shows that it is sufficient
to find all points (X,Y ) on the curves

Cδ : 2δ(X + i)(3X + i)(9X2 − 1) = Y 2,(4)
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where δ ∈ {−4± 2i,−2± 4i, 2± 4i, 4± 2i}, for which X ∈ Q and Y ∈ Q(i).
We summarize the results obtained by elliptic Chabauty in the following
table. In each case we used p = 29.

δ Curve x4/x0

2− 4i y2 = x3 + (−12i− 9)x+ (−572i− 104) {−1,±1/3}
2 + 4i y2 = x3 + (12i− 9)x+ (−572i+ 104) {1,±1/3}
4− 2i y2 = x3 + (−12i+ 9)x+ (−104i− 572) {±1/3}
4 + 2i y2 = x3 + (12i+ 9)x+ (−104i+ 572) {±1/3}

Thus x4/x0 ∈ {±1,±1/3}. From x4/x0 = ±1 it follows that n = 2, d = 1,
while x4/x0 = ±1/3 does not yield any solutions.

Lemma 3. Equation (1) with k= 7 and (a0, a1, . . . , a6) = (3, 1, 5, 6, 7, 2, 1)
implies that n = 3, d = 1.

Proof. Here we get the following system of equations:

2x2
3 + 2x2

0 = x2
1,

4x2
3 + x2

0 = 5x2
2,

12x2
3 − 3x2

0 = x2
6.

Again it is sufficient to find all points (X,Y ) on the curves

Cδ : δ(X + i)(2X + i)(12X2 − 3) = Y 2,(5)

where δ ∈ {−3± i,−1±3i, 1±3i, 3± i}, for which X ∈ Q and Y ∈ Q(i). We
summarize the results obtained by elliptic Chabauty in the following table.
In each case we used p = 13.

δ Curve x3/x0

1− 3i y2 = x3 + (27i+ 36)x+ (243i− 351) {−1,±1/2}
1 + 3i y2 = x3 + (−27i+ 36)x+ (243i+ 351) {1,±1/2}
3− i y2 = x3 + (27i− 36)x+ (−351i+ 243) {±1/2}
3 + i y2 = x3 + (−27i− 36)x+ (−351i− 243) {±1/2}

Thus x3/x0 ∈ {±1,±1/2}. From x4/x0 = ±1 it follows that n = 3, d = 1,
while x3/x0 = ±1/2 does not yield any solutions.

Lemma 4. Equation (1) with (a0, a1, . . . , a4) = (−3,−5, 2, 1, 1) and k= 5,
d > 1 implies that n = −12, d = 7.

Proof. From (2) we have
1
4x

2
4 − 9

4x
2
0 = −5x2

1,
1
2x

2
4 − 3

2x
2
0 = 2x2

2,
3
4x

2
4 − 3

4x
2
0 = x2

3.
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Clearly, gcd(x4, x0) = 1 or 2. In both cases we get the system

X2
4 − 9X2

0 = −5�,

X2
4 − 3X2

0 = �,

X2
4 −X2

0 = 3�,

where X4 = x4/gcd(x4, x0) and X0 = x0/gcd(x4, x0). The curve in this case
is

Cδ : δ(X +
√

3)(X + 3)(X2 − 1) = Y 2,

where δ is from a finite set. The elliptic Chabauty method applied with
p = 11, 37 and 59 provides all points for which the first coordinate is ra-
tional. These coordinates are {−3,−2,−1, 1, 2}. We obtain the arithmetic
progression with (n, d) = (−12, 7).

Lemma 5. Equation (1) with (a0, a1, . . . , a4) = (2, 5, 2,−1,−1) and k= 5,
d > 1 implies that n = −4, d = 3.

Proof. We use x3 and x2 to get a system of equations as in the previous
lemmas. The elliptic Chabauty method applied with p = 13 yields x3/x2 =
±1, hence (n, d) = (−4, 3).

Lemma 6. Equation (1) with (a0, a1, . . . , a4) = (6, 5, 1, 3, 2) and k = 5,
d > 1 has no solutions.

Proof. In this case we have

δ(x3 +
√
−1x0)(x3 + 2

√
−1x0)(2x2

3 − x2
0) = �,

where δ ∈ {1 ± 3
√
−1, 3 ±

√
−1}. Chabauty’s argument gives x3/x0 = ±1,

which corresponds to arithmetic progressions with d = ±1.

3. Remaining cases of Theorem A. In this section we prove Theo-
rem 1. First note that Lemmas 1, 2 and 3 imply the statement of the theorem
for k = 7, 13 and 19. The remaining two possibilities can be eliminated in a
similar way; we present the argument for the tuple

(5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3).

We have the system of equations

n+ d = 6x2
1,

n+ 3d = 2x2
3,

n+ 5d = 10x2
5,

n+ 7d = 3x2
7,

n+ 9d = 14x2
9,

n+ 11d = x2
11,

n+ 13d = 2x2
13.
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We find that x7, x11 and n + d are even integers. Dividing all equations
by 2 we obtain an arithmetic progression of length 7 and (a0, a1, . . . , a6) =
(3, 1, 5, 6, 7, 2, 1). This is not possible by Lemma 3 and Theorem 1 is proved.

4. The case k = 5. In this section we prove Theorem 2. As 5 divides one
of the terms, by symmetry we may assume that 5 |n+d or 5 |n+2d. First we
compute the set of possible tuples (a0, a1, a2, a3, a4) for which appropriate
congruence conditions hold (gcd(ai, aj) ∈ {1, P (j − i)} for 0 ≤ i < j ≤ 4)
and the number of sign changes is at most 1 and the product a0a1a2a3a4

is positive. Then we eliminate tuples by using elliptic curves of rank 0. We
consider elliptic curves

(n+ α1d)(n+ α2d)(n+ α3d)(n+ α4d) =
∏
i

aαi�,

where αi, i ∈ {1, 2, 3, 4}, are distinct integers in {0, 1, 2, 3, 4}. If the rank
is 0, then we obtain all possible values of n/d. Since gcd(n, d) = 1 we get
all possible values of n and d. It turns out that it remains to deal with the
following tuples:

(−3,−5, 2, 1, 1),
(−2,−5, 3, 1, 1),
(−1,−15,−1,−2, 3),
(2, 5, 2,−1,−1),
(6, 5, 1, 3, 2).

In the case of (−3,−5, 2, 1, 1) Lemma 4 implies that (n, d) = (−12, 7).
If (a0, a1, . . . , a4) = (−2,−5, 3, 1, 1), then gcd(n, d) = 1 implies that

gcd(n, 3) = 1. Since n = −2x2
0 we obtain n ≡ 1 (mod 3). From the equation

n+ 2d = 3x2
2 we get d ≡ 1 (mod 3). Finally, the equation n+ 4d = x2

4 leads
to a contradiction.

If (a0, a1, . . . , a4) = (−1,−15,−1,−2, 3), then we obtain gcd(n, 3) = 1.
From the equations n = −x2

0 and n + d = −15x2
1 we get n ≡ 2 (mod 3)

and d ≡ 1 (mod 3). Now the contradiction follows from the equation
n+ 2d = −x2

2.

In the case of (2, 5, 2,−1,−1), Lemma 5 implies that (n, d) = (−4, 3).
The last tuple is eliminated by Lemma 6.
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