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1. Background. Dedekind sums are classical objects of study intro-
duced by Richard Dedekind in the 19th century in his study of the η-function
[Ded53]. Among many other areas of mathematics, Dedekind sums appear
in: geometry (lattice point enumeration in polytopes [BR07]), topology (sig-
nature defects of manifolds [HZ74]) and algorithmic complexity (pseudo-
random number generators [Knu98]). To define the Dedekind sums, let

((x)) =

{
x− bxc − 1/2 if x ∈ R \ Z,

0 if x ∈ Z.

Then the Dedekind sum s(a, b) for a, b ∈ N coprime is defined by

s(a, b) =
b∑

k=1

((
ak

b

))((
k

b

))
.

Recently, Jabuka et al. [JRW11] raise the question of when two Dedekind
sums s(a1, b) and s(a2, b) are equal. In the same paper, they prove the nec-
essary condition b | (a1a2 − 1)(a1 − a2). Girstmair [Gir14] shows that this
condition is equivalent to 12s(a1, b) − 12s(a2, b) ∈ Z. In [Tsu14], necessary
and sufficient conditions for 12s(a1, b)− 12s(a2, b) ∈ 2Z, 4Z are given.

In this note we give necessary and sufficient conditions for 12s(a1, b) −
12s(a2, b) ∈ 8Z by using a generalization of Zolotarev’s classical lemma
relating the Jacobi symbol to the sign of a special permutation (1) due to
Lerch [Ler96]. Along the way, we resolve a conjecture of Girstmair [Gir15]
about the alternating sum of partial quotients modulo 4.
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(1) The motivation behind Zolotarev’s work was to produce a proof of the law of
quadratic reciprocity.
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2. Preliminaries. Let π(a,b) ∈ Aut(Z/bZ), π(a,b) : x 7→ ax. Let [x]b =
x − bbx/bc be the function taking x ∈ Z/bZ to its smallest nonnegative
representative. We view π(a,b) as a permutation of {0, 1, . . . , b − 1} given
by

π(a,b) =

(
0 1 · · · b− 1

[π(0)] [π(1)] · · · [π(b− 1)]

)
=

(
0 1 · · · b− 1

0 [a]b · · · [(b− 1)a]b

)
.

The precedent for doing so is already present in the work of Zolotarev, in
which he relates the sign of π(a,b) to the Jacobi symbol

(
a
b

)
and obtains a

proof of the law of quadratic reciprocity (see, e.g., [RG72, p. 38]). Let I(a, b)
denote the number of inversions of π(a,b).

Theorem 2.1 (Zolotarev). For odd b and (a, b) = 1,

(−1)I(a,b) =

(
a

b

)
.

The following result shows that the inversions of π(a,b) and Dedekind
sums are closely related.

Theorem 2.2 (Meyer, [Mey57]). The number of inversions I(a, b) of
π(a,b) is equal to

I(a, b) = −3bs(a, b) + 1
4(b− 1)(b− 2),

where s(a, b) is the Dedekind sum.

From the reciprocity law of Dedekind sums, one obtains a reciprocity
law for inversions.

Theorem 2.3 (Salié, [Mey57, p. 163]). For all coprime a, b ∈ N,

4aI(a, b) + 4bI(b, a) = (a− 1)(b− 1)(a+ b− 1).(2.1)

Let a and b be positive integers, a < b. Consider the regular continued
fraction expansion

a

b
= [0, a1, . . . , an],

where all digits a1, . . . , an are positive integers. We assume that n is odd (2).
We will be interested in

T (a, b) =
n∑

j=1

(−1)j−1aj and D(a, b) =
n∑

j=1

aj .

With this notation, we have:

(2) If n is even, we can consider [0, a1, . . . , an−1, an − 1, 1] instead.
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Theorem 2.4 (Barkan–Hickerson–Knuth formula). Let a, b ∈ N be co-
prime and let a∗a ≡ 1 (mod b) with 0 < a∗ < b. Then

12s(a, b) = T (a, b) +
a+ a∗

b
− 3.

In [Ler96], Lerch improves upon Zolotarev’s lemma by determining the
parity of I(a, b) when b is even:

Theorem 2.5 (Lerch).

I(a, b) ≡
{(

1−
(
a
b

))
/2 (mod 2) if b is odd,

(a− 1)(b+ a− 1)/4 (mod 2) if b is even.

Proof. We assume that b is even, as the result for b odd follows from
Theorem 2.1. Reducing equality (2.1) modulo 8 and using the assumption
that b is even yields

4aI(a, b) ≡ (a− 1)(b− 1)(a+ b− 1) (mod 8).

Since a− 1 and a+ b− 1 are even,

aI(a, b) ≡ (b− 1)
(a− 1)(b+ a− 1)

4
(mod 2),

from which the claim follows.

For further generalizations of Zolotarev’s lemma, see [BC14].

3. Main results. As a consequence of Theorem 2.5, we are able to show
the following necessary and sufficient conditions for equality of Dedekind
sums modulo 8Z.

Theorem 3.1. Let a1, a2 ∈ N be relatively prime to b ∈ N. The following
are equivalent:

(a) I(a1, b) ≡ I(a2, b) (mod 2b).
(b) 3s(a1, b)− 3s(a2, b) ∈ 2Z.
(c) Define

µ(a, b) =

{(
1−

(
a
b

))
/2 if b is odd,

(a− 1)(b+ a− 1)/4 if b is even.

Then

(a1− a2)(b− 1)(b+ a1a2− 1) ≡ 4b(a2µ(b, a1)− a1µ(b, a2)) (mod 8b).

We also determine T (a, b) modulo 8:

Theorem 3.2. Let a, b ∈ N be coprime. Then

(3.1) bT (a, b) ≡ −4µ(a, b) + b2 + 2− a− a∗ (mod 8).

Reducing further modulo 4 and modulo 2 resolves a conjecture of Girst-
mair [Gir15].
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4. Proofs and examples

Proof of Theorem 3.1. The equivalence of (a) and (b) follows from The-
orem 2.2. Reducing equation (2.1) of Theorem 2.3 modulo 8b and using
Theorem 2.5 yields

4aI(a, b) + 4bµ(b, a) ≡ (a− 1)(b− 1)(a+ b− 1) (mod 8b).

That Theorem 3.1 is not a sufficient condition for the equality of two
Dedekind sums is demonstrated in the following example.

Example 4.1. Take a1 = 1, a2 = 15 and b = 49. Then(
b

a1

)
= 1,

(
b

a2

)
= 1.

We have

(a1 − a2)(b− 1)(b+ a1a2 − 1) = −42336 = 108 · 8 · 49 ≡ 0 (mod 8b).

Thus we expect 3s(a1, b)− 3s(a2, b) ∈ 2Z. Indeed,

s(a1, b) =
188

49
, s(a2, b) = − 8

49
,

so that
3s(a1, b)− 3s(a2, b) = 12.

Equality does not hold.

Proof of Theorem 3.2. By Theorems 2.2 and 2.4, we have

bT (a, b) = 12bs(a, b)− a− a∗ + 3b = −4I(a, b) + b2 + 2− a− a∗.
Reducing modulo 8 and using Theorem 2.5 leads to

bT (a, b) ≡ −4µ(a, b) + b2 + 2− a− a∗ (mod 8).

Let k ∈ Z satisfy aa∗ = 1 + kb. In [Gir15], Girstmair conjectures that if
a ≡ a∗ ≡ 0 (mod 2), then:

(i) If a or a∗ is ≡ 2 (mod 4), then T (a, b) ≡ (b− k)/2 (mod 4).
(ii) If a and a∗ are both ≡ 0 (mod 4), then T (a, b) ≡ (k− b)/2 (mod 4).

(iii) If a and a∗ are both ≡ 0 (mod 4), then D(a, b) is odd.

We now show how this follows from Theorem 3.2. Reducing congruence (3.1)
modulo 4 gives

bT (a, b) ≡ b2 + 2− a− a∗ (mod 4).

Assume first that a ≡ a∗ ≡ 0 (mod 4). Then

bT (a, b) ≡ b2 + 2 ≡ −1 (mod 4) ⇒ T (a, b) ≡ −b−1 ≡ −b (mod 4).

On the other hand,

1 + kb ≡ 0 (mod 8) ⇒ k ≡ −b (mod 8).

This proves (ii). As Girstmair notes, part (iii) follows from (ii).
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Next we show (i). It suffices to prove the result when a ≡ 2 (mod 4),
since T (a, b) = T (a∗, b). We have

bT (a, b) ≡ 1− a∗ (mod 4) ⇒ T (a, b) ≡ b−1(1− a∗) ≡ b(1− a∗) (mod 4).

On the other hand,

b− k
2
≡ b− b−1(aa∗ − 1)

2
≡ b− baa∗

2
≡ b− ba

(
a∗

2

)
≡ b− ba∗ (mod 4),

completing the proof.

This, together with the results in [Gir15], determines T (a, b) and D(a, b)
in all cases.

Acknowledgements. The author would like to thank Kurt Girstmair
and Pete Clark for helpful comments and bibliographic references.

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE 1106400.
Any opinion, findings, and conclusions or recommendations expressed in this
material are those of the authors(s) and do not necessarily reflect the views
of the National Science Foundation.

References

[BR07] M. Beck and S. Robins, Computing the Continuous Discretely. Integer-Point
Enumeration in Polyhedra, Undergrad. Texts Math., Springer, New York, 2007.

[BC14] A. Brunyate and P. L. Clark, Extending the Zolotarev–Frobenius approach to
quadratic reciprocity, Ramanujan J. 37 (2015), 25–50.
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