A note on a multiplicative hybrid problem

by

OLIVIER BORDELLÈS (Aiguilhe)

1. Introduction and result. In what follows, $e(x) = e^{2\pi i x}$, [x] is the integer part of x, $\psi(x) = x - [x] - 1/2$ and N is a natural number large enough.

In 1987, Iwaniec and Sárközy [5] dealt with the following problem: Let S_1 and S_2 be subsets of $]N, 2N] \cap \mathbb{Z}$. If $|S_1| \gg N$ and $|S_2| \gg N$, then they proved that there exist integers $n_1 \in S_1$, $n_2 \in S_2$ and b such that

$$n_1 n_2 = b^2 + O((b \log b)^{1/2}).$$

The following generalization was considered by Zhai ([9, 10]): Let $k \geq 4$ be an integer and S_1, \ldots, S_k be subsets of $]N, 2N] \cap \mathbb{Z}$. If $|S_i| \gg N$ for $i = 1, \ldots, k$, then there exist integers $n_1 \in S_1, \ldots, n_k \in S_k$ and b such that

(1)
$$n_1 \cdots n_k = b^k + O(b^{k-3/2}).$$

That result can easily be related to the following multi-dimensional lattice point problem. Let $0 < \delta \le 1/4$ be any small real number and define

$$\mathcal{R}_k = \mathcal{R}_k(N,\delta) := \left| \left\{ (n_1, \dots, n_k, b) \in \prod_{i=1}^k S_i \times \mathbb{Z} : |(n_1 \cdots n_k)^{1/k} - b| \le \delta \right\} \right|$$

and suppose there exist $\beta_k \geq 0$ and $0 \leq \theta_k < k$ such that

(2)
$$\mathcal{R}_k = 2\delta |S_1| \cdots |S_k| + O(N^{\theta_k} (\log N)^{\beta_k}).$$

Then using $|S_i| \ge a_i N$ (with $a_i > 0$) and setting $A_k := \min_{1 \le i \le k} a_i$, we have

$$\mathcal{R}_k \ge 2\delta |S_1| \cdots |S_k| - c_k N^{\theta_k} (\log N)^{\beta_k} \ge 2\delta A_k^k N^k - c_k N^{\theta_k} (\log N)^{\beta_k}$$

with $c_k > 0$ depending only on k. Now taking $\delta = c_0 N^{\theta_k - k} (\log N)^{\beta_k}$ with $c_0 > 2^{-1} c_k A_k^{-k}$ gives $\mathcal{R}_k > 0$, which implies that, if N is sufficiently large, then there exist integers $n_1 \in S_1, \ldots, n_k \in S_k$ and b such that

(3)
$$n_1 \cdots n_k = b^k + O(b^{\theta_k - 1} (\log b)^{\beta_k}).$$

²⁰⁰⁰ Mathematics Subject Classification: 11L07, 11N99, 11B99.

Key words and phrases: ψ -function, exponential sums, multi-dimensional exponent pairs.

388 O. Bordellès

If δ is sufficiently small, it is easy to see that \mathcal{R}_k counts the number of integer points close to the hypersurface $x_{k+1} = (x_1 \cdots x_k)^{1/k}$ with $x_i \in S_i$ (i = 1, ..., k). In the one-dimensional case, upper bounds of such numbers can be obtained by using results dealing with divided differences (see [2, 4]). In the general case, estimate (2) can be attained by using exponential sums methods. In his work [9, 10], Zhai used a double large sieve inequality for bilinear forms first established by Bombieri and Iwaniec (see [1, 3, 7]). In this paper, we treat the resulting sums coming from the error term of (2) by making use of multi-dimensional exponent pairs introduced by Srinivasan (see [8, 6]). This leads to the following improvement of (1):

THEOREM 1.1. Let $k \geq 2$ be an integer, N be a large natural number, and S_1, \ldots, S_k be subsets of $]N, 2N] \cap \mathbb{Z}$. If $|S_1| \gg N, \ldots, |S_k| \gg N$, then there exist integers $n_1 \in S_1, \ldots, n_k \in S_k$ and b such that

$$n_1 \cdots n_k = b^k + O(b^{k-5/3+r(k)})$$

where
$$r(k) = 2(9k+7)/(3(9k^2-3k+10))$$
.

Although this result is valid for $k \geq 2$, it only improves on (1) as soon as $k \geq 5$.

2. Proof of Theorem 1.1. Clearly we have

$$\mathcal{R}_{k} = 2\delta |S_{1}| \cdots |S_{k}| + \sum_{(n_{1}, \dots, n_{k}) \in S_{1} \times \dots \times S_{k}} \{ \psi((n_{1} \cdots n_{k})^{1/k} - \delta) - \psi((n_{1} \cdots n_{k})^{1/k} + \delta) \}.$$

The following result will be useful:

LEMMA 2.1. Let $d, N \geq 1$ be integers, $\mathcal{D}_d \subset (]N, 2N] \cap \mathbb{Z})^d$, $X \geq 1$, and let $\alpha_1, \ldots, \alpha_d$ be nonzero real numbers satisfying

$$u\sum_{i=1}^{d} \alpha_i + \sum_{i=1}^{d} \alpha_i \varepsilon_i \neq 1 + u + v$$

for any pair (u, v) of nonnegative integers and any $(\varepsilon_1, \ldots, \varepsilon_d) \in \{0, 1\}^d$. Let $\Delta \in \mathbb{R}$, $s_d = \alpha_1 + \cdots + \alpha_d$ and (l_0, l_1) be an exponent pair of dimension d. Suppose that

$$(4) N^{l_1 - l_0(s_d - 1)} \ge X^{l_0}.$$

Then

$$\sum_{(n_1,\dots,n_d)\in\mathcal{D}_d} \psi(X n_1^{\alpha_1} \cdots n_d^{\alpha_d} \pm \Delta) \ll (X^{l_0} N^{l_0(s_d+d-1)+1-l_1})^{d/(1+dl_0)}.$$

Proof. The starting point is the well-known inequality

$$-\frac{1}{2H} + \sum_{h \in \mathbb{Z}^*} c_h e(-hx) \le \psi(x) \le \frac{1}{2H} - \sum_{h \in \mathbb{Z}^*} c_h e(hx)$$

where $x \in \mathbb{R}$, H is any positive integer at our disposal and

$$c_h := \frac{H}{2\pi i h} \int_0^{1/H} e(-ht) dt$$

so that

$$|c_h| \le \frac{1}{2\pi} \min \left(\frac{1}{|h|}, \frac{H}{h^2} \right).$$

Now summing on \mathcal{D}_d gives

$$\sum_{(n_1,\dots,n_d)\in\mathcal{D}_d} \psi(Xn_1^{\alpha_1}\cdots n_d^{\alpha_d}\pm\Delta)$$

$$\ll \frac{N^d}{H} + \sum_{l=1}^{\infty} \min\left(\frac{1}{h}, \frac{H}{h^2}\right)\Big|_{\ell} \qquad \sum_{l=0}^{\infty} \left. e(hXn_1^{\alpha_1}\cdots n_d^{\alpha_d})\right|_{\ell}$$

and using the exponent pair (l_0, l_1) gives

$$\begin{split} \Big| \sum_{(n_1, \dots, n_d) \in \mathcal{D}_d} e(hX n_1^{\alpha_1} \cdots n_d^{\alpha_d}) \Big| &\ll \prod_{j=1}^d (XhN^{s_d-1})^{l_0} N^{1-l_1} \\ &\ll (Xh)^{dl_0} N^{d\{l_0(s_d-1)+1-l_1\}} \end{split}$$

so that

$$\sum_{(n_1,\dots,n_d)\in\mathcal{D}_d} \psi(Xn_1^{\alpha_1}\cdots n_d^{\alpha_d}\pm\Delta) \ll \frac{N^d}{H} + \sum_{h\leq H} h^{-1}(Xh)^{dl_0} N^{d\{l_0(s_d-1)+1-l_1\}} + H \sum_{h>H} h^{-2}(Xh)^{dl_0} N^{d\{l_0(s_d-1)+1-l_1\}}$$

and since $l_0 \leq (2d+2)^{-1}$ (see [8, Definition 2]) we have $-2 + dl_0 \leq -3/2$ and hence

$$\sum_{(n_1,\dots,n_d)\in\mathcal{D}_d} \psi(X n_1^{\alpha_1} \cdots n_d^{\alpha_d} \pm \Delta) \ll \frac{N^d}{H} + (XH)^{dl_0} N^{d\{l_0(s_d-1)+1-l_1\}}.$$

Taking $H = [(X^{-l_0}N^{l_1-l_0(s_d-1)})^{d/(1+dl_0)}]$ gives the desired result.

To produce exponent pairs, one often uses A-B processes as described in [8] to transform a given exponent pair into a new one. For example, Theorem 4 of [8] (see also Theorem 1 of [6]) states that, if (λ_0, λ_1) is an exponent pair of dimension d, then so is

(5)
$$(l_0, l_1) = \left(\frac{\lambda_0}{2(1 + d\lambda_0)}, \frac{\lambda_0 + \lambda_1}{2(1 + d\lambda_0)}\right).$$

390 O. Bordellès

For our purpose, it will be convenient to regard these processes as linear transformations on projective space. To this end, set

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2d & 0 & 2 \end{pmatrix}.$$

Then

$$A \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda_0 \\ \lambda_0 + \lambda_1 \\ 2(1 + d\lambda_0) \end{pmatrix}$$

from which we easily derive (5). In a similar way, if we set

$$B = \begin{pmatrix} 0 & -1 & \frac{1}{2} \\ -1 & -1 & 1 \\ 0 & -2d & d+2 \end{pmatrix}$$

then Theorem 6 of [8] (or Theorem 2 of [6]) implies that the pair (l_0, l_1) derived from the transformation

$$B\begin{pmatrix} \lambda_0 \\ \lambda_1 \\ 1 \end{pmatrix}$$

is an exponent pair of dimension d provided $\lambda_1 - \lambda_0 \leq 1/(3d)$. Now define

$$\Gamma = BA = \begin{pmatrix} d-1 & -1 & 1\\ 2(d-1) & -1 & 2\\ 2d(d+1) & -2d & 2(d+2) \end{pmatrix}.$$

We have the following result:

LEMMA 2.2. Let (λ_0, λ_1) be an exponent pair of dimension d such that (6) $d(3\lambda_1 - 2\lambda_0) \leq 2.$

Then the pair (l_0, l_1) derived from the transformation

$$\Gamma \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ 1 \end{pmatrix}$$

is an exponent pair of dimension d satisfying (6) with (λ_0, λ_1) replaced by (l_0, l_1) .

Proof. By (5) the pair

$$(\mu_0, \mu_1) = \left(\frac{\lambda_0}{2(1+d\lambda_0)}, \frac{\lambda_0 + \lambda_1}{2(1+d\lambda_0)}\right)$$

is an exponent pair of dimension d and condition (6) ensures that $\mu_1 - \mu_0 \le 1/(3d)$, which proves the first part of the lemma by using

$$B\begin{pmatrix} \mu_0 \\ \mu_1 \\ 1 \end{pmatrix} = \Gamma \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ 1 \end{pmatrix}.$$

Furthermore,

$$d(3l_1 - 2l_0) = 2 - \frac{d(8\lambda_0 - 3\lambda_1) + 8}{2\{\lambda_0 d(d+1) - \lambda_1 d + d + 2\}}$$

and using (6) we have

$$d(8\lambda_0 - 3\lambda_1) + 8 \ge -2 + 8 = 6,$$

$$\lambda_0 d(d+1) - \lambda_1 d + d + 2 \ge (d+1)(-1 + 3d\lambda_1/2) - \lambda_1 d + d + 2$$

$$= \frac{1}{2}(3\lambda_1 d^2 + \lambda_1 d + 2) > 0$$

so that $d(3l_1 - 2l_0) \le 2$ as asserted.

An easy induction gives the following corollary:

COROLLARY 2.3. For every positive integer h, the pair (l_0, l_1) derived from the transformation

$$\Gamma^h \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

is an exponent pair of dimension d. In particular, for the first values of h, the following pairs are exponent pairs of dimension d:

$$\begin{array}{c|c}
h & (l_0, l_1) \\
\hline
1 & \left(\frac{1}{2d+4}, \frac{1}{d+2}\right) \\
2 & \left(\frac{3d+1}{2(3d^2+7d+8)}, \frac{3d+2}{3d^2+7d+8}\right)
\end{array}$$

REMARK. The first exponent pair above has already been given by Srinivasan (see [8, Theorem 9]).

392 O. Bordellès

COROLLARY 2.4. Let $k \ge 2$ be an integer and $\Delta \in \mathbb{R}$. If $N \ge 2^{1/k+3/(3k-2)}$ and $|S_i| \gg N$ for i = 1, ..., k then

$$\sum_{\substack{(n_1,\dots,n_k)\in S_1\times\dots\times S_k}} \psi((n_1\cdots n_k)^{1/k}\pm\Delta) \ll N^{k-2/3+r(k)}$$

where r(k) is defined in Theorem 1.1.

Proof. Write the sum on the left-hand side as

$$\sum_{n_k \in S_k \ (n_1, \dots, n_{k-1}) \in S_1 \times \dots \times S_{k-1}} \psi(X(n_1 \cdots n_{k-1})^{1/k} \pm \Delta)$$

where $X = n_k^{1/k}$ and apply Lemma 2.1 with d = k-1, $\mathcal{D}_{k-1} = S_1 \times \cdots \times S_{k-1}$ and $\alpha_i = 1/k$ $(i = 1, \dots, k-1)$ so that $s_{k-1} = 1 - 1/k$. The number

$$u\sum_{i=1}^{k-1}\alpha_i + \sum_{i=1}^{k-1}\alpha_i\varepsilon_i - (1+u+v)$$

is equal to

$$\frac{1}{k} \left(\sum_{i=1}^{k-1} \varepsilon_i - u \right) - 1 - v$$

and is clearly nonzero for every pair (u, v) of nonnegative integers and every $\varepsilon_i \in \{0, 1\}$. Furthermore, since $n_k \leq 2N$, we see that hypothesis (4) is satisfied as soon as $N^{l_1} \geq 2^{l_0/k}$, so that Lemma 2.1 implies that

$$\sum_{(n_1,\ldots,n_k)\in S_1\times\cdots\times S_k}\psi((n_1\cdots n_k)^{1/k}\pm\Delta)$$

$$\ll \sum_{n_1\in S_1}n_k^{\frac{(k-1)l_0}{k\{1+(k-1)l_0\}}}N^{\frac{(k-1)\{l_0(k-1-1/k)+1-l_1\}}{1+(k-1)l_0}}\ll N^{1+\frac{(k-1)\{(k-1)l_0+1-l_1\}}{1+(k-1)l_0}}$$

and the desired result follows by using the (k-1)-dimensional exponent pair

$$(l_0, l_1) = \left(\frac{3k - 2}{2(3k^2 + k + 4)}, \frac{3k - 1}{3k^2 + k + 4}\right)$$

of Corollary 2.3. ■

Now Theorem 1.1 follows at once from Corollary 2.4 and (3).

Acknowledgments. I am indebted to Dr. Wenguang Zhai for translating his paper [10] into English for me. I also express my gratitude to the referee for his careful reading of the manuscript.

References

[1] E. Bombieri and H. Iwaniec, On the order of $\zeta(\frac{1}{2} + it)$, Ann. Scuola Norm. Sup. Pisa 13 (1986), 449–472.

- [2] M. Filaseta and O. Trifonov, The distribution of fractional parts with application to gap results in number theory, Proc. London Math. Soc. 73 (1996), 241–278.
- [3] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311–333.
- [4] M. N. Huxley et P. Sargos, Points entiers au voisinage d'une courbe plane de classe Cⁿ, Acta Arith. 69 (1995), 359–366.
- [5] H. Iwaniec and A. Sárközy, On a multiplicative hybrid problem, J. Number Theory 26 (1987), 89–95.
- [6] G. Kolesnik, On the estimation of multiple exponential sums, in: Recent Progress in Analytic Number Theory (Durham, 1979), Vol. 1, Academic Press, 1981, 231–246.
- [7] P. Sargos and J. Wu, Multiple exponential sums with monomials and their applications in number theory, Acta Math. Hungar. 87 (2000), 333–354.
- [8] B. R. Srinivasan, The lattice point problem of many-dimensional hyperboloids III, Math. Ann. 160 (1965), 280–311.
- [9] W.-G. Zhai, On a multiplicative hybrid problem, Acta Arith. 71 (1995), 47–53.
- [10] —, On a multiplicative hybrid problem II, J. Shandong Univ. Nat. Sci. Ed. 31 (1996), 164–166.

2 allée de la combe 43000 Aiguilhe, France E-mail: borde43@wanadoo.fr

Received on 22.4.2008 (5692)