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1. Introduction. A heuristic application of the Hardy–Littlewood (cir-
cle) method suggests that the set of integers represented as the sum of three
cubes of natural numbers should have positive density. Although intense ef-
fort over the past 75 years has delivered a reasonable approximation to this
expectation, an unconditional proof remains elusive. However, each phase of
progress has been accompanied by technological advances of value elsewhere
in applications of the circle method, and so even modest advances remain of
interest. The most recent progress [26] hinges on an extension of Vaughan’s
method [21] utilising smooth numbers, in which fractional moments of ex-
ponential sums are estimated non-trivially. In this paper, we make further
progress on sums of three cubes by exploiting a new mean value estimate
to improve earlier estimates for fractional moments of cubic smooth Weyl
sums. Although these improvements are modest in scale, such estimates
have found many applications (see, for example, [1], [5], [6]), and it seems
reasonable to expect that our new bounds will also be of considerable utility.

We begin with a new lower bound for the number, N(X), of integers not
exceeding X which are the sum of three cubes of natural numbers.

Theorem 1.1. One has N(X)� Xβ, where β = 0.91709477.

Lower bounds for N(X) are at least implicit in work of Hardy and
Littlewood [10] from 1925. By developing methods based on diminishing
ranges and their p-adic variants, Davenport [8] established the lower bound
N(X) � X13/15−ε, subsequently obtaining N(X) � X47/54−ε (see [9]).
Thirty-five years later, Vaughan [19], [20] enhanced these methods, first
proving that N(X) � X8/9−ε, and later that N(X) � X19/21−ε. His
seminal introduction [21] of methods utilising smooth numbers led to the
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lower bound N(X) � X11/12−ε (see also Ringrose [18] for an intermedi-
ate result). The author’s derivation of effective estimates for fractional mo-
ments of smooth Weyl sums [24] first delivered a lower bound of the shape
N(X) � X1−ξ/3−ε, where ξ = 0.24956813 . . . denotes the positive root of
the polynomial ξ3+16ξ2+28ξ−8. Subsequently, the author obtained a sim-
ilar estimate in which ξ = (

√
2833−43)/41 = 0.24941301 . . . (see [26]). With

this value of ξ, one has 1− ξ/3 = 0.91686232 . . . , which should be compared
with the exponent 0.91709477 of Theorem 1.1. Subject to the truth of an
unproved Riemann Hypothesis concerning a certain Hasse–Weil L-function,
meanwhile, one has the conditional estimate N(X) � X1−ε due to Hooley
[13], [14] and Heath-Brown [11].

Theorem 1.1 follows from an estimate for the sixth moment of a certain
smooth Weyl sum. Define the set of R-smooth numbers of size at most P
by

A(P,R) = {n ∈ [1, P ] ∩ Z : p |n and p prime⇒ p ≤ R}.
Then, with e(z) = e2πiz, we introduce the smooth and classical Weyl sums

(1.1) f(α;P,R) =
∑

x∈A(P,R)

e(αx3) and F (α;P ) =
∑

1≤x≤P
e(αx3).

In §7 we establish the mean value estimate contained in the following theo-
rem.

Theorem 1.2. Write δ6 = 0.24871567. Then there exists a positive num-
ber η with the property that, whenever R ≤ P η, one has

(1.2)

1�

0

|F (α;P )2f(α;P,R)4| dα� P 3+δ6 .

For comparison, [26, Theorem 1.2] yields a similar estimate with δ6 =
0.24941301 . . . , whilst the earlier work of Vaughan [21] provides an analogous
sixth moment estimate for f(α;P,R) with associated exponent δ6 = 1/4 + ε
for any ε > 0. Note that in many applications (see [5]–[7]), it is crucial that
(1.2) hold with δ6 < 1/4, hence the significance of Theorem 1.2.

The bound (1.2) leads to improvement in estimates associated with the
unrepresentation theory of Waring’s problem for cubes. Let Es(X) denote
the number of integers not exceeding X which are not the sum of s cubes
of natural numbers. Then the arguments of Brüdern [3] and Kawada and
Wooley [16] lead to the estimates recorded in the following theorem.

Theorem 1.3. Write τ = 2
7

(
1
4 − 0.24871567

)
= 1/2725.15 . . . . Then

E4(X)� X37/42−τ , E5(X)� X5/7−τ , E6(X)� X3/7−2τ .

The aforementioned work of Brüdern [3] yields the bound E4(X) �
X37/42+ε, whilst Kawada and Wooley [16, Theorem 1.4] obtain a conclusion
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similar to that of Theorem 1.3, though with τ slightly smaller than 1/5962.
We will not discuss the (routine) proof of Theorem 1.3 further here, noting
merely that the conclusion of Theorem 1.2 is the key input into the methods
of [3].

We establish Theorem 1.2 as a consequence of estimates for the mean
values

(1.3) Us(P,R) =

1�

0

|f(α;P,R)|s dα,

with 4 ≤ s ≤ 8. The iterative method of [24] obtains a bound for Us(P,R)
in terms of corresponding bounds for Us−2(P,R) and Ut(P,R), wherein t
is a parameter to be chosen with 4

3(s − 2) ≤ t ≤ 2(s − 2). A key player
in determining the strength of these estimates is an exponential sum of the
shape

F̃1(α) =
∑

u∈A(P θR,R)

u>P θ

∑
z1,z2∈A(P,R)
z1≡z2 (modu3)

z1 6=z2

e(αu−3(z31 − z32)),

in which θ is a parameter with 0 ≤ θ ≤ 1/3. This exponential sum is
made awkward to handle by the constraint that the summands z1 and z2 be
smooth. In this paper we estimate the auxiliary integral

1�

0

F̃1(α)|f(α;P 1−θ, R)|s−2 dα

in terms of the mediating mean value

1�

0

|F̃1(α)2f(α;P 1−θ, R)2| dα.

By orthogonality, the latter counts the number of solutions of an underlying
Diophantine equation. By discarding the smoothness constraint implicit in
the sum F̃1(α), much of the strength of the Hardy–Littlewood method may
be preserved in the ensuing minor arc estimate. After preparing an auxiliary
estimate in §2, we analyse this new mean value in §3, and indicate in §4 how
it may be utilised in the method of [24]. Ideas relevant for the estimation
of the mean value Us(P,R) when s = 6, and when s > 6.5, are presented
in §5.

The Keil–Zhao device (see [17, p. 608] and the discussion leading to [27,
equation (3.10)]) enables us in §6 to obtain stronger minor arc estimates for
smooth Weyl sums than available hitherto. When m ⊆ [0, 1), 0 < t ≤ 2 and
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s ≥ 6, this idea delivers an estimate of the shape

�

m

|f(α;P,R)|s+t dα� P t/2
(

sup
α∈m
|F (α;P )|

)t/2 1�

0

|f(α;P,R)|s dα,

in place of

�

m

|f(α;P,R)|s+t dα�
(

sup
α∈m
|f(α;P,R)|

)t 1�
0

|f(α;P,R)|s dα.

The ease with which classical Weyl sums can be estimated on sets of minor
arcs ensures that this device is of utility when s lies between 6 and 8. In
particular, in §7 we explain how to improve [4, Theorem 2], which establishes
that when R is a small enough power of P , then Us(P,R) � P s−3 for
s ≥ 7.691.

Theorem 1.4. Suppose that η > 0 and P is sufficiently large in terms
of η, and further that R ≤ P η. Then, provided that s ≥ 7.5906, one has

1�

0

|f(α;P,R)|s dα� P s−3.

Our estimates for the mean values Us(P,R) depend on those for Ut(P,R)
for appropriate choices of t. In §7, we describe how computations associated
with this complicated iteration were performed, and discuss the extent to
which the computed exponents reflect the sharpest available from this circle
of ideas. These conclusions are summarised in the following theorem.

Theorem 1.5. Let (s, δs, ∆s) be a triple listed in Table 1. Suppose that
η > 0 and P is sufficiently large in terms of η, and further that R ≤ P η.
Then

1�

0

|f(α;P,R)|s dα� P s/2+δs and

1�

0

|f(α;P,R)|s dα� P s−3+∆s .

Exponents may be derived for values of s between those in the table
by linear interpolation using Hölder’s inequality. Values of δs and ∆s com-
puted in §7 have been rounded up, as appropriate, in the final decimal place
recorded.

In this paper, we adopt the convention that whenever ε, P or R appear
in a statement, either implicitly or explicitly, then for each ε > 0, there
exists a positive number η = η(ε) such that the statement holds whenever
R ≤ P η and P is sufficiently large in terms of ε and η. Implicit constants in
Vinogradov’s notation � and � will depend at most on ε and η. Since our
iterative methods involve only a finite number of statements (depending at
most on ε), there is no danger of losing control of implicit constants. Finally,
write ‖θ‖ = miny∈Z |θ − y|.
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Table 1. Associated and permissible exponents for 4 ≤ s ≤ 8

s δs ∆s s δs ∆s

4.0 0.00000000 1.00000000 6.0 0.24871567 0.24871567

4.1 0.00130000 0.95130000 6.1 0.27667792 0.22667792

4.2 0.00495852 0.90495852 6.2 0.30598066 0.20598066

4.3 0.01069296 0.86069296 6.3 0.33718632 0.18718632

4.4 0.01811263 0.81811263 6.4 0.36984515 0.16984515

4.5 0.02685074 0.77685074 6.5 0.40263501 0.15263501

4.6 0.03754195 0.73754195 6.6 0.43542486 0.13542486

4.7 0.04903470 0.69903470 6.7 0.46851012 0.11851012

4.8 0.06130069 0.66130069 6.8 0.50330866 0.10330866

4.9 0.07426685 0.62426685 6.9 0.53863866 0.08863866

5.0 0.08780854 0.58780854 7.0 0.57423853 0.07423853

5.1 0.10328796 0.55328796 7.1 0.61131437 0.06131437

5.2 0.11894874 0.51894874 7.2 0.64881437 0.04881437

5.3 0.13477800 0.48477800 7.3 0.68631437 0.03631437

5.4 0.15076406 0.45076406 7.4 0.72381437 0.02381437

5.5 0.16689626 0.41689626 7.5 0.76131437 0.01131437

5.6 0.18316493 0.38316493 7.6 0.80000000 0.00000000

5.7 0.19954296 0.34954296 7.7 0.85000000 0.00000000

5.8 0.21593386 0.31593386 7.8 0.90000000 0.00000000

5.9 0.23232477 0.28232477 7.9 0.95000000 0.00000000

2. An auxiliary mean value estimate. Before announcing our piv-
otal mean value estimate, we introduce some notation. Let φ be a real num-
ber with 0 ≤ φ ≤ 1/3, and write

(2.1) M = P φ, H = PM−3, Q = PM−1.

Define the exponential sums

F1(α) =
∑

1≤z≤2P

∑
1≤h≤H

∑
M<m≤MR

e(2αh(3z2 + h2m6)),(2.2)

D(α) =
∑

1≤h≤H

∣∣∣ ∑
1≤z≤2P

e(6αhz2)
∣∣∣2,

E(α) =
∑

1≤h≤H

∣∣∣ ∑
M<m≤MR

e(2αh3m6)
∣∣∣2.(2.3)

Also, when B ⊆ [0, 1), we introduce the mean value

(2.4) Υ (P,R;φ;B) =
�

B

|F1(α)2f(α; 2Q,R)2| dα,

and then write Υ (P,R;φ) = Υ (P,R;φ; [0, 1)). We observe that an applica-
tion of Cauchy’s inequality to (2.2) yields the bound |F1(α)|2 ≤ D(α)E(α).
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Consequently, when t ≥ 2, we obtain the estimate

(2.5) Υ (P,R;φ;B) ≤
�

B

(D(α)E(α))2/t |F1(α)|2−4/t|f(α; 2Q,R)|2 dα.

Recall the definition (1.3) of the mean value Us(P,R). We say that an
exponent µs is permissible whenever it has the property that, with the nota-
tional conventions introduced above, one has Us(P,R) � Pµs+ε. It follows
that, for each positive number s, a permissible exponent µs exists with
s/2 ≤ µs ≤ s. We refer to the exponent δs as associated when µs = s/2 + δs
is permissible, and ∆s as admissible when µs = s− 3 +∆s is permissible.

We require a Hardy–Littlewood dissection. Let m denote the set of points
α ∈ [0, 1) with the property that, whenever there exist a ∈ Z and q ∈ N
with (a, q) = 1 and |qα − a| ≤ PQ−3, then one has q > P . Further, let
M = [0, 1) \m.

Lemma 2.1. Suppose that t ≥ 4 and 0 ≤ φ ≤ 1/3. Then whenever δt is
an associated exponent, one has

Υ (P,R;φ;m)� P 1+εMH1+2/tQ1+2δt/t.

Proof. We ultimately work outside the range 0 ≤ φ ≤ 1/7 in which the
estimate

sup
α∈m
|F1(α)| � P ε(PM)1/2H

follows from [21, Lemmata 3.1 and 3.4], and so we engineer a hybrid method
combining elements of the Hardy–Littlewood method with a Diophantine in-
terpretation of auxiliary equations. We begin by applying Hölder’s inequality
to (2.5), obtaining the bound

(2.6) Υ (P,R;φ;m) ≤
(

sup
α∈m

D(α)
)2/t

I
2/t
1 I

1−4/t
2 Ut(2Q,R)2/t,

where Ut(2Q,R) is defined via (1.3), and

(2.7) I1 =

1�

0

E(α)|F1(α)|2 dα, I2 =

1�

0

|F1(α)|2 dα.

The estimates

(2.8) I2 � P 1+εMH and Ut(2Q,R)� Qt/2+δt+ε

follow, respectively, from [21, Lemma 2.3] with j = 1 and the definition of
an associated exponent. Also, given α ∈ [0, 1), we find from [21, Lemma 3.1]
that whenever a ∈ Z and q ∈ N satisfy (a, q) = 1 and |α− a/q| ≤ q−2, then

(2.9) D(α)� P ε
(

P 2H

q +Q3|qα− a|
+ PH + q +Q3|qα− a|

)
.
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By Dirichlet’s theorem on Diophantine approximation, there exist a ∈ Z
and q ∈ N with 0 ≤ a ≤ q ≤ P−1Q3, (a, q) = 1 and |qα− a| ≤ PQ−3. When
α ∈ m, it follows that q > P , and hence we deduce via (2.1) that

(2.10) sup
α∈m

D(α)� P ε(PH + P−1Q3)� P 1+εH.

Finally, by reference to (2.2), (2.3) and (2.7), it follows from orthogonal-
ity that I1 counts the number of integral solutions of the equation

(2.11) h30(n
6
1 − n62) = h1(3z

2
1 + h21m

6
1)− h2(3z22 + h22m

6
2),

with

1 ≤ h0, h1, h2 ≤ H, M < n1, n2,m1,m2 ≤MR, 1 ≤ z1, z2 ≤ 2P.

Let N1 denote the number of solutions of (2.11) counted by I1 in which
n1 = n2, let N2 denote the corresponding number in which h1z

2
1 6= h2z

2
2 ,

and let N3 denote the number with n1 6= n2 and h1z
2
1 = h2z

2
2 . Thus I1 ≤

N1 +N2 +N3.
By orthogonality, it follows from (2.2) and (2.11) with n1 = n2 that

N1 ≤ HMR

1�

0

|F1(α)|2 dα,

and hence we deduce from (2.7) and (2.8) that

(2.12) N1 � P 1+εM2H2.

When h,m,n, z is a solution of (2.11) counted by N2, the integer

L = h30(n
6
1 − n62)− h31m6

1 + h32m
6
2

is non-zero. There are O(H3(MR)4) possible choices for L, and we find from
(2.11) that for each fixed choice one has 3(h1z

2
1−h2z22) = L. With h1 and h2

already fixed, it follows from [23, Lemma 3.5] that the number of possible
choices for z1 and z2 is O((h1h2|L|P )ε). Thus we conclude that

(2.13) N2 � P εH3M4.

Finally, consider a solution h,m,n, z counted by N3. Given h2 and z2,
an elementary estimate for the divisor function shows that the number of
possible choices for h1 and z1 satisfying h1z

2
1 = h2z

2
2 is O((HP )ε). Fix any

one amongst these O((HP )1+ε) possible choices for h1, h2, z1, z2. One finds
from (2.11) that h0,m,n satisfy the equation

(h1m
2
1)

3 − (h2m
2
2)

3 = h30(n
6
1 − n62).

Since n1 6= n2, the right hand side here is non-zero, and likewise the left
hand side. Thus, again applying a divisor function estimate, it follows that
for any one amongst the O((MR)2) possible choices for m1 and m2, there
are O(P ε) possible choices for h0, n1 − n2 and n51 + n41n2 + · · · + n52. We
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deduce that there are just O(P ε) possible choices for h0, n1 and n2, and
thus

(2.14) N3 � P ε(HP )1+ε(MR)2 � P 1+3εHM2.

On combining (2.12)–(2.14), we conclude via (2.1) that

I1 ≤ N1 +N2 +N3 � P ε(PM2H2 +H3M4)� P 1+εM2H2.

Substituting this estimate together with (2.8) and (2.10) into (2.6), we arrive
at the upper bound

Υ (P,R;φ;m)� P ε(PH)2/t(PM2H2)2/t(PMH)1−4/tQ1+2δt/t,

and the conclusion of the lemma follows with a modicum of computation.

We require a complementary major arc estimate.

Lemma 2.2. Suppose that t ≥ 4 and 0 ≤ φ ≤ 1/3. Then whenever δt is
an associated exponent, one has

Υ (P,R;φ;M)� P 1+εMH1+2/tQ1+2δt/t.

Proof. The major arcs M are contained in the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ PQ−3},
with 0 ≤ a ≤ q ≤ P and (a, q) = 1. Define ∆(α) for α ∈ [0, 1) by

∆(α) = (q +Q3|qα− a|)−1

when α ∈M(q, a) ⊆M, and otherwise by setting ∆(α) = 0. Then it follows
from (2.9) that when α ∈M, one has

(2.15) D(α)� P 2+εH∆(α) + P 1+εH.

We apply Hölder’s inequality to (2.5), just as in the treatment of the mean
value Υ (P,R;φ;m) in the proof of Lemma 2.1. Thus, by comparing (2.10)
and (2.15), we obtain

Υ (P,R;φ;M)� P ε
(
PMH1+2/tQ1+2δt/t + (P 2HT )2/tΥ (P,R;φ;M)1−2/t

)
,

where

(2.16) T =
�

M

∆(α)E(α)|f(α; 2Q,R)|2 dα.

Thus we infer that

(2.17) Υ (P,R;φ;M)� P 1+εMH1+2/tQ1+2δt/t + P 2+εHT.

In preparation for the estimation of T , we consider the mean value

T0 =

1�

0

E(α)|f(α; 2Q,R)|2 dα.
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By reference to (2.3), it follows from orthogonality that T0 counts the num-
ber of integral solutions of the equation

2h3(n61 − n62) = x31 − x32,
with 1 ≤ h ≤ H, M < n1, n2 ≤ MR and x1, x2 ∈ A(2Q,R). Here, the
number of diagonal solutions with x1 = x2 and n1 = n2 isO(HMRQ). There
are O(H(MR)2) possible choices for h, n1 and n2 with 2h3(n61 − n62) 6= 0.
For each fixed such choice, an elementary estimate for the divisor function
shows that there are O(Qε) possible choices for x1− x2 and x21 + x1x2 + x22,
hence also for x1 and x2. Then we conclude via (2.1) that

(2.18) T0 � P ε(HMQ+HM2)� P 1+εH.

On recalling (2.3), one finds that

E(α)|f(α; 2Q,R)|2 =
∑
l∈Z

ψ(l)e(lα),

where ψ(l) denotes the number of solutions of the equation

2h3(n61 − n62) + x31 − x32 = l,

with 1 ≤ h ≤ H, M < n1, n2 ≤ MR and x1, x2 ∈ A(2Q,R). In view of
(2.18), one has ψ(0) = T0 � P 1+εH. Moreover,∑

l∈Z
ψ(l) = E(0)f(0; 2Q,R)2 � H(MR)2Q2.

Then by applying [2, Lemma 2] within (2.16), we deduce via (2.1) that

T � Qε−3(P (P 1+εH) +H(MR)2Q2)� P 2ε.

On substituting this estimate into (2.17), we conclude that

Υ (P,R;φ;M)� P 1+εMH1+2/tQ1+2δt/t + P 2+εH.

The proof of the lemma is completed by noting that the relations (2.1)
ensure that the second term on the right hand side here is majorised by the
first.

We finish this section by combining the conclusions of Lemmata 2.1 and
2.2.

Lemma 2.3. Suppose that t ≥ 4 and 0 ≤ φ ≤ 1/3. Then whenever δt is
an associated exponent, one has

1�

0

|F1(α)2f(α; 2Q,R)2| dα� P 1+εMH1+2/tQ1+2δt/t.

Proof. On recalling (2.4), the desired conclusion follows from Lemmata
2.1 and 2.2 by means of the relation

Υ (P,R;φ) = Υ (P,R;φ;M) + Υ (P,R;φ;m).
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3. Further auxiliary mean value estimates. We now introduce no-
tation more closely aligned with the author’s work [24]–[26] on fractional
moments of smooth Weyl sums. We define the modified set of smooth num-
bers B(L, π,R) for prime numbers π by

B(L, π,R) = {n ∈ A(Lπ,R) : n > L, π |n, p |n and p prime ⇒ π ≤ p}.

Recall the notation (2.1). We define the exponential sums

F̃d,e(α;π) =
∑

u∈B(M/d,π,R)

∑
x,y∈A(P/(de),R)
(x,u)=(y,u)=1
x≡y (modu3)

y<x

e(αu−3(x3 − y3)),(3.1)

Fd,e(α) =
∑

1≤z≤2P/(de)

∑
1≤h≤Hd2/e

∑
M/d<u≤MR/d

e(2αh(3z2 + h2m6))(3.2)

and

(3.3) f̃(α;P,M,R) = max
m>M

∣∣∣ ∑
x∈A(P/m,R)

e(αx3)
∣∣∣.

Note here that Fd,e(α) = 0 whenever e > Hd2. Finally, we set

(3.4) Υd,e,π(P,R;φ) =

1�

0

|F̃d,e(α;π)2f̃(α;P/(de),M/d, π)2| dα.

We begin by demystifying the mean value Υd,e,π(P,R;φ).

Lemma 3.1. When π ≤ R, one has

Υd,e,π(P,R;φ)� P ε
1�

0

|Fd,e(α)2f(α; 2Q/e,R)2| dα.

Proof. We first eliminate the maximal aspect underlying the exponential
sum f̃(α;P/(de),M/d, π) implicit in Υd,e,π(P,R;φ). Define

DK(θ) =
∑
|m|≤K3

e(mθ) and D∗K(θ) = min{2K3 + 1, ‖θ‖−1},

and note that for K ≥ 1 one has

(3.5)

1�

0

D∗K(θ) dθ � log(2K).

On recalling (2.1), we find that whenever m > M , then one has∑
x∈A(P/m,R)

e(αx3) =

1�

0

f(α+ θ;Q,R)DP/m(θ) dθ.
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Since DP/m(θ) � D∗P/m(θ) ≤ D∗Q(θ) for m > M , we thus infer from (3.3)

that

(3.6) f̃(α;P/(de),M/d, π)�
1�

0

|f(α+ θ;Q/e, π)|D∗Q(θ) dθ.

On substituting (3.6) into (3.4), we deduce that

Υd,e,π(P,R;φ)�
�

[0,1)3

|F̃d,e(α;π)2fθ1(α)fθ2(α)|D∗Q(θ1)D∗Q(θ2) dθ1 dθ2 dα,

where, temporarily, we abbreviate f(α+ θ;Q/e, π) to fθ(α). Write

(3.7) Ξd,e,π(θ) =

1�

0

|F̃d,e(α;π)2f(α+ θ;Q/e, π)2| dα.

Then by applying the inequality |z1z2| ≤ |z1|2+|z2|2 and invoking symmetry,
we infer via (3.5) that

Υd,e,π(P,R;φ)�
1�

0

Ξd,e,π(θ1)D∗Q(θ1) dθ1

1�

0

D∗Q(θ2) dθ2(3.8)

� Qε
1�

0

Ξd,e,π(θ1)D∗Q(θ1) dθ1.

Consider next the integral solutions of the equation

(3.9) u−31 (x31 − y31)− u−32 (x32 − y32) = w3
1 − w3

2

with, for i = 1 and 2, the constraints

wi ∈ A(Q/e, π), ui ∈ B(M/d, π,R), xi, yi ∈ A(P/(de), R),

(xi, ui) = (yi, ui) = 1, xi ≡ yi (mod u3i ), yi < xi.

Then by orthogonality, it follows from (3.1) and (3.7) that the mean value
Ξd,e,π(θ) counts the number of such solutions, with each solution counted
with weight e(θ(w3

2 − w3
1)). The latter weight being unimodular, it follows

that |Ξd,e,π(θ)| is bounded above by the corresponding number of unweighted
solutions, and hence by the number of integral solutions of the equation (3.9)
with, for i = 1 and 2, the constraints

wi ∈ A(Q/e,R), M/d < ui ≤MR/d,

1 ≤ yi < xi ≤ P/(de), xi ≡ yi (mod u3i ).

We now substitute zi = xi + yi and hi = (xi− yi)u−3i (i = 1, 2) into (3.9). It
follows that 1 ≤ hi ≤ (P/(de))(M/d)−3 for i = 1 and 2. Moreover, we have
2xi = zi + hiu

3
i and 2yi = zi − hiu3i (i = 1, 2). Then on noting that

u−3((z + hu3)3 − (z − hu3)3) = 2h(3z2 + h2u6),
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and recalling (2.1), we see that |Ξd,e,π(θ)| is bounded above by the number
of integral solutions of the equation

2h1(3z
2
1 + h21u

6
1)− 2h2(3z

2
2 + h22u

6
2) = w3

1 − w3
2

with, for i = 1 and 2,

wi ∈ A(2Q/e,R), M/d < ui ≤MR/d,

1 ≤ zi ≤ 2P/(de), 1 ≤ hi ≤ Hd2/e.

Then on recalling (3.2), it follows by orthogonality that

|Ξd,e,π(θ)| ≤
1�

0

|Fd,e(α)2f(α; 2Q/e,R)2| dα.

On substituting this estimate into (3.8), we conclude that

Υd,e,π(P,R;φ)� Qε
( 1�

0

D∗Q(θ) dθ
) 1�

0

|Fd,e(α)2f(α; 2Q/e,R)2| dα.

The conclusion of the lemma now follows on applying the bound (3.5).

Lemma 3.2. Suppose that

π ≤ R, 1 ≤ d ≤M, 1 ≤ e ≤ min{Q,Hd2}, 0 ≤ φ ≤ 1/3.

Then, whenever t ≥ 4 and δt is an associated exponent, one has

Υd,e,π(P,R;φ)� d4/te−3−2/tP 1+εMH1+2/tQ1+2δt/t.

Proof. A comparison of (2.2) and (3.2) reveals that, as a consequence of
Lemma 2.3 in combination with (2.1), whenever t ≥ 4 and M3 ≤ P , one has

(3.10)

1�

0

|F1,1(α)2f(α; 2Q,R)2| dα� P 1+εMH1+2/tQ1+2δt/t.

We apply this conclusion with P/(de) in place of P and M/d in place of M .
In view of the relations (2.1), we also have Hd2/e in place of H and Q/e in
place of Q. The hypotheses of the lemma concerning e and φ then ensure
that

(M/d)3(P/(de))−1 = e/(Hd2) ≤ 1,

whence (M/d)3 ≤ P/(de), confirming the validity of the estimate (3.10)
with these substitutions. Hence we obtain the bound
1�

0

|Fd,e(α)2f(α; 2Q/e,R)2| dα�
(
P

de

)1+ε(M
d

)(
Hd2

e

)1+2/t(Q
e

)1+2δt/t

� d4/te−3−2/t−2δt/tP 1+εMH1+2/tQ1+2δt/t.
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Since Lemma 3.1 establishes the relation

Υd,e,π(P,R;φ)� P ε
1�

0

|Fd,e(α)2f(α; 2Q/e,R)2| dα,

the conclusion of the lemma follows on noting that δt ≥ 0.

We also have need of estimates for the mean values

(3.11) Λ
(m)
d,e,π(P,R;φ) =

1�

0

|F̃d,e(α;π)|2m dα (m = 1, 2).

Lemma 3.3. When 1 ≤ d ≤ M , 1 ≤ e ≤ min{Q,Hd2} and π ≤ R, one
has

Λ
(1)
d,e,π(P,R;φ)� P 1+εHMe−2 and Λ

(2)
d,e,π(P,R;φ)� P 2+εH3M4e−5.

Proof. These estimates are given by [24, equations (3.25) and (3.26)].

Finally, we recall an estimate for the mean value

(3.12) Ũs(P,M,R) =

1�

0

f̃(α;P,M,R)s dα.

Lemma 3.4. Suppose that s > 1 and δs is an associated exponent. Then
whenever P > M and R > 2, one has Ũs(P,M,R)�s (P/M)s/2+δs+ε.

Proof. This is immediate from [24, Lemma 3.2].

4. New associated exponents, I: 4 ≤ s ≤ 6.5. We now convert the
mean value estimates of §2 into new associated exponents by means of the
ideas of [24, §§2–4]. Write

(4.1) Ωd,e,π(P,R;φ) =

1�

0

|F̃d,e(α;π)f̃(α;P/(de),M/d, π)s−2| dα,

and then set

(4.2) Us(P,R) =
∑

1≤d≤D

∑
π≤R

∑
1≤e≤Q

d2−s/2es/2−1Ωd,e,π(P,R;φ).

The relevant results from [24] are summarised in the following lemma.

Lemma 4.1. Suppose that s > 4 and 0 < φ ≤ 1/3. Then whenever µs−2
and µs are permissible exponents, and 1 ≤ D ≤ P 1/3, one has

Us(P,R)� Pµs+εDs/2−µs +MP 1+µs−2+ε + P

(
s−3
s−2

)
µs+εVs(P,R),

where

Vs(P,R) =
(
PM s−2Qµs−2 +M s−3Us(P,R)

)1/(s−2)
.
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Proof. The desired result follows at once on substituting the conclusion
of [24, Lemma 3.3] into that of [24, Lemma 2.3].

We are now equipped to announce our new associated exponents.

Lemma 4.2. Suppose that s ≥ 4 and 0 ≤ γ ≤ 1/4, and let t satisfy

(4.3)
2s− 6 + 8γ

1 + 2γ
≤ t ≤ 2s− 4

1 + 2γ
.

Suppose that δs−2 and δt are associated exponents, and define

(4.4) θ0 =
2s− 4− t+ 2(s− 2)δt − 2tδs−2

6s− 12 + t− 4γt+ 2(s− 2)δt − 2tδs−2
.

Then the exponent δs = δs−2(1−θ)+ 1
2(s−2)θ is associated, where we write

θ = max{0,min{θ0, 1/3}}.
Proof. We begin by estimating the mean value Ωd,e,π(P,R;φ). Suppose

that
d ≤M, e ≤ min{Q,Hd2}, π ≤ R, 0 ≤ φ ≤ 1/3.

Then on recalling (3.4), (3.11) and (3.12), an application of Hölder’s in-
equality to (4.1) yields the bound

Ωd,e,π(P,R;φ) ≤ Υd,e,π(P,R;φ)γ1Ũt(P/(de),M/d, π)γ2(4.5)

× Λ(1)
d,e,π(P,R;φ)γ3Λ

(2)
d,e,π(P,R;φ)γ ,

where

γ1 = 1
4(2s− 4− t− 2tγ), γ2 = (s− 2− 2γ1)/t, γ3 = 1

2 − γ1 − 2γ.

A few words are in order to confirm that the above is indeed a valid
application of Hölder’s inequality. Observe first that the hypotheses s > 4
and 0 ≤ γ ≤ 1/4, together with those concerning the value t, ensure that

2s− 6 + 8γ ≤ t(1 + 2γ) ≤ 2s− 4,

so that

0 ≤ γ1 ≤ 1
4

(
(2s− 4)− (2s− 6 + 8γ)

)
= 1

2(1− 4γ) ≤ 1.

Hence we deduce that

0 = 1
2 −

1
2(1− 4γ)− 2γ ≤ γ3 ≤ 1

2 − 2γ < 1.

Also, since s ≥ 4 and γ1 ≤ 1
2(1− 4γ), one finds that

γ2 ≥ (s− 3 + 4γ)/t > 0.

Moreover, since t ≥ (2s− 6 + 8γ)/(1 + 2γ), we have

(1 + 2γ)(s− 2− 2γ1 − t) ≤ 4− s− 2γ1 − γ(12 + 4γ1 − 2s).

When 4 ≤ s ≤ 6, we therefore deduce that

t(1 + 2γ)(γ2 − 1) ≤ 4− s− 2γ1 ≤ 0,
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and when s > 6 we see instead that

t(1 + 2γ)(γ2 − 1) ≤ 4− s− 2γ1 + 1
4(2s− 12) ≤ 1− 1

2s ≤ 0.

Thus, in all circumstances, one has 0 ≤ γ2 ≤ 1. Finally, the relations

(4.6) γ + γ1 + γ2 + γ3 = 1, 4γ + 2γ1 + 2γ3 = 1, 2γ1 + tγ2 = s− 2

follow by direct computation.

By applying Lemmata 3.2–3.4, we deduce from (4.5) that

Ωd,e,π(P,R;φ)� P ε(d4/te−3−2/tPMH1+2/tQ1+2δt/t)γ1

× (PMHe−2)γ3(P 2M4H3e−5)γ((Q/e)t/2+δt)γ2 .

Thus, by making use of the relations (4.6) and

t ≥ 2, γ1 ≤ 1
2 , 3γ1 + 1

2 tγ2 + 2γ3 + 5γ ≥ 1
2s, 2γ1 + tγ = s− 2− 1

2 t,

we deduce that

(4.7) Ωd,e,π(P,R;φ)� de−s/2P 1/2+εM1/2+2γH(s−2)/tQs/2−1+(s−2)δt/t.

When e > Hd2, one has Fd,e(α) = 0, and hence Ωd,e,π(P,R;φ) = 0.
Thus, on substituting (4.7) into (4.2), we discern that

Us(P,R)� P 1/2+εM1/2+2γH(s−2)/tQs/2−1+(s−2)δt/tΣ0,

where

Σ0 =
∑

1≤d≤D

∑
π≤R

∑
1≤e≤min{Q,Hd2}

d3−s/2e−1.

We therefore conclude that

Us(P,R)� D2P 1/2+2εM1/2+2γH(s−2)/tQs/2−1+(s−2)δt/t.

In the notation of Lemma 4.1, therefore, we have

Vs(P,R)s−2 � P εM s−3(Ψ1 +D2Ψ2),

where

Ψ1 = PMQµs−2 and Ψ2 = P 1/2M1/2+2γH(s−2)/tQs/2−1+(s−2)δt/t.

On recalling (2.1) and the definition of an associated exponent, the equation
Ψ1 = Ψ2 implicitly determines a linear equation for φ, namely

1 + φ+

(
1

2
(s− 2) + δs−2

)
(1− φ)

=
1

2
+

(
1

2
+ 2γ

)
φ+

(
s− 2

t

)
(1− 3φ) +

(
1

2
(s− 2) +

(
s− 2

t

)
δt

)
(1− φ).

A modicum of computation reveals that this equation has solution φ = θ0,
where θ0 is given by (4.4). Let D = Pω, where ω is any sufficiently small,
but fixed, positive number. Then we may follow the discussion of [24, §4] to
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confirm via Lemma 4.1 that whenever µs−2 = 1
2(s−2)+δs−2 and µt = 1

2 t+δt
are permissible exponents, then so too is

µs = µs−2(1− θ) + 1 + (s− 2)θ.

It follows that the exponent δs = δs−2(1− θ) + 1
2(s− 2)θ is associated.

We highlight three special cases of Lemma 4.2 for future use.

Corollary 4.3. Suppose that 4 < s ≤ 5. Then whenever δ2s−4 ≤ 2 is
an associated exponent, so too is δs = 1

2(s− 2)θ, where

θ =
δ2s−4

4 + δ2s−4
.

Proof. We take γ = 0 and t = 2s − 4, so that γ and t satisfy (4.3). It
follows from Hua’s lemma [22, Lemma 2.5] that

1�

0

|f(α;Q,R)|4 dα� Q2+ε,

and hence one may take δu = 0 for 0 < u ≤ 4. With these choices of s, γ
and t, one finds that δs−2 = 0, and hence (4.4) gives

θ0 =
2(s− 2)δt

8s− 16 + 2(s− 2)δt
=

δ2s−4
4 + δ2s−4

.

But 0 ≤ δ2s−4 ≤ 2, and hence 0 ≤ θ0 ≤ 1/3. The conclusion of the corollary
is now immediate from Lemma 4.2.

Corollary 4.4. Suppose that 5 ≤ s ≤ 6. Then whenever δ6 ≤ 3/2 is
an associated exponent, so too is δs = 1

2(s− 2)θ, where

θ =
s− 5 + (s− 2)δ6
3s− 3 + (s− 2)δ6

.

Proof. We take γ = 0 and t = 6, so that s, γ and t satisfy (4.3). We
again have δu = 0 for 0 < u ≤ 4, and hence δs−2 = 0. Thus (4.4) gives

θ0 =
2s− 10 + 2(s− 2)δ6
6s− 6 + 2(s− 2)δ6

=
s− 5 + (s− 2)δ6
3s− 3 + (s− 2)δ6

.

But by hypothesis, one has 0 ≤ δ6 ≤ 3/2 and 5 ≤ s ≤ 6, and hence

0 ≤ θ0 ≤
1 + 4δ6
15 + 4δ6

≤ 1

3
.

The conclusion of the corollary therefore follows from Lemma 4.2.

Corollary 4.5. Suppose that 6 ≤ s ≤ 13/2. Then whenever δs−2 ≤
δ6 ≤ 1/2 is an associated exponent, so too is δs = δs−2(1 − θ) + 1

2(s − 2)θ,
where

θ =
s− 5 + (s− 2)δ6 − 6δs−2

33− 3s+ (s− 2)δ6 − 6δs−2
.
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Proof. We take γ = 1
2(s − 6), so that when 6 ≤ s ≤ 13/2, one has

0 ≤ γ ≤ 1/4, and in addition

2s− 6 + 8γ

1 + 2γ
= 6 and

2s− 4

1 + 2γ
= 2 +

6

s− 5
≥ 6.

We are therefore entitled to apply Lemma 4.2 with t = 6, in which case

θ0 =
2s− 10 + 2(s− 2)δ6 − 12δs−2

6s− 6− 12(s− 6) + 2(s− 2)δ6 − 12δs−2

=
s− 5 + (s− 2)δ6 − 6δs−2

33− 3s+ (s− 2)δ6 − 6δs−2
.

By hypothesis, we have 6 ≤ s ≤ 13/2 and δs−2 ≤ δ6 ≤ 1/2, and hence

θ0 ≥
s− 5− 2δ6

2s+ 3 + (s− 2)δ6 − 6δs−2
≥ s− 6

2s+ 3 + (s− 2)δ6 − 6δs−2
≥ 0,

and

θ0 ≤
s− 5 + 9

2δ6

13− 2δ6
≤

3
2 + 9

4

12
<

1

3
.

The conclusion of the corollary therefore follows from Lemma 4.2.

5. New associated exponents, II: s = 6 and 6.5 < s ≤ 8. We
turn next to methods yielding associated exponents when s = 6, and when
s > 6.5, beginning with one generalising that of [26, Lemma 2.2].

Lemma 5.1. Let t be a real number with 4 < t ≤ 8. Then whenever
δ6 ≤ 2/3 and δt ≤ 1

6(t− 4) are associated exponents, then so too is

(5.1) δ′6 = 2 max

{
8− t+ 8δt
24 + t+ 8δt

,
δ6

4 + δ6

}
.

Moreover,

(5.2)

1�

0

|F (α;P )2f(α;P,R)4| dα� P 3+δ′6+ε.

Proof. On considering the Diophantine equation underlying (1.3), one
sees that

U6(P,R)�
1�

0

|F (α;P )2f(α;P,R)4| dα.

Consequently, the confirmation of the estimate (5.2) suffices to establish
that the exponent δ′6 defined in (5.1) is associated. We set

φ = max

{
8− t+ 8δt
24 + t+ 8δt

,
δ6

4 + δ6

}
.
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Our hypotheses concerning t, δt and δ6 ensure that

8− t+ 8δt
24 + t+ 8δt

≤
8− t+ 4

3(t− 4)

24 + t+ 4
3(t− 4)

=
8 + t

56 + 7t
=

1

7
,

δ6
4 + δ6

≤ 2/3

4 + 2/3
=

1

7
,

so that 0 ≤ φ ≤ 1/7. Recall the definitions (2.1) and (2.2), and define m and
M as in the preamble to Lemma 2.1. Also, when B ⊆ [0, 1), define

(5.3) I(B) =
�

B

|F1(α)f(α; 2Q,R)4| dα.

Then [24, inequality (5.3)] yields the estimate

(5.4)

1�

0

|F (α;P )2f(α;P,R)4| dα� P εM3
(
PMQ2 + I([0, 1))

)
.

We begin with a discussion of the minor arc contribution I(m). By ap-
plying Hölder’s inequality to (5.3), one obtains

(5.5) I(m)� Ut(2Q,R)4/t
( �
m

|F1(α)|t/(t−4) dα
)1−4/t

.

Since we may assume that δt is an associated exponent, we have

Ut(2Q,R)� Qt/2+δt+ε.

Also, on recalling that 0 ≤ φ ≤ 1/7, it follows from [24, inequality (5.4)]
together with the argument of the proof of [21, Lemma 3.7] that

�

m

|F1(α)|t/(t−4) dα ≤
(

sup
α∈m
|F1(α)|

)8−t
t−4

1�

0

|F1(α)|2 dα

� P ε
(

(PM)1/2H
)8−t
t−4

PMH.

Thus we deduce from (5.5) that

(5.6) I(m)� P ε(PM)1/2H4/tQ2+4δt/t.

In order to estimate I(M), we have merely to follow the argument leading
to [26, equation (2.10)]. Thus, again making use of the fact that 0 ≤ φ ≤ 1/7,
the estimate preceding [26, equation (2.10)] gives

I(M)� P 1+εHM(PQ−2)2/3(Q5)1/3(5.7)

+ P 1+εHM1/2(PQ−2)1/2(Q3+δ6)1/2

� P 1+εHMQ
(
(PQ−1)2/3 + (P (QM)−1)1/2Qδ6/2

)
.

By combining (5.6) and (5.7), we obtain an estimate for I([0, 1)). By sub-
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stituting this into (5.4) and recalling (2.1), we deduce that

1�

0

|F (α;P )2f(α;P,R)4| dα� P 3+εM2(1 + Φ1 + Φ2 + Φ3),

where

Φ1 = (PM)−1/2H4/tQ4δt/t, Φ2 = M−4/3, Φ3 = M−2Qδ6/2.

In view of (2.1), one finds that the respective conditions

φ ≥ 8− t+ 8δt
24 + t+ 8δt

and φ ≥ δ6
4 + δ6

ensure that Φ1 ≤ 1 and Φ3 ≤ 1. Thus, our choice of φ ensures that

1�

0

|F (α;P )2f(α;P,R)4| dα� P 3+εM2 = P 3+2φ+ε,

confirming the estimate (5.2) and completing the proof of the lemma.

We also recall an estimate for associated exponents δs of use for s > 13/2.

Lemma 5.2. Suppose s > 4. Then whenever δs−2 ≤ 1/4 and δ4(s−2)/3 ≤ 1

are associated exponents, so too is δs = δs−2(1− θ) + 1
2(s− 2)θ, where

θ =
1 + 3δ4(s−2)/3 − 4δs−2

9 + 3δ4(s−2)/3 − 4δs−2
.

Proof. This is immediate from [1, Corollary to Lemma 2].

Finally, we recall a simple consequence of convexity.

Lemma 5.3 ([4, Lemma 4.3]). Suppose s > 2 and t < s. Then, whenever
δs−t and δs+t are associated exponents, so too is δs = 1

2(δs+t + δs−t).

6. The Keil–Zhao device. Lilu Zhao [27, equation (3.10)] has ob-
served that, in wide generality, one may obtain an estimate of Weyl type
for an exponential sum over an arbitrary set, provided this sum inhabits
an appropriate mean value. The same idea is applied also in independent
work of Keil [17, p. 608]. This observation is useful in obtaining permissible
exponents µs when s > 6. Before announcing our conclusions, we introduce
some notation useful in their proofs. Write

(6.1) g(α;P,R) =
∑

x∈A(P,R)
x>P/2

e(αx3) and G(α) =
∑

P/2<x≤P

e(αx3).

Lemma 6.1. Suppose that s ≥ 6 and the exponent ∆s is admissible. Sup-
pose also that 1

16(8−s) ≤ ∆s ≤ 1/4 and u>s+8∆s. Then there exist positive
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numbers η and c, depending at most on u, with the following property. When-
ever P is sufficiently large in terms of η, and exp(c(log logP )2) ≤ R ≤ P η,
then

(6.2)

1�

0

|f(α;P,R)|u dα� P u−3.

In particular, the exponent µw = w − 3 is permissible for w ≥ u.

Proof. We seek to show that whenever v ≥ s+ 8∆s, then

(6.3)

1�

0

|f(α;P,R)|v dα� P v−3+ε.

When u > v, the bound (6.2) follows from this estimate via [4, Lemma 4.5].
Next, by applying a dyadic dissection, we deduce from (1.1) and (6.1) that

f(α;P,R) =

∞∑
j=0

2j≤
√
P

g(α; 2−jP,R) +O(
√
P ),

whence an application of Hölder’s inequality reveals that

1�

0

|f(α;P,R)|v dα� (logP )v−1
∞∑
j=0

2j≤
√
P

1�

0

|g(α; 2−jP,R)|v dα+ P v/2

� P ε max√
P≤X≤P

1�

0

|g(α;X,R)|v dα+ P v/2.

Consequently, provided we are able to show that

(6.4)

1�

0

|g(α;P,R)|v dα� P v−3+ε,

the bound (6.3) follows. Henceforth, we abbreviate g(α;P,R) to g(α).

We establish (6.4) via the Hardy–Littlewood method. When 1 ≤ X ≤ P ,
define the major arcs M(X) to be the union of the intervals

M(q, a;X) = {α ∈ [0, 1) : |qα− a| ≤ XP−3},

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. Also, set m(X) = [0, 1) \M(X). Finally,
write P = M(P 4/5), Q = M(P 3/8), p = m(P 4/5) and q = m(P 3/8).

We begin by observing that, as a consequence of [4, Corollary 3.2], one
has �

Q

|f(α;P,R)|6 dα+
�

Q

|f(α;P/2, R)|6 dα� P 3+ε,
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so that �

Q

|g(α)|6 dα� P 3+ε.

Since |g(α)| = O(P ), we find that whenever v ≥ 6, one has

(6.5)
�

Q

|g(α)|v dα� P v−3+ε.

Suppose next that α ∈ q. By Dirichlet’s theorem on Diophantine ap-
proximation, there exist a ∈ Z and q ∈ N with (a, q) = 1, q ≤ P 11/5 and
|qα − a| ≤ P−11/5. An application of [4, Lemma 2.2] in concert with [4,
equation (2.1)] delivers the estimate

g(α)� qε−1/6P (logP )5/2+ε

(1 + P 3|α− a/q|)1/3
+ P 9/10+ε.

When α ∈ p, it follows that q > P 4/5, and thus g(α)� P 9/10+ε. Meanwhile,
when α ∈ P ∩ q, we have either q > P 3/8 or |qα − a| > P−21/8, and hence
|g(α)| � P 15/16+ε. Consequently, since q = p ∪ (P ∩ q), we conclude that

(6.6) sup
α∈q
|g(α)| � P 15/16+ε.

We now turn to the main task at hand. Suppose that s ≥ 6 and that ∆s

is an admissible exponent. We consider the mean value

(6.7) T0 =
�

q

|g(α)|s+2 dα.

By reference to (6.1), an application of Cauchy’s inequality shows that

(6.8) T0 =
∑

x∈A(P,R)
x>P/2

∑
y∈A(P,R)
y>P/2

�

q

|g(α)|se(α(x3 − y3)) dα ≤ PT 1/2
1 ,

where

T1 =
∑

P/2<x,y≤P
x,y∈A(P,R)

∣∣∣�
q

|g(α)|se(α(x3 − y3)) dα
∣∣∣2.

We bound T1 above by removing the condition x, y ∈ A(P,R), obtaining

T1 ≤
∑

P/2<x,y≤P

�

q

�

q

|g(α)g(β)|se((α− β)(x3 − y3)) dα dβ.

Thus, again recalling (6.1), we deduce by means of (6.8) that

(6.9) T 2
0 ≤ P 2

�

q

�

q

|g(α)g(β)|s|G(α− β)|2 dα dβ.

We analyse the mean value on the right hand side of (6.9) by applying
the Hardy–Littlewood method. Let N = M(P 3/4) and n = m(P 3/4). Denote
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by κ(q) the multiplicative function defined on prime powers by taking

κ(p3l) = p−l, κ(p3l+1) = 3p−l−1/2, κ(p3l+2) = p−l−1 (l ≥ 0).

Also, define the function Υ (γ) for γ ∈ N by taking

(6.10) Υ (γ) = κ(q)2(1 + P 3|γ − a/q|)−1

when γ ∈M(q, a;P 3/4) ⊆ N, and Υ (γ) = 0 when γ ∈ n. Then it follows from
[15, Lemma 2.1] that G(γ)2 � P 2Υ (γ) +P 3/2+ε. Substituting this estimate
into (6.9), we deduce that

(6.11) T 2
0 � P 7/2+ε

(1�
0

|g(α)|s dα
)2

+ P 4T2,

where

T2 =
�

q

�

q

Υ (α− β)|g(α)g(β)|s dα dβ.

By applying the trivial inequality |z1 · · · zn| ≤ |z1|n + · · ·+ |zn|n, we find
that

|g(α)g(β)|s � |g(α)g(β)s−1|2 + |g(β)g(α)s−1|2.
Hence, by symmetry, we obtain the estimate

T2 �
(

sup
β∈q
|g(β)|

)s−4 �
q

�

q

Υ (α− β)|g(β)s+2g(α)2| dα dβ.

By invoking (6.6), we thus deduce that

(6.12) T2 � (P 15/16+ε)s−4
�

q

|g(β)|s+2
1�

0

Υ (α− β)|g(α)|2 dα dβ.

On recalling the definitions (6.1) and (6.10), we discern that

1�

0

Υ (α− β)|g(α)|2 dα =
�

N

Υ (γ)|g(γ + β)|2 dγ ≤
∑

1≤q≤P 3/4

κ(q)2Λ(q),

where

Λ(q) =

q∑
a=1

(a,q)=1

P−9/4�

−P−9/4

(1 + P 3|θ|)−1
∣∣∣ ∑
x∈A(P,R)
x>P/2

e(x3(β + θ + a/q))
∣∣∣2 dθ.

Let cq(n) be Ramanujan’s sum, which we define by

cq(n) =

q∑
a=1

(a,q)=1

e(an/q).
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Then it follows that
q∑

a=1
(a,q)=1

∣∣∣ ∑
x∈A(P,R)
x>P/2

e(x3(β+θ+a/q))
∣∣∣2 =

∑
P/2<x,y≤P
x,y∈A(P,R)

cq(x
3−y3)e((β+θ)(x3−y3)).

Thus, the well-known estimate |cq(n)| ≤ (q, n) yields the bound

Λ(q) ≤
∑

1≤x,y≤P
(q, x3 − y3)

P−9/4�

−P−9/4

(1 + P 3|θ|)−1 dθ,

and consequently

1�

0

Υ (α− β)|g(α)|2 dα� P−3 log(2P )
∑

1≤q≤P 3/4

κ(q)2
∑

1≤x,y≤P
(q, x3 − y3).

From here, the treatment following [4, equation (3.2)] delivers the upper
bound

(6.13)

1�

0

Υ (α− β)|g(α)|2 dα� P ε−1.

Next, substituting (6.13) into (6.12), we infer that

T2 � P ε−1(P 15/16)s−4
�

q

|g(β)|s+2 dβ.

In view of (6.7) and (6.11), the hypothesis that ∆s is admissible yields

T 2
0 � P 7/2+ε(P s−3+∆s)2 + P 3+ε(P 15/16)s−4T0,

whence

T0 � P s−1+ε(P∆s−1/4 + P−(s−4)/16).

On recalling (6.7), application of Hölder’s inequality and the trivial estimate
|g(α)| ≤ P delivers the upper bound

�

q

|g(α)|v dα ≤ P v−(s+8∆s)T 4∆s
0

( 1�

0

|g(α)|s dα
)1−4∆s

� P v−s−8∆s+ε(P s+∆s−5/4 + P s−(s+12)/16)4∆s(P s−3+∆s)1−4∆s .

Thus we deduce that whenever ∆s ≥ 1
16(8− s), then

�

q

|g(α)|v dα� P v−3+ε(1 + P−∆s+(8−s)/16)4∆s � P v−3+ε.

But the latter condition on s is ensured by the hypotheses of the lemma,
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and thus we conclude via (6.5) that

1�

0

|g(α)|v dα =
�

Q

|g(α)|v dα+
�

q

|g(α)|v dα� P v−3+ε.

This confirms the estimate (6.4), and the conclusion of the lemma follows.

7. Computations. We now address the problem of how to implement
the computation of associated exponents δs for 4 ≤ s ≤ 8. Let h be a small
positive number that we view as a step size, and put J = d16/he. It is
convenient in what follows to assume that 1/h ∈ N. We begin with an array
of known associated exponents δjh (0 ≤ j ≤ J). Thus, we have the associated
exponents δ4 = 0 and δs = 1

2s − 3 (s ≥ 8) which follow from Hua’s lemma
(see [22, Lemma 2.5]). Making use also of the associated exponent δ6 = 1/4
due to Vaughan [21, Theorem 4.4], one may apply convexity to deliver the
associated exponents

δs = max
{

0, 18(s− 4), 38s− 2, 12s− 3
}
.

For the interesting values of j with 4 < jh < 8, one may now calculate new
associated exponents δjh by means of Lemmata 4.2, 5.1–5.3 and 6.1. Here,
we note that associated exponents δs are related to admissible exponents
∆s by means of the relation δs = 1

2s − 3 + ∆s. Should any of these new
associated exponents be superior to the old ones, they may be substituted
into the array of values δjh. By iterating this process for 4/h < j < 8/h, one
derives new associated exponents converging to some set of limiting values.

We summarise the formulae delivered by the above-cited lemmata as
follows.

(i) Method As(t, γ). We apply Lemma 4.2 for γ = lh and t = mh with
0 ≤ l ≤ (4h)−1 and

(7.1)
2jh− 6 + 8lh

1 + 2lh
≤ mh ≤ 2jh− 4

1 + 2lh
.

Thus one finds that the exponent δ′jh is associated, where

(7.2) δ′jh = δjh−2(1− θ) + 1
2(jh− 2)θ,

in which θ = max{0,min{θ0, 1/3}}, and

θ0 =
2jh− 4−mh+ 2(jh− 2)δmh − 2mhδjh−2

6jh− 12 +mh− 4(lh)(mh) + 2(jh− 2)δmh − 2mhδjh−2
.

(ii) Method B6(t). We apply Lemma 5.1 for t = mh with 4 < mh ≤ 8.
Thus, when δmh ≤ 1

6(mh − 4), we find that the exponent δ′6 is
associated, where

δ′6 = 2 max

{
8−mh+ 8δmh
24 +mh+ 8δmh

,
δ6

4 + δ6

}
.
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(iii) Method Cs. First, if i is the integer for which 4
3(j−2/h) ∈ (i, i+ 1],

then convexity provides the associated exponent

δ4(jh−2)/3 =
(
i+ 1− 4

3(j − 2/h)
)
δih +

(
4
3(j − 2/h)− i

)
δ(i+1)h.

Next, Lemma 5.2 shows the exponent δ′jh given by (7.2) to be asso-
ciated, where

θ0 =
1 + 3δ4(jh−2)/3 − 4δjh−2

9 + 3δ4(jh−2)/3 − 4δjh−2
.

(iv) Process Ls(t). We apply Lemma 5.3 for t = mh with 1 ≤ m ≤ 1/h.
Thus one finds that the exponent δ′jh is associated, where δ′jh =
1
2(δ(j+m)h + δ(j−m)h).

(v) Process Ws. We apply Lemma 6.1. Thus one finds that δ′jh = 1
2jh−3

is an associated exponent whenever δjh−mh is associated and satis-
fies

3− 1
2(j −m)h+ δjh−mh <

1
8mh.

We wrote a straightforward computer program to implement this it-
erative process. Our language of choice was the QB64 implementation of
QuickBasic, running on a Windows Surface Pro3 in Windows 8.1 (Intel Core
i3 processor at 1.5 GHz). All parameters were stored using double-precision
variables. The most time consuming method to apply is process As(t, γ),
since there are many possible choices for t = mh and γ = lh to test. It
is apparent that γ should be chosen as small as possible consistent with
the constraint (7.1). However, applying process As(t, γ) for each eligible
value of s = jh (4 < s < 8) nonetheless has running time with order of
growthh−2. This limited our computation, in the first instance, to a step size of
h ≥ 10−4.

Experimentation with this iteration makes it apparent that certain of
the processes dominate the others for different values of s. By refining
the program to select dominant processes for different ranges of s, the
running time is vastly improved to order of growth h−1. Note that the
array size limit effective for QB64 on the platform employed was at least
2 · 108. Thus, final computations with step size h = 10−6 were feasible for
4 < s ≤ 6.5, and step size h = 10−5 throughout 4 < s ≤ 8, this being
limited only by running-time considerations rather than memory limita-
tions. We summarise below the parameters associated with these dominant
processes.

(i) 4 < s ≤ 5. Process As(2s − 4, 0), so that δ′s is determined according
to Corollary 4.3. Thus δ′jh is given by (7.2) with

θ0 =
δ2jh−4

4 + δ2jh−4
.
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(ii) 5 < s ≤ 5.6462. Process As(6, 0), so that δ′s is determined according
to Corollary 4.4. Thus δ′jh is given by (7.2) with

θ0 =
jh− 5 + (jh− 2)δ6
3jh− 3 + (jh− 2)δ6

.

(iii) 5.6462 < s < 6. Process Ls(t), linear interpolation between δ5.6462
and δ6.

(iv) s = 6. Process B6(5.392938).
(v) 6 < s ≤ 6.081. Process Ls(t), linear interpolation between δ6 and

δ6.081.
(vi) 6.081 < s ≤ 6.3395. Process As

(
6, 12(s−6)

)
, so that δ′s is determined

according to Corollary 4.5. Thus δ′jh is given by (7.2) with

θ0 =
jh− 5 + (jh− 2)δ6 − 6δjh−2

33− 3jh+ (jh− 2)δ6 − 6δjh−2
.

(vii) 6.3395 < s ≤ 6.5. Process Ls(t), linear interpolation between δ6.3395
and δ6.5.

(viii) 6.5 < s ≤ 7.06. Processes Cs and Ls(t).
(ix) 7.06 < s < 8. Processes Ws and Ls(t).

Some additional discussion seems warranted concerning the robustness
of these computations. The first point to make is that, while the above re-
stricted iteration may not be guaranteed to deliver optimal estimates, the
exponents that it delivers will at least be legitimate associated exponents.
Thus the exponents presented in Table 1 in the introduction may be consid-
ered upper bounds for optimal associated exponents. In this context, it is
worth noting that we experimented with adjustments to the step size h, and
found no improvement in the first eight digits of the decimal expansions of
the computed values of δs, even when h varied from 10−4 to 10−6.

The second point concerns the stability of the iteration. There is a po-
tential danger in iterations involving large numbers of cycles that round-off
errors may accumulate, leading to substantial cumulative errors and even to
unstable iterative processes. In our computations, we exercised some caution
concerning this issue by artificially inflating the newly computed associated
exponents by adding a small positive quantity τ at the end of each iter-
ation. Thus, with τ = 10−9, we replaced the newly computed associated
exponent δs by δs + τ . This has the effect of slightly weakening our ex-
ponents, though round-off errors (which in double-precision arithmetic are
very much smaller) are swamped by this cushion of numerical security. This
device has the effect of permitting some control on the number of decimal
digits reliably computed.

We now interpret these computations in the context of the conclusions
presented in the introduction. First, Theorem 1.2 follows from the com-
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puted associated exponent δt = 0.14963020 for t = 5.392938 that in turn
follows from the computations underlying Table 1 via convexity, and the
upper bound (5.2) of Lemma 5.1. Next, the exponent ∆7.1 = 0.06131437 is
admissible, according to Theorem 1.5 and the associated Table 1. Then it
follows from Lemma 6.1 that

1�

0

|f(α;P,R)|u dα� P u−3

whenever u > 7.1 + 8∆7.1 = 7.59051 . . . . This establishes Theorem 1.4. Fi-
nally, the proof of Theorem 1.1 is a standard consequence of Theorem 1.2,
following an application of Cauchy’s inequality. The proof of [26, Theorem
1.1] to be found in the final phases of [26, §2] shows, for example, that when-
ever δ6 is an associated exponent, then N(X)� X1−δ6/3−ε. The conclusion
of Theorem 1.1 therefore follows on making use of the associated exponent
δ6 = 0.24871567. Note also that Theorem 1.5 for s = 4 follows from [12].
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