
ACTA ARITHMETICA

165.4 (2014)

On the convergence to 0 of mnξ mod 1
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1. Introduction. We write T = R/Z. For x ∈ R we define |||x||| :=
infn∈N |x− n|. We denote by x[1] the fractional part of x.

In this paper, we prove the following results.

Theorem 1. For any α ∈ R − Q and a sequence {ml}l∈N of integers
such that liml→∞ |||mlα||| = 0, there exists a measure µ on T which has no
atoms and is such that liml→∞

	
T |||mlθ||| dµ(θ) = 0.

Theorem 2. For any α ∈ R − Q, there exists a sequence {ml}l∈N of
integers such that |||mlα||| → 0 and such that mlθ[1] is dense in T if and only
if θ /∈ Qα+ Q.

Due to the Gaussian measure space construction (see [4], or for example
[2, Proposition 2.30]), Theorem 1 has a direct consequence for rigidity se-
quences of weakly mixing dynamical systems. The following statement is in
fact equivalent to Theorem 1.

Corollary 1. For any α ∈ R−Q and a sequence of integers {ml}l∈N
such that liml→∞ |||mlα||| = 0, there exists a weak mixing dynamical system
(T,M,m) such that {ml}l∈N is a rigidity sequence for (T,M,m).

A consequence of Corollary 1 is a positive answer to a question raised in
[2], namely whether a rigidity sequence of any ergodic transformation (on a
probability space without atoms) with discrete spectrum is a rigidity sequence
for some weakly mixing dynamical system. Indeed, Corollary 1 deals with the
case of a pure point spectrum with an irrational rotation of the circle as a
factor. The case of a purely rational spectrum was treated in [2, Proposition
3.27]. In case the spectrum is purely rational, our proof of Theorem 1 given
below applies with only one modification: instead of working with the orbit
of 0 under the rotation Rα (α /∈ Q/Z), one considers the union of the orbits
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of 0 under the actions of all the finite groups which appear in the (necessarily
dense) support of the spectral measure.

A completely different solution to the same question was given by Adams
[1], who proved directly Corollary 1 based on a sophisticated and involved
cut and stack construction.

In contrast, our proof is much simpler and is based on the straightforward
characterization of rigidity as a spectral property, which reduces answering
the question to the construction of a continuous probability measure on the
circle with Fourier transform converging to 1 along the rigidity subsequence
as stated in Theorem 1. This possible approach to the question was discussed
in detail in [2].

The second result, Theorem 2, asserts that it is not possible to expect more
than what is obtained in Theorem 1, namely, strong convergence of |||mnθ||| to
1 on an uncountable set K is not possible in general for a sequence {mn}n∈N
such that liml→∞ |||mlα||| = 0, α ∈ R − Q. Constructing such a set K was
a possible strategy for proving Corollary 1 (see for example [2, Proposition
3.3]), and Theorem 2 shows that this approach cannot be adopted in general.

Given an increasing sequence {mn}n∈N of integers, the study of the ac-
cumulation points of the sequence {mnξ}, for ξ irrational, on the circle has
a long history and a rich literature (see for example [3, 5] and references
therein). Weyl [6] proved, for any increasing sequence {mn}n∈N, that for
almost every ξ, {mnξ} is dense on the circle. The set of irrationals ξ such
that {mnξ} is not dense in T is called the set of exceptional points for the
sequence {mn}n∈N. Our result asserts the existence for any α ∈ R − Q
of a sequence {mn}n∈N for which the set of exceptional points is reduced
to Qα + Q. To our knowledge, no other examples of increasing sequences
{mn}n∈N with a countable exceptional set are known in the literature.

2. Proof of Theorem 1. Fix α ∈ R − Q and a sequence {ml}l∈N of
integers such that

(?) lim
l→∞
|||mlα||| = 0.

For a probability measure µ on T we write µn =
∣∣	
T |||mnθ||| dµ(θ)

∣∣.
We will construct a sequence µp, p ≥ 0, of probability measures on T

of the form 2−p
∑2p

i=1 δxi with xi = kiα such that there exists an increasing
sequence {Np} for which

(1) µnp < 1/2j for every p ≥ 1, every j ∈ [0, p−1], and all n ∈ [Nj , Nj+1];
(2) for every p0 ∈ N∗, if we let

ηp0 =
1

4
inf

1≤i<i′≤2p0
|||kiα− ki′α|||

then |||kl2p0+rα− krα||| < ηp0 for every l ∈ N and every r ∈ [1, 2p0 ];
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(3) µnp < 1/2p+1 for n ≥ Np.

When going from the measure µp to µp+1 we will add 2p masses at points
selected near x1, . . . , x2p that are already chosen for µp.

Theorem 1 clearly follows from the above construction. Indeed, property
(1) will imply that any weak limit µ∞ of µp satisfies µn∞ → 0, while by (2)
we deduce that for each p0 the intervals (krα − ηp0 , krα + ηp0), r ∈ [1, 2p0 ],
on the circle are disjoint and have mass 1/2p0 each for all µp, p ≥ p0, and
hence for µ∞, which therefore has no atoms.

Property (3) is not necessary in the proof of the theorem, but it is useful
to fulfill the inductive hypotheses (1) and (2) of the construction.

For p = 0, we let k1 = 0 and µ0 is thus the Dirac measure at 0. We let
N0 = 0. For p = 1, we let k2 = 1 so µ1 is the average of the Dirac measures
at 0 and at α. Observe that for any n, we have µn1 < 1/2, which fulfills (1)
for p = 1. We also choose N1 sufficiently large so that µn1 < 1/22 for n ≥ N1,
the latter being possible due to (?).

We now assume that we have selected ki for i ≤ 2p and Nl for l ≤ p so
that (1) and (3) are satisfied up to p, and (2) is satisfied for every p0 ≤ p
and every 0 ≤ l ≤ 2p−p0 − 1.

We choose k2p+1 such that k2p+1α is sufficiently close to k1α so that

νp,1 =
1

2p+1

2p+1∑
i=1

δk′iα,

where k′i = ki for i ≤ 2p and k′2p+1 = k2p+1 while k′2p+r = kr for r ∈ [2, 2p],
satisfies νnp,1 < 1/2j for every n ∈ [Nj , Nj+1] and j ∈ [0, p− 1].

Since for every n we have

|νnp,1 − µnp | <
1

2p+1
|||mnk2p+1α−mnk1α||| <

1

2p+1
,

we deduce by (3) that νnp,1 < 1/2p+1+1/2p+1 = 1/2p for every n ≥ Np. Next

we choose Np,1 > Np sufficiently large so that νnp,1 < 1/2p+2 for n ≥ Np,1,
which is possible by (?). In this way, we select inductively k2p+s, then Np,s

for s = 1, . . . , 2p, and set

νp,s =
1

2p+1

2p+1∑
i=1

δk′iα,

where k′i = ki for i ≤ 2p + s and k′2p+t = kt for t ∈ [s+ 1, 2p]. Choosing, for
each s, k2p+sα sufficiently close to ksα, and then Np,s sufficiently large, we
can ensure that

• νnp,s < 1/2j for every n ∈ [Nj , Nj+1] and j ≤ p− 1;
• νnp,s < 1/2p for every n ≥ Np;

• νnp,s < 1/2p+2 for every n ≥ Np,s.
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The first item can be established inductively due to the fact that if k2p+sα
is chosen very close to ksα then the measures νp,s−1 and νp,s are very close.

The same argument gives the second item for Np ≤ n ≤ Np,s−1. As for
n ≥ Np,s−1, we use the facts that |νnp,s−νnp,s−1| < 1/2p+1 and νnp,s−1 < 1/2p+2

for every n ≥ Np,s−1 to conclude that νnp,s < 1/2p. For the third item we
just choose Np,s sufficiently large and use (?).

Finally, we let Np+1 = Np,2p and µp+1 = νp,2p and observe that the
measure µp+1 satisfies (1).

Also, since k2p+sα can be chosen arbitrarily close to ksα for s = 1, . . . , 2p,
we see that for every p0 ≤ p + 1, and every l = 2p−p0 + l′ − 1, l′ ≤ 2p−p0 ,
we have |||kl2p0+rα||| ∼ |||kl′2p0+rα||| ∼ |||krα|||, from which (2) follows for p+ 1.
The proof of Theorem 1 is thus complete.

3. Proof of Theorem 2. In all this section α ∈ R−Q is fixed.

Definition 1. For an interval I ⊂ T, ε > 0, and integers N1 < N2, we
say that θ ∈ A(N1, N2, I, ε, α) if for every m ∈ [N1, N2) such that |||mα||| < ε
we have {mθ} /∈ I.

Lemma 1. For every l ≥ 2, there exists L(l) ∈ N such that for every
0 < ε ≤ 1/(2l2) and all ν > 0 and N ∈ N, there exist K(ε) > 0 and
N ′ = N ′(l, ε, ν,N) ∈ N such that if θ ∈ A(N,N ′, I, ε, α) for some interval I
of size 1/l then |||kα− sθ||| < ν for some |k| ≤ K(ε) and some |s| ≤ L(l).

Proof. For any ε > 0, consider an approximation φε : T → R of 2χε
by trigonometric polynomials, where χε is the characteristic function of the
subset [0, ε] ∪ [1− ε, 1] of T, such that:

• φε(x) > 1 for every x ∈ [0, ε] ∪ [1− ε, 1];
• φε(x) > −ε3 for every x ∈ T;

• there exists K ∈ N such that φε(x) =
∑
|k|≤K φ̂ke

i2πkx.

Similarly, for l ≥ 2, let ϕl : T→ R be such that:

• ϕl(y) > 1 for every y /∈ [0, 1/l];
• |ϕl(y)| < l2 for every y ∈ T;
• there exists L ∈ N such that ϕl(y) =

∑
0<|k|≤L ϕ̂ke

i2πky.

Note that the second requirement includes the fact that
	
ϕl(y) dy = 0.

For ψ : T2 → R and (α, θ) ∈ R2 we define, for k ∈ N,

Sα,θk ψ(x, y) =
k−1∑
i=0

ψ(x+ iα, y + iθ).

Fix I = [y0, y0 + 1/l] for some y0 ∈ T, l ≥ 2.
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Define ψε,l : T2 → R by ψε,l(x, y) = φε(x)ϕl(y − y0). For N ′ ∈ N suf-
ficiently large there exist more than ε2N ′ integers i ∈ [N,N ′) such that

|||iα||| < ε. If θ ∈ A(N,N ′, I, ε, α) then Sα,θN ′ ψε,l(0, 0) > (ε2−l2ε3)N ′ ≥ 1
2ε

2N ′.

On the other hand, we have

Sα,θN ′ ψε,l(x, y) =
∑

|k|≤K, 0<|j|<L

φ̂kϕ̂j
1− ei2πN ′(kα+jθ)

1− ei2π(kα+jθ)
ei2π(kx+jy),

hence, if |||kα− jθ||| ≥ ν for all |k| ≤ K and 0 < |j| ≤ L, then Sα,θN ′ ψε,l(x, y) is

bounded independently of N ′, which contradicts Sα,θN ′ ψε,l(0, 0)
> 1

2ε
2N ′.

Proof of Theorem 2. For n ≥ 1, define ln = n+1 and Ln := L(ln) as given
by Lemma 1. Let εn = 1/(2(n+1)2) and Kn = K(εn) as given by Lemma 1.
Let νn = n−1 inf0<|k|≤(n+1)Kn+1

|||kα|||. Take N0 = 0 and apply Lemma 1
with l = l1, ε = ε1, N = N0 and ν = ν1. Define N1 = N ′(l1, ε1, ν1, N0). We
then apply inductively Lemma 1 with l = ln, ε = εn, N = Nn and ν = νn
and choose Nn+1 arbitrarily large such that Nn+1 ≥ N ′(ln, εn, νn, Nn).

We define an increasing sequence ml by taking successively, for every i,
all the integers m ∈ [Ni, Ni+1) such that |||mα||| < εi (choosing Nn+1 to be
sufficiently large in our inductive construction guarantees that the sequence
mn is not empty).

Suppose now θ is such that {mnθ[1]} is not dense on the circle. Then
there exist k and an interval I of size lk such that mnθ[1] /∈ I for every n. In
other words, θ ∈ A(Nn, Nn+1, I, εn, α) for every n ≥ n0, for n0 sufficiently
large. Let L = Lk. By Lemma 1 we get |||knα− lθ||| < νn for some |kn| ≤ Kn

and some 0 < |l| ≤ L. Hence |||k′nα − L!θ||| < L!νn for some |k′n| ≤ L!Kn. It
follows that |||(k′n+1 − k′n)α||| < 2L!νn. From the definition of νn this implies
that k′n+1 = k′n for sufficiently large n, say n ≥ n1. Since νn → 0, we get
|||k′n1

α−L!θ||| = 0, which gives θ ∈ Qα+Q. Conversely, {mnθ} for θ ∈ Qα+Q
is clearly not dense on the circle. Theorem 2 is proved.
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