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Distinct zeros of functions in the Selberg class

by

K. Srinivas (Chennai)

1. Introduction. Selberg [S] defined a class of Dirichlet series that ad-
mit analytic continuation, functional equation and an Euler product. The
prototypical example of Selberg’s class is the classical Riemann zeta func-
tion. In the same paper, Selberg formulated several fundamental conjectures.
These conjectures have spectacular consequences (see for example the paper
by Murty [M] and Kaczorowski and Perelli [KP]). In this paper we study a
question suggested by the properties of the Selberg class.

More precisely, the Selberg class S (see [S]) is defined by the following
axioms:

(i) (Dirichlet series) Every F ∈ S is a Dirichlet series

F (s) =
∞∑

n=1

a(n)n−s

(with s = σ + it) absolutely convergent for σ > 1.
(ii) (Analytic continuation) There exists an integer m ≥ 0 such that

(s− 1)mF (s) is an entire function of finite order.
(iii) (Functional equation) F ∈ S satisfies a functional equation of the

type ϕ(s) = wϕ(1− s) where

ϕ(s) = Qs
d∏

i=1

Γ (λis+ µi)F (s);

here w is a complex number with absolute value 1, Q (> 0), λi (> 0),<µi
(≥ 0) are certain constants.

(iv) (Ramanujan Hypothesis) For every ε > 0, a(n) = O(nε).
(v) (Euler product) F ∈ S satisfies logF (s) =

∑∞
n=1 b(n)n−s, where

b(n) = 0, unless n = pm with m ≥ 1, and b(n) = O(nθ) for some θ < 1/2.

For F ∈ S define degF = 2
∑d
i=1 λi to be the degree of F .
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Let F,G ∈ S. Define the counting function D(T ;F,G) of the distinct
non-trivial zeros, counted with multiplicity, of the functions F and G by

D(T ;F,G) =
∑

0≤<%≤1
0≤=%≤T

max(mF (%)−mG(%), 0),

where % runs over the zeros of F (s)G(s) and is counted without multiplicity
and mF (%),mG(%) denote the multiplicities of zeros of F and G respectively.
Also define

D(T ) = D(T ;F,G) +D(T ;G,F ) =
∑

0≤<%≤1
0≤=%≤T

|mF (%)−mG(%)|,

with the same convention about %.
In [MM], Ram Murty and Kumar Murty proved that if F 6= G, then

D(T ) = Ω(T ).
Assuming that F and G are orthogonal in the sense of Selberg (see [S])

and a certain density hypothesis, Bombieri and Perelli (see [BP]) proved that
both D(T ;F,G) and D(T ;G,F ) are � T log T, provided degF = degG.

The reader may refer to the excellent survey articles by Kaczorowski and
Perelli [KP] and Ram Murty [M] for general information on the Selberg class
and also for a discussion on the distinct zeros and independence results for
zeros of functions in the Selberg class.

In this note we propose to study the gaps between the zeros counted by
the function D(T ;F,G).

More precisely we prove the following

Theorem. Let F and G be two distinct functions in S. Assume that
degF ≥ degG. Then for every sufficiently large T , there exists a zero % =
β + iγ of FG with mF (%) > mG(%) such that |T − γ| ≤ C1 log log T, where
C1 is a large positive constant.

We obtain the following

Corollary 1. Under the hypotheses of the Theorem, let γ1 ≤ γ2 ≤ . . .
denote the ordinates of the zeros of FG with mF (%i) > mG(%i), i = 1, 2, . . .
Then

γn+1 − γn = O(log log(|γn|+ 100)).

Corollary 2. Under the hypotheses of the Theorem,

D(T ;F,G) ≥ C2
T

log log T
,

where C2 > 0 is a constant.

Remarks. (1) The global number of distinct zeros given completely
unconditionally by Murty and Murty ([MM]) is larger than ours. However,
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their method only deals with the symmetric difference of zeros reflected
by the counting function D(T ), whereas the present paper deals with the
asymmetric difference between the zeros reflected by D(T ;F,G), which is a
difficult problem and therefore seems interesting.

(2) The main idea in this paper has its origin in the papers [RS] and
[BRSS]1, where it has been shown that under suitable conditions the quo-
tient of finite products of translates of the Riemann zeta function has in-
finitely many poles. Moreover, the gaps between the poles have also been
obtained (see also [BRSS]2, [BRSS]3, for various results in this direction).

Acknowledgements. The author thanks Professor Alberto Perelli for
proposing the problem, suggesting the relevant literature and encourage-
ment. He also thanks Professors R. Balasubramanian, M. Ram Murty and
K. Ramachandra for their support.

2. Notation. Throughout the paper the capital letters C1, C2, . . . will
denote positive constants. We write f(x) � g(x) or f(x) = O(g(x)) to
mean |f(x)| < C3g(x). All the implied constants arising from � and O are
effective. We fix H = D log log T (except in Lemma 1), where D is a large
positive constant.

3. Basic lemmas. We need the following lemmas for the proof of the
Theorem.

Lemma 1. Let A > 0 be an integer constant , B = A + 2, a1, a2, . . .
be complex numbers with a1 = 1, |an| ≤ nAHrε/8, where 0 < ε ≤ 1/2,
r ≥ [(200A + 200)ε−1], let λ1, λ2, . . . be real numbers with λ1 = 1 and
1/C ≤ λn+1−λn ≤ C where C ≥ 1 is a constant. Then f(s) =

∑∞
n=1 an/λ

s
n

is analytic in σ ≥ A + 2. Let K ≥ 30, U1 = H1−ε/2. Assume that K1 =
(HC)12AK,H≥(120(A+2)2C2A+4(4rC2)r)100/ε+(100r(A+2))20 log logK1,
and that there exist T1, T2 with 0 ≤ T1 ≤ U1,H − U1 ≤ T2 ≤ H such that
uniformly in σ ≥ 0 we have

|f(σ + iT1)|+ |f(σ + iT2)| ≤ K,
where f(s) is assumed to be analytically continuable in (σ ≥ 0, 0 ≤ t ≤ H).
Then

1
H

H�

0

|f(it)|2 dt ≥ (1− 10rC2H−ε/4 − 100BH−1 log logK1)
∑

n≤H1−ε

|an|2.

Proof. This result is due to R. Balasubramanian and K. Ramachandra
(see [R, p. 45]).

Lemma 2. Suppose the Dirichlet series f(s) =
∑∞
n=1 an/n

s with an =
O(nε) admits an analytic continuation in an infinite system of rectangles
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R(T −H,T +H) defined by {σ ≥ 0, T −H ≤ t ≤ T +H} and that |f(s)| =
O(exp(C4(log T )2)) there. Then for all H ≥ C5 log log T, we have

1
H

T+H�

T−H
|f(it)|2 dt ≥ C6

∑

n≤H1/2

|an|2.

Proof. The proof follows from Lemma 1 on taking λn = n,C = 1 and
fixing ε = 1/2 in Lemma 1.

Lemma 3. Let F ∈ S. If % = β + iγ runs through the zeros of F (s),
then

F ′(s)
F (s)

=
∑

|t−γ|≤1

1
s− % +O(log |t|),

uniformly for −2 ≤ σ ≤ 2, |t| ≥ 30.

Proof. This result is well known for the Riemann zeta-function. The
proof for the functions in S is exactly the same since the Riemann–von
Mangoldt formula holds for Selberg class (see [T, p. 217]).

Lemma 4. Let F ∈ S. In any subinterval of length 1 in [T −H,T +H]
there are lines t = t0 such that

|F (σ + it0)|−1 = O(exp(C7(log T )2)),

uniformly in σ ≥ −2.

Proof. Let I0 denote a typical rectangle of unit height in −2 ≤ σ ≤ 2,
T −H ≤ t ≤ T + H. Let % = β + iγ denote a zero of F (s) in I0. Then the
number of such zeros, by the Riemann–von Mangoldt formula, is less than
C8 log T . Therefore, if we break the rectangle I0 into equal subrectangles
of height 1/(20C8 log T ), then by the pigeon-hole principle, there is at least
one subrectangle I1 of I0 where F (s) is zero-free. Let t = t0 denote the
middle horizontal line in I1. Clearly |t0 − γ| > 1/(40C8 log T ). Therefore,∑
|t0−γ|≤1 1/|s− %| < C9(log T )2. Now from Lemma 3, it follows that

∣∣∣∣
F ′(σ + it0)
F (σ + it0)

∣∣∣∣ = O((logT )2)

uniformly for σ ≥ −2.
To complete the proof we observe that for σ ≥ −2, we have

logF (σ + it0)− logF (2 + it0) =
2�

σ

F ′(r + it0)
F (r + it0)

dr = O((logT )2)

and
|log |F (σ + it0)|| = |< logF (σ + it0)| ≤ |logF (σ + it0)|.
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Therefore

log
∣∣∣∣

1
F (σ + it0)

∣∣∣∣ = O((log T )2).

Hence the lemma follows.

Lemma 5. Let z = x+ iy be a complex variable with |x| ≤ 1/4. Then

|exp((sin z)2)| ≤ 2 for all y

and if |y| ≥ 2, then

|exp((sin z)2)| ≤ 2(exp exp |y|)−1.

Proof. This is a double order decaying kernel developed and extensively
used by Ramachandra (see Lemma 2.1 of [R] for details).

Lemma 6. Let F and G be two distinct functions in S with degF ≥
degG. Let

f(s) =
G(s− 1)
F (s− 1)

=
∞∑

n=1

ncn
ns

,

where cn’s are the coefficients of the Dirichlet series for G/F . Assume that
f has no poles in the horizontal strip T −H ≤ t ≤ T +H. Then

f(s) = O(1)

uniformly in R(T −H,T +H) provided H ≥ C10 log log T.

Proof. Clearly f(s) = O(1) for σ > 2. From the functional equation for
F and G, we obtain

f(s) =
WG

WF

(
QG
QF

)3−2σ

T (3/2−σ)(degG−degF )G(2− s)
F (2− s) .

Therefore,

f(s) = O

((
QG
QF

)3−2σ)
+O(1)

uniformly in σ < 1, provided degF ≥ degG.
Now, assume that f(s) has no poles in the region 1 ≤ σ ≤ 2, T −H ≤

t ≤ T +H. Let s1 = σ1 + it1 be fixed, where 1/2 ≤ σ1 ≤ 5/2, T −H/200 ≤
t1 ≤ T +H/200. Consider the function

D(s) = f(s) exp
(

sin
(
s− s1

10

)2)
.

We shall apply the maximum modulus principle to the function G(s) in
the rectangle bounded by the lines σ = 1/2, σ = 5/2, t = T − H/20 and
t = T +H/20.
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Note that f(s) = O(1) on the left vertical line as well as right vertical
line, and on the horizontal lines,

G(s− 1) = O(TC11)

and by Lemma 4 we can assume without loss of generality that
1

F (s− 1)
= O(exp (C12(log T )2)).

Therefore, we obtain

f(s) = O(TC11 exp (C12(logT )2)).

We observe that since∣∣∣∣<
s− s1

10

∣∣∣∣ ≤
1
4

and
∣∣∣∣=
s− s1

10

∣∣∣∣ ≥ C13 log log T,

by Lemma 5, on the horizontal lines the factor multiplying f(s) makes the
product very small. This is the reason why we had to choose H to be greater
than a large positive constant times log log T.

Therefore, by the maximum modulus principle, it follows that

|D(s1)| = |f(s1)| = O(1).

Since s1 was arbitrary, the lemma follows.

Lemma 7. Let f be as defined in Lemma 6. Then f cannot be absolutely
convergent in σ > 3/2− ε for any ε > 0. Moreover ,

∑

n≤X
|cn|2n2 →∞ as X →∞.

Proof. Let an(F ) and an(G) denote the nth coefficients of the Dirichlet
series for F and G respectively. It is well known that if ap(F ) = ap(G) and
ap2(F ) = ap2(G) for all but finitely many primes p, then F = G (see [MM]).
Using the functional equation for F and G, it can be easily shown that if
F 6= G, then the function G/F cannot converge absolutely in σ ≥ 1/2 − ε
for any ε > 0. This establishes the first part of the lemma.

In particular,
∑

n≤X

|cn|
n1/4

→∞ as X →∞.

By the Cauchy–Schwarz inequality, we obtain

∑

n≤X

|cn|
n1/4

≤
{ ∑

n≤X
|cn|2n2

}1/2
{ ∑

n≤X

1
n5/2

}1/2

.

As the second factor on the right hand side of the above expression is
bounded, the lemma follows.
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4. Conclusion of the proof. By Lemma 6 one can apply Lemma 2
with H = D log log T and obtain the inequality

1� 1
H

T+H�

T−H
|f(it)|2 dt�

∑

n≤H1/2

n2|cn|2,

but this leads to a contradiction by Lemma 7 on taking H ≥ X.

The proofs of the Corollaries 1 and 2 are immediate.
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