
ACTA ARITHMETICA

134.4 (2008)

A note on a multiplicative hybrid problem

by

Olivier Bordellès (Aiguilhe)

1. Introduction and result. In what follows, e(x) = e2πix, [x] is the
integer part of x, ψ(x) = x − [x] − 1/2 and N is a natural number large
enough.

In 1987, Iwaniec and Sárközy [5] dealt with the following problem: Let
S1 and S2 be subsets of ]N, 2N ] ∩ Z. If |S1| � N and |S2| � N , then they
proved that there exist integers n1 ∈ S1, n2 ∈ S2 and b such that

n1n2 = b2 +O((b log b)1/2).

The following generalization was considered by Zhai ([9, 10]): Let k ≥ 4
be an integer and S1, . . . , Sk be subsets of ]N, 2N ] ∩ Z. If |Si| � N for
i = 1, . . . , k, then there exist integers n1 ∈ S1, . . . , nk ∈ Sk and b such that

(1) n1 · · ·nk = bk +O(bk−3/2).

That result can easily be related to the following multi-dimensional lattice
point problem. Let 0 < δ ≤ 1/4 be any small real number and define

Rk = Rk(N, δ) :=
∣∣∣{(n1, . . . , nk, b) ∈

k∏
i=1

Si × Z : |(n1 · · ·nk)1/k − b| ≤ δ
}∣∣∣

and suppose there exist βk ≥ 0 and 0 ≤ θk < k such that

(2) Rk = 2δ|S1| · · · |Sk|+O(N θk(logN)βk).

Then using |Si| ≥ aiN (with ai > 0) and setting Ak := min1≤i≤k ai, we have

Rk ≥ 2δ|S1| · · · |Sk| − ckN θk(logN)βk ≥ 2δAkkN
k − ckN θk(logN)βk

with ck > 0 depending only on k. Now taking δ = c0N
θk−k(logN)βk with

c0 > 2−1ckA
−k
k gives Rk > 0, which implies that, if N is sufficiently large,

then there exist integers n1 ∈ S1, . . . , nk ∈ Sk and b such that

(3) n1 · · ·nk = bk +O(bθk−1(log b)βk).
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If δ is sufficiently small, it is easy to see that Rk counts the number of
integer points close to the hypersurface xk+1 = (x1 · · ·xk)1/k with xi ∈ Si
(i = 1, . . . , k). In the one-dimensional case, upper bounds of such numbers
can be obtained by using results dealing with divided differences (see [2, 4]).
In the general case, estimate (2) can be attained by using exponential sums
methods. In his work [9, 10], Zhai used a double large sieve inequality for
bilinear forms first established by Bombieri and Iwaniec (see [1, 3, 7]). In
this paper, we treat the resulting sums coming from the error term of (2) by
making use of multi-dimensional exponent pairs introduced by Srinivasan
(see [8, 6]). This leads to the following improvement of (1):

Theorem 1.1. Let k ≥ 2 be an integer , N be a large natural number ,
and S1, . . . , Sk be subsets of ]N, 2N ] ∩ Z. If |S1| � N, . . . , |Sk| � N , then
there exist integers n1 ∈ S1, . . . , nk ∈ Sk and b such that

n1 · · ·nk = bk +O(bk−5/3+r(k))

where r(k) = 2(9k + 7)/(3(9k2 − 3k + 10)).

Although this result is valid for k ≥ 2, it only improves on (1) as soon
as k ≥ 5.

2. Proof of Theorem 1.1. Clearly we have

Rk = 2δ|S1| · · · |Sk|

+
∑

(n1,...,nk)∈S1×···×Sk

{ψ((n1 · · ·nk)1/k − δ)− ψ((n1 · · ·nk)1/k + δ)}.

The following result will be useful:

Lemma 2.1. Let d,N ≥ 1 be integers, Dd ⊂ (]N, 2N ] ∩ Z)d, X ≥ 1, and
let α1, . . . , αd be nonzero real numbers satisfying

u

d∑
i=1

αi +
d∑
i=1

αiεi 6= 1 + u+ v

for any pair (u, v) of nonnegative integers and any (ε1, . . . , εd) ∈ {0, 1}d. Let
∆ ∈ R, sd = α1 + · · · + αd and (l0, l1) be an exponent pair of dimension d.
Suppose that

(4) N l1−l0(sd−1) ≥ X l0 .

Then ∑
(n1,...,nd)∈Dd

ψ(Xnα1
1 · · ·n

αd
d ±∆)� (X l0N l0(sd+d−1)+1−l1)d/(1+dl0).
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Proof. The starting point is the well-known inequality

− 1
2H

+
∑
h∈Z∗

che(−hx) ≤ ψ(x) ≤ 1
2H
−
∑
h∈Z∗

che(hx)

where x ∈ R, H is any positive integer at our disposal and

ch :=
H

2πih

1/H�

0

e(−ht) dt

so that
|ch| ≤

1
2π

min
(

1
|h|
,
H

h2

)
.

Now summing on Dd gives∑
(n1,...,nd)∈Dd

ψ(Xnα1
1 · · ·n

αd
d ±∆)

� Nd

H
+
∞∑
h=1

min
(

1
h
,
H

h2

)∣∣∣ ∑
(n1,...,nd)∈Dd

e(hXnα1
1 · · ·n

αd
d )
∣∣∣

and using the exponent pair (l0, l1) gives∣∣∣ ∑
(n1,...,nd)∈Dd

e(hXnα1
1 · · ·n

αd
d )
∣∣∣� d∏

j=1

(XhN sd−1)l0N1−l1

� (Xh)dl0Nd{l0(sd−1)+1−l1}

so that∑
(n1,...,nd)∈Dd

ψ(Xnα1
1 · · ·n

αd
d ±∆)� Nd

H
+
∑
h≤H

h−1(Xh)dl0Nd{l0(sd−1)+1−l1}

+H
∑
h>H

h−2(Xh)dl0Nd{l0(sd−1)+1−l1}

and since l0 ≤ (2d + 2)−1 (see [8, Definition 2]) we have −2 + dl0 ≤ −3/2
and hence∑

(n1,...,nd)∈Dd

ψ(Xnα1
1 · · ·n

αd
d ±∆)� Nd

H
+ (XH)dl0Nd{l0(sd−1)+1−l1}.

Taking H = [(X−l0N l1−l0(sd−1))d/(1+dl0)] gives the desired result.

To produce exponent pairs, one often uses A-B processes as described in
[8] to transform a given exponent pair into a new one. For example, Theorem
4 of [8] (see also Theorem 1 of [6]) states that, if (λ0, λ1) is an exponent pair
of dimension d, then so is

(5) (l0, l1) =
(

λ0

2(1 + dλ0)
,
λ0 + λ1

2(1 + dλ0)

)
.
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For our purpose, it will be convenient to regard these processes as linear
transformations on projective space. To this end, set

A =

 1 0 0
1 1 0
2d 0 2

 .

Then

A

λ0

λ1

1

 =

 λ0

λ0 + λ1

2(1 + dλ0)


from which we easily derive (5). In a similar way, if we set

B =

 0 −1 1
2

−1 −1 1
0 −2d d+ 2


then Theorem 6 of [8] (or Theorem 2 of [6]) implies that the pair (l0, l1)
derived from the transformation

B

λ0

λ1

1


is an exponent pair of dimension d provided λ1 − λ0 ≤ 1/(3d). Now define

Γ = BA =

 d− 1 −1 1
2(d− 1) −1 2
2d(d+ 1) −2d 2(d+ 2)

 .

We have the following result:

Lemma 2.2. Let (λ0, λ1) be an exponent pair of dimension d such that

(6) d(3λ1 − 2λ0) ≤ 2.

Then the pair (l0, l1) derived from the transformation

Γ

λ0

λ1

1


is an exponent pair of dimension d satisfying (6) with (λ0, λ1) replaced by
(l0, l1).
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Proof. By (5) the pair

(µ0, µ1) =
(

λ0

2(1 + dλ0)
,
λ0 + λ1

2(1 + dλ0)

)
is an exponent pair of dimension d and condition (6) ensures that µ1 − µ0

≤ 1/(3d), which proves the first part of the lemma by using

B

µ0

µ1

1

 = Γ

λ0

λ1

1

 .

Furthermore,

d(3l1 − 2l0) = 2− d(8λ0 − 3λ1) + 8
2{λ0d(d+ 1)− λ1d+ d+ 2}

and using (6) we have

d(8λ0 − 3λ1) + 8 ≥ −2 + 8 = 6,
λ0d(d+ 1)− λ1d+ d+ 2 ≥ (d+ 1)(−1 + 3dλ1/2)− λ1d+ d+ 2

= 1
2(3λ1d

2 + λ1d+ 2) > 0

so that d(3l1 − 2l0) ≤ 2 as asserted.

An easy induction gives the following corollary:

Corollary 2.3. For every positive integer h, the pair (l0, l1) derived
from the transformation

Γ h

0
0
1


is an exponent pair of dimension d. In particular , for the first values of h,
the following pairs are exponent pairs of dimension d:

h (l0, l1)

1

„
1

2d+ 4
,

1

d+ 2

«
2

„
3d+ 1

2(3d2 + 7d+ 8)
,

3d+ 2

3d2 + 7d+ 8

«

Remark. The first exponent pair above has already been given by Srini-
vasan (see [8, Theorem 9]).
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Corollary 2.4. Let k≥2 be an integer and ∆∈R. If N≥21/k+3/(3k−2)

and |Si| � N for i = 1, . . . , k then∑
(n1,...,nk)∈S1×···×Sk

ψ((n1 · · ·nk)1/k ±∆)� Nk−2/3+r(k)

where r(k) is defined in Theorem 1.1.

Proof. Write the sum on the left-hand side as∑
nk∈Sk

∑
(n1,...,nk−1)∈S1×···×Sk−1

ψ(X(n1 · · ·nk−1)1/k ±∆)

where X = n
1/k
k and apply Lemma 2.1 with d = k−1, Dk−1 = S1×· · ·×Sk−1

and αi = 1/k (i = 1, . . . , k − 1) so that sk−1 = 1− 1/k. The number

u
k−1∑
i=1

αi +
k−1∑
i=1

αiεi − (1 + u+ v)

is equal to
1
k

(k−1∑
i=1

εi − u
)
− 1− v

and is clearly nonzero for every pair (u, v) of nonnegative integers and every
εi ∈ {0, 1}. Furthermore, since nk ≤ 2N , we see that hypothesis (4) is
satisfied as soon as N l1 ≥ 2l0/k, so that Lemma 2.1 implies that∑
(n1,...,nk)∈S1×···×Sk

ψ((n1 · · ·nk)1/k ±∆)

�
∑
nk∈Sk

n
(k−1)l0

k{1+(k−1)l0}
k N

(k−1){l0(k−1−1/k)+1−l1}
1+(k−1)l0 � N

1+
(k−1){(k−1)l0+1−l1}

1+(k−1)l0

and the desired result follows by using the (k−1)-dimensional exponent pair

(l0, l1) =
(

3k − 2
2(3k2 + k + 4)

,
3k − 1

3k2 + k + 4

)
of Corollary 2.3.

Now Theorem 1.1 follows at once from Corollary 2.4 and (3).
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referee for his careful reading of the manuscript.
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