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Simultaneous Pellian equations with a single or no solution

by

Alain Togbé (Westville, IN) and Bo He (Neijiang)

1. Introduction. A system of simultaneous Pellian equations is a sys-
tem of Diophantine equations of the form

ax2 − by2 = δ1, cy2 − dz2 = δ2,(1.1)

where a, b, c, d, δ1, δ2 are nonzero integers, and gcd(ab, δ1) = gcd(cd, δ2) = 1.
In 1969, Baker and Davenport [1] used the theory of linear forms in log-
arithms of algebraic numbers to solve equations (1.1) in the particular in-
stance (a, b, c, d, δ1, δ2) = (1, 3, 8, 1,−2, 7). Since then, many systems of si-
multaneous Pell equations have been studied.

Many authors have obtained upper bounds for the number of solutions
of (1.1) (see for example [2], [21], [22], [3], [7]). In 1996, Ono [17] remarked
that the existence of only trivial solutions of the system of simultaneous
Pellian equations

x2 − ay2 = z2 − by2 = 1(1.2)

is a consequence of the related elliptic curve

y2 = x(x+ a)(x+ b)

having Mordell–Weil rank zero over Q. Two years later, Bennett [2] proved
that the system of simultaneous Pell equations (1.2) has at most three pos-
itive integer solutions, where a, b are two distinct positive integers. In 2002,
Yuan [21] strengthened this result by proving that these equations have at
most two solutions in positive integers (x, y, z) if max{a, b} > 1.4 ·1057. This
result was sharpened by Bennett–Cipu–Mignotte–Okazaki [3] by removing
the above condition.

Progress has been made in the study of some particular cases giving at
most one positive solution (see [10], [20], [6], [23], [12], [4], [19], [11] and
[14]). Moreover, very recently, Li, Xia, and Yuan [13] studied a special case
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370 A. Togbé and B. He

of system of simultaneous Pellian equations{
(m+ δ)x2 −my2 = δ,

y2 − bz2 = 1,
(1.3)

where δ = 1 or 4, and 2 -m if δ = 4. They proved that equations (1.3) then
have at most one solution in positive integers (x, y, z).

In this paper, we consider an extension of the above problem. In fact,
we study the system of simultaneous Pellian equations

(m+ δ)x2 −my2 = δ, y2 − bz2 = 1, δ ∈ {±1,±2,±4},(1.4)

where min{m,m + δ} ≥ 1, and 2 -m if δ 6= ±1. Our main result is the
following.

Theorem 1.1. Equations (1.4) have at most one solution in positive
integers (x, y, z).

From Theorem 1.1, we get the following result.

Theorem 1.2. For any positive integer m and δ ∈ {±1,±2,±4}, the
system of simultaneous Pellian equations

x2 −mdz2 = y2 − (m+ δ)dz2 = 1(1.5)

has at most one positive integer solution (x, y, z).

In fact, if we multiply the second equation of (1.4) by m and add the
resulting equation to the first equation of (1.4), we obtain

(m+ δ)x2 −mbz2 = m+ δ.

Taking b = d(m + δ) and simplifying by m + δ, we obtain (1.5). Moreover,
when d has the form 2fpg where p is an odd prime, we can deduce that
equations (1.5) have at most one positive solution (x, y, z). Theorem 1.2
generalizes a theorem of Walsh [19] on equations (1.2). He proved this result
for the special case m = 1 and δ = 1.

The organization of this paper is as follows. In Section 2, we recall or
prove some useful results following the work independently done by Yuan
and Walsh. The proof of Theorem 1.1 is given in Section 3 by applying a
result due to Walsh [20]. Finally, in Section 4, we study a particular case. In
fact, we assume b = b′|4m/δ+ 4| with b′ ∈ {1, 2, p} where p is an odd prime
and we determine all solutions to equations (1.4).

2. Some lemmas. Let n = min{m,m+ δ}, i.e.

n =
{
m if δ = 1, 2, 4,
m+ δ if δ = −1,−2,−4,

(2.1)

where 2 -m if δ 6= ±1. Then equations (1.4) can be rewritten as

(2.2) (n+ c)x2 − ny2 = c, c ∈ {1, 2, 4},
(2.3) y2 − bz2 = 1 (if δ = c) or x2 − bz2 = 1 (if δ = −c).
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In fact, when δ = −1,−2,−4, one can interchange x and y to obtain equa-
tions (2.2) and (2.3). Therefore if (x, y, z) is a solution of (2.2) and (2.3) when
δ = 1, 2, 4, then (y, x, z) is a solution of (2.2) and (2.3) when δ = −1,−2,−4,
and vice versa.

We consider the following result of Yuan [22].

Lemma 2.1. Let x1
√
a+y1

√
b be the smallest solution of ax2− by2 = δ,

with δ ∈ {1, 2, 4}. Then every positive integer solution (x, y) of this equation
can be given by

x
√
a+ y

√
b√

δ
=
(
x1
√
a+ y1

√
b√

δ

)n
, n > 0,(2.4)

with 2 -n if min{a, b} > 1 or if (a, δ) 6= (1, 1), (1, 4).

We put N = 4n/c. Then equation (2.2) becomes

(N + 4)x2 −Ny2 = 4.(2.5)

Let us consider

α =
√
N + 4 +

√
N

2
, α =

√
N + 4−

√
N

2
.

By Lemma 2.1, every positive integer solution (x, y) of (2.2) or (2.5) can be
represented as

x
√
N + 4 + y

√
N

2
= αn, n > 0, 2 -n.(2.6)

Moreover, let β = α2. Then β is the smallest solution of the equation

τ2x2 −N(N + 4)y2 = 4,(2.7)

where τ = 1 or 2 when N is odd or even respectively.
Now let γ=v1+u1

√
b be the smallest solution of the equation v2−bu2 =1.

For integers j, k, l ≥ 1 with 2 - j, we define the sequences {Tj}, {Wj}, {Vk},
{Uk}, {vl} and {ul} by

αj =
Tj
√
N + 4 +Wj

√
N

2
,(2.8)

βk =
Vk + Uk

√
N(N + 4)

2
,(2.9)

γl = vl + ul
√
b.(2.10)

Notice that (V,U) = (x, y) if 2 -N , and (V,U) = (2x, y) if 2 |N .
The following lemma lists some properties of Lehmer sequences. They

are true not only for ({Vk}, {Uk}), but also for ({Tj}, {Wj}) and ({vl}, {ul}).
Lemma 2.2. Let d = gcd(m,n) for some integers m and n.

(1) If Um 6= 1, then Um |Un if and only if m |n.
(2) If m > 1, then Vm |Vn if and only if n/m is an odd integer.
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(3) gcd(Um, Un) = Ud.
(4) gcd(Vm, Vn) = Vd if m/d and n/d are odd , and 1 otherwise.
(5) gcd(Um, Vn) = Vd if m/d is even, and 1 otherwise.

Proof. See Lemma 2.1 of [23], [20], or Lemma 2.2 of [13].

One can see that if we extend the above sequences to negative indices,
the definition is still effective. In fact, we have

T−n = Tn, W−n =−Wn, V−n = Vn, U−n =−Un, v−n = vn, u−n =−un.
Lemma 2.3. Let k0, k1, k2, p ∈ Z with k1, k2, p > 0. If ki (i = 0, 1, 2) are

all odd and k2 = 2pk1 + k0, then

(i) T2pk1+k0 ≡ (−1)pTk0 (mod Tk1);
(ii) W2pk1+k0 ≡Wk0 (mod Wk1).

Proof. (i) If 2 - p, then

T2pk1+k0 + Tk0 =
α2pk1+k0 + α2pk1+k0 + αk0 + αk0√

N + 4

=
(αpk1+k0 + αpk1+k0)(αpk1 + αpk1)√

N + 4
= V(pk1+k0)/2Tpk1 .

Therefore T2pk1+k0 ≡ −Tk0 (mod Tk1).
If 2 | p, we have

T2pk1+k0 − Tk0 =
α2pk1+k0 + α2pk1+k0 − αk0 − αk0√

N + 4

=
(αpk1+k0 − αpk1+k0)(αpk1 − αpk1)√

N + 4
= NWpk1+k0Upk1/2.

From Lemma 2.2(1), we have Uk1 |Upk1/2 and by (2.8) and (2.9), we get
Uk1 = Tk1Wk1 . Thus T2pk1+k0 ≡ Tk0 (mod Tk1).

(ii) The proof is similar to that of (i). We have

W2pk1+k0 −Wk0 =
α2pk1+k0 − α2pk1+k0 − αk0 + αk0√

N

=
(αpk1+k0 + αpk1+k0)(αpk1 − αpk1)√

N
.

If 2 - p, then W2pk1+k0 − Wk0 = V(pk1+k0)/2Wpk1 . As Wk1 |Wpk1 , we have
W2pk1+k0 ≡Wk0 (mod Wk1). If 2 | p, then

W2pk1+k0 −Wk0 = (N + 4)Tpk1+k0Upk1/2.

Therefore, we get the same result.

Now we assume that positive integer solutions of (2.2) and (2.3) exist.
Let (x1, y1, z1) be the positive solution with the smallest z1, and (x2, y2, z2)
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be any other solution. Then there exist positive integers ji, li (i = 1, 2) with
2 - ji such that

xi = Tji , yi = Wji , yi or xi = vli , zi = uli .(2.11)

The following result is similar to Lemma 2.4 of [23] and Lemma 2.4 of [13].
In [22], Yuan proved that for positive integers k0, k1, k2, p, we have
v2pk1±k0 ≡ ±vk0 (mod vk1). We use it and Lemma 2.3 to get

Lemma 2.4. In the notations of (2.11), we have

y1 | y2, j1 | j2, and l1 | l2.
Furthermore, j2/j1 and l2/l1 are odd integers. This implies x1 |x2 and
z1 | z2.

Define

R
(λ)
2k+1 =

{
T2k+1 if λ = 1,
W2k+1 if λ = −1.

(2.12)

Then from the definition of α and (2.8) we obtain

R
(λ)
2k+1 =

α2k+1 + λα2k+1

√
N + 2 + 2λ

.(2.13)

Lemma 2.5. We have (R(λ)
2k+1)2 − 1 = (N + 2− 2λ)UkUk+1.

Proof. Since α+ λα =
√
N + 2 + 2λ, we get

(R(λ)
2k+1)2 − 1 =

(
α2k+1 + λα2k+1

√
N + 2 + 2λ

)2

− 1 =
α4k+2 + α4k+2 + 2λ

N + 2 + 2λ
− 1

=
α4k+2 + α4k+2 − (N + 2)

N + 2 + 2λ
=
β2k+1 + β2k+1 − (β + β)

N + 2 + 2λ

=
(βk+1 − βk+1)(βk − βk)

N + 2 + 2λ

=
N(N + 4)
N + 2 + 2λ

· βk − βk√
N(N + 4)

· β
k+1 − βk+1√
N(N + 4)

= (N + 2− 2λ)UkUk+1.

Definition 2.6. Let {Uk} be defined by (2.9). If there is a prime factor
p of Uk that does not divide Uj for all 1 ≤ j ≤ k − 1, then we say that p is
a primitive prime factor of Uk.

Notice that there are two (slightly) different definitions of primitive prime
factor. According to the definition in [5], p should not divide N(N + 4) and
Uj for all 1 ≤ j ≤ k − 1. This was used in [23] and [13]. But the above
definition is enough for our proof.
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Lemma 2.7. For k > 1, Uk has a primitive prime factor p except for
β = (1 +

√
5)/2 and k = 6. Moreover , p |Uk′ if and only if k | k′.

Proof. See Lemma 2.4 of [20].

The following result is an adaptation of Lemma 2.5 of [20]. One can get
it from some results on AX2 − By4 = 1, 4 due to Ljunggren [15], Cohn [8],
[9] and the first author [18].

Lemma 2.8. Let τ = 1 if 2 -N , and τ = 2 if 2 |N . Then for any positive
integer A, there is at most one positive solution (x, y) to the equation

τ2x2 −N(N + 4)y2 = 4

with y = Au2 for some integer u, except in the following cases:

(1) N = 1, A = 1, in which case y ∈ {1, 122}.
(2) N = 336, A = 1, in which case y ∈ {1, 62142}.
(3) N = d2 − 2, A = 1, in which case y ∈ {1, d2}.

Proof. Take M = N + 2, X = τx, and Y = y in Lemma 2.5 of [20].
Moreover, if N is even, one can take N = 2M − 2, and if N is odd, N =
M − 2.

Next, we recall the following result due to Ljunggren [16].

Lemma 2.9. The Diophantine equation

x4 − py2 = 1,

where p denotes any odd prime, has no solutions in positive integers x and
y if p 6= 5 and p 6= 29. When p = 5 or p = 29 there is only one solution,
i.e. (x, y) = (3, 4) and (x, y) = (99, 1820) respectively.

3. Proof of Theorem 1.1. In this section, we will prove the main
theorem of this paper. We assume that (x1, y1, z1) is the positive solution
with the smallest positive z1, and (x2, y2, z2) is any other positive solution
of equations (2.2) and (2.3). Then there exist positive integers ji, li (i = 1, 2)
with 2 - ji such that

xi = Tji , yi = Wji , yi or xi = vli , zi = uli .(3.1)

We notice that j1 > 1, otherwise T1 = W1 = 1. This implies l1 = 1, vl1 = 1
and z = 0. Let ji = 2ki+1 (i = 1, 2) with 0 < k1 < k2. From (2.3) and (3.1),
we have T 2

2ki+1− 1 = bz2
i or W 2

2ki+1− 1 = bz2
i . Using (2.12) and Lemma 2.5,

we get

bz2
1 = (R(λ)

2k1+1)
2
− 1 = (N + 2− 2λ)Uk1Uk1+1,(3.2)

bz2
2 = (R(λ)

2k2+1)
2
− 1 = (N + 2− 2λ)Uk2Uk2+1.(3.3)
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From Lemma 2.4, we have z1 | z2, so (3.2) and (3.3) give

Uk2Uk2+1

Uk1Uk1+1
=
(
z2
z1

)2

.(3.4)

Before discussing the above equation, let us express Uk (1 ≤ k ≤ 6) using
the recurrence relation Uk+2 = (N + 2)Uk+1 − Uk for k ≥ 1:

U1 = 1,
U2 = N + 2,
U3 = N2 + 4N + 3,
U4 = N3 + 6N2 + 10N + 4,
U5 = N4 + 8N3 + 21N2 + 20N + 5,
U6 = N5 + 10N4 + 36N3 + 56N2 + 35N + 6.

First, we assume that N = 1, k1 = 5 or 6. If k1 = 5, then Uk1+1 = 144 =
24 · 32. By Lemma 2.7, Uk1 has a primitive prime factor p, so that Uk1 |Uk2
or Uk1 |Uk2+1. If Uk1 |Uk2 , since gcd(Uk2 , Uk2+1) = 1, equation (3.4) im-
plies the existence of positive integers s and t such that Uk2/(144Uk1) = s2,
Uk2+1 = t2 or Uk2/(16Uk1) = s2, Uk2+1/9 = t2 or Uk2/(9Uk1) = s2,
Uk2+1/16 = t2 or Uk2/Uk1 = s2, Uk2+1/144 = t2. The above cases give
us Uk2+1 = �. Using Lemma 2.8 and U1 = 1, one can see that Uk2+1 = 144
and k2 = 5. This contradicts the fact that k1 < k2. If Uk1 |Uk2+1, then
k2 = 6. This is impossible. In the same way, if k1 = 6, we also get a contra-
diction.

Assume now N > 1 or N = 1, k1 6= 5, 6. If k1 > 1, by Lemma 2.7, Uk1
and Uk1+1 have primitive prime factors p and q respectively. By Lemma 2.7
again, equation (3.4) implies that

(k1 | k2 or k1 | k2 + 1) and (k1 + 1 | k2 or k2 | k2 + 1).(3.5)

If k1 = 1, then U2 has primitive prime factor q, and properties (3.5) also
hold. Moreover, since j1 | j2, we have

2k1 + 1 | 2k2 + 1.(3.6)

Note that gcd(Uk2 , Uk2+1) = 1 by Lemma 2.2(3). Then properties (3.4) and
(3.5) give us the following four cases:

(i) Uk2+1/(Uk1Uk1+1) = s2, Uk2 = t2,(3.7)

(ii) Uk2/(Uk1Uk1+1) = s2, Uk2+1 = t2,(3.8)

(iii) Uk2/Uk1+1 = s2, Uk2+1/Uk1 = t2,(3.9)

(iv) Uk2/Uk1 = s2, Uk2+1/Uk1+1 = t2.(3.10)

Case (i). Since (V,U) = (N+2, 1) is a solution of V 2−N(N+4)U2 = 4,
using equations (3.7) one can see that the equations
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τ2x2 −N(N + 4)y2 = 4, y = u2(3.11)

have two solutions u = 1 and u = t > 1. By Lemma 2.8, we obtain N = 1,
336, or d2 − 2.

• If N = 1, then we get t = 12. Therefore, equations (3.11) imply
x2 − 5y2 = 4. Any solution (x, y) is given by

x+ y
√

5
2

=
(

3 +
√

5
2

)k
.

The solution with y = 144 implies k2 = 6. On the other hand, the first
equation of (3.7) gives us k1(k1 + 1) | k2 + 1 = 7. This is impossible.
• If N = 336, then t = 6214. From U4 = N3 + 6N2 + 10N + 4 = 62142,

we obtain k2 = 4. Since k1(k1 + 1) | k2 + 1 = 5, we can find no positive
integer k1.
• If N = d2 − 2, then t = d. From U2 = N + 2 = t2, we get k2 = 2. But

there is no positive integer k1 satisfying k1(k1 + 1) | k2 + 1 = 3.

Case (ii). This is similar to Case (i). By Lemma 2.8, the second equation
of (3.8) implies N = 1, 336, or d2 − 2.

• If N = 1, then k2 + 1 = 6. We have already discussed this case and it
is impossible.
• If N = 336, then k2 + 1 = 4. But k1(k1 + 1) | k2 = 3 is also impossible.
• If N = d2 − 2, then k2 + 1 = 2. But there is no integer k1 such that

0 < k1 < k2.

Case (iii). From (3.9), we have

Uk1+1 = As21, Uk2 = As22, Uk1 = Bt21, Uk2+1 = Bt22(3.12)

for some positive integersA,B, s1, s2, t1, t2 such that s = s2/s1 and t = t2/t1.
If k1+1 = k2, from (3.6) we get 2k1+1 | 2k1+3, which is impossible. Therefore
we consider k1 + 1 < k2. Thus Uk1 < Uk1+1 < Uk2 < Uk2+1. But from
Lemma 2.8, A = B = 1 and N = 1, 336 or d2 − 2. Then Uk1 , Uk1+1, Uk2 ,
and Uk2+1 are all perfect squares. This leads to a contradiction.

Case (iv). From (3.10), as in Case (iii), we have

Uk1 = As21, Uk2 = As22, Uk1+1 = Bt21, Uk2+1 = Bt22.(3.13)

Since k1 < k2, from Lemma 2.8 we have A = B = 1 and N = 1, 336,
or d2 − 2. We get a contradiction as before. This completes the proof of
Theorem 1.1.

4. A particular case. Now we consider equations (1.4) with

b = b′|4m/δ + 4|, b′ ∈ {1, 2, p}.(4.1)

Then we have the following result.
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Proposition 4.1. If equations (1.4) have a solution (x, y, z) with the
condition (4.1), then UkUk+1 = b′z2 when either

N = b′d2 − 2, b′ ∈ {1, 2, p}, k = 1, z = d;
or

N = 7, b′ = 5, k = 2, z = 12;
or

N = 9799, b′ = 29, k = 2, z = 180180.

Proof. Suppose a positive integer solution (x, y, z) of (1.4) exists. Then
there are positive integers j, l with 2 - j such that

x = Tj , y = Wj , y or x = vl, z = ul.(4.2)

If j = 1 then z = 0. Let j = 2k+1 for k > 0. From (2.3) and (4.2) we obtain
T 2

2k+1 − 1 = bz2 or W 2
2k+1 − 1 = bz2. Using (2.12) and Lemma 2.5, we get

bz2 = (R(λ)
2k+1)2 − 1 = (N + 2− 2λ)UkUk+1. Thus

(N + 2− 2λ)UkUk+1 = b′|4m/δ + 4|z2, b′ ∈ {1, 2, p}.(4.3)

We recall that N = 4n/c, n = min{m,m+ δ} and c = |δ|.
If δ ∈ {1, 2, 4}, then equations (1.4) give us the first equation in (2.3)

and n = m, c = δ. Thus we need to consider W 2
2k+1 − 1 = bz2. By the

definition of R(λ)
2k+1 in (2.12), we have λ = −1. Therefore one can see that

N + 2− 2λ = 4m/c+ 4 = |4m/δ + 4|.

If δ ∈ {−1,−2,−4}, then equations (1.4) give us the second equation
in (2.3) and n = m− c, c = −δ. Thus we need to consider T 2

2k+1 − 1 = bz2

and λ = 1. Therefore we also obtain

N + 2− 2λ = 4(m− c)/c = 4m/c− 4 = |4m/δ + 4|.
Then equation (4.3) implies

UkUk+1 = b′z2, b′ ∈ {1, 2, p}.(4.4)

By Lemma 2.2(3), we have gcd(Uk, Uk+1) = 1. So we obtain either

Uk = s2, Uk+1 = b′t2,(4.5)

or
Uk = b′t2, Uk+1 = s2,(4.6)

where z = st, s, t ∈ N.
If equations (4.5) hold, then from Lemma 2.8 one can see that Uk = s2

implies k = 1, except for N = 1, 336, or d2 − 2. First, we suppose k = 1.
Then from the second equation of (4.5) we have U2 = N + 2 = b′t2. Thus
N = b′t2 − 2 with b′ ∈ {1, 2, p}. Second, we suppose k > 1 and we discuss
the following three cases.
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• If N = 1, then Uk is a perfect square when k = 6. But b′t2 = Uk+1 =
U7 = (N + 2)U6 − U5 = 377 = 13 · 29 is impossible.
• If N = 336, then k = 4. The fact that b′t2 = Uk+1 = U5 = N4 + 8N3 +

21N2 + 20N + 5 = 13051348805 = 5 · 11 · 19 · 109 · 149 · 769 also leads to a
contradiction.
• If N = d2 − 2, then k = 2 and s = d. Therefore, from b′t2 = Uk+1 =

U3 = N2 + 4N + 3 = (N + 2)2 − 1, we have

d4 − b′t2 = 1, b′ ∈ {1, 2, p}.(4.7)

It is easy to see that (4.7) has no positive integer solution when b′ = 1. If
b′ = 2, then (4.7) implies d = 1, t = 0, which is impossible. If b′ = p, then
by Lemma 2.9, equation (4.7) has a positive integer solution if and only if
either b′ = 5, (d, t) = (3, 4), or b′ = 29, (d, t) = (99, 1820). Since z = st, we
get z = 12 or 180180 respectively.

Now we suppose equations (4.6) hold. In a similar way, Uk+1 = s2 implies
k = 0, except for N = 1, 336, or d2 − 2. But k = 0 leads to a contradiction.
Now we discuss the following three cases when k > 0.

• If N = 1, then k + 1 = 6. But b′t2 = Uk = U5 = N4 + 8N3 + 21N2 +
20N + 5 = 55 = 5 · 11 gives a contradiction.
• If N = 336, then k + 1 = 4. Thus b′t2 = Uk = U3 = N2 + 4N + 3 =

114243 = 3 · 113 · 337 is impossible.
• If N = d2 − 2, then k + 1 = 2. Then from b′t2 = U1 = 1, we get b′ = 1

and t = 1. This is also impossible.

Finally, we use Proposition 4.1 to prove the following result which is a
particular case of Theorem 1.1.

Theorem 4.2. If p is an odd prime and b = b′|4m/δ+ 4|, b′ ∈ {1, 2, p},
then the system of simultaneous equations (1.4) has no positive integer so-
lution (x, y, z), except in the following cases.

(1) If (δ, b′) 6= (±1, 1), (±1, p), then there is a positive integer d such
that

m =
{
δ(b′d2 − 2)/4 if δ > 0,
−δ(b′d2 + 2)/4 if δ < 0,

and equations (1.4) have one solution

(x, y, z) = (|4m/δ + 1|, |4m/δ + 3|, d).

(2) If (m, δ, b) = (7, 4, 55), then the solution is (x, y, z) = (71, 89, 12); if
(m, δ, b) = (11,−4, 35), then the solution is (x, y, z) = (89, 71, 12).

(3) If (m, δ, b) = (9799, 4, 29 · 9803), then the solution is

(x, y, z) = (96049799, 96069401, 180180);
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if (m, δ, b) = (9803,−4, 29 · 9799), then the solution is

(x, y, z) = (96069401, 96049799, 180180).

Proof. Suppose that there exists a positive integer solution (x, y, z) of
equations (1.4) with the condition (4.1). From Proposition 4.1, we have
UkUk+1 = b′z2, b′ ∈ {1, 2, p} and N = 4n/|δ| = b′d2 − 2, 7 or 9799, where
n = min{m,m+ δ}.

First, let N = b′d2 − 2. If δ > 0, then n = m, thus m = δ(b′d2 − 2)/4.
We have k = 1 and z = d by Proposition 4.1. From y2 = bz2 + 1 we
obtain

y2 = b′|4m/δ + 4|z2 + 1 = b′(4m/δ + 4)z2 + 1

= b′(b′d2 + 2)d2 + 1 = (b′d2 + 1)2.

Thus we have y = b′d2 + 1 = 4m/δ + 3. Consequently, we get the solution
(x, y, z) = (4m/δ + 1, 4m/δ + 3, d).

If δ < 0, then n = m+ δ, thus m = −δ(b′d2− 2)/4− δ = −δ(b′d2 + 2)/4.
In a similar way, knowing that δ +m ≥ 1 we have

y2 = b′|4m/δ + 4|z2 + 1 = b′(4m/(−δ)− 4)z2 + 1

= b′(b′d2 − 2)d2 + 1 = (b′d2 − 1)2.

It follows that y = b′d2−1 = 4m/(−δ)−3, and we get the solution (x, y, z) =
(4m/(−δ)− 1, 4m/(−δ)− 3, d). This proves the first exceptional case.

Finally, let N = 7 or 9799. Since N = 4n/|δ|, we have |δ| = 4. Notic-
ing k = 2, by direct computations, it is easy to get the second and third
exceptional cases. This completes the proof of Theorem 4.2.

Acknowledgments. We thank Prof. Yuan for informing us about the
paper [14] and for sending us a copy. Li and Yuan have studied the same
system and obtained a result similar to our Theorem 1.1 but using another
method.

The authors thank Gary Walsh for many helpful suggestions and com-
ments during the preparation of this paper, particularly for those leading to
Theorem 1.2. The authors express their gratitude to the anonymous referee
for constructive suggestions to improve an earlier draft of this paper. The
first author is partially supported by Purdue University North Central. The
second author is supported by the Natural Science Foundation of Education
Department of Sichuan Province (No. 2006C057).

References

[1] A. Baker and H. Davenport, The equations 3x2 − 2 = y2 and 8x2 − 7 = z2, Quart.
J. Math. Oxford Ser. (2) 20 (1969), 129–137.

[2] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine
Angew. Math. 498 (1998), 173–199.



380 A. Togbé and B. He
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