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Representing integers as linear combinations of S-units

by

Zs. Ádám (Debrecen), L. Hajdu (Debrecen) and F. Luca (Morelia)

1. Introduction. Let A be a finite set of integers, and let b1, . . . , bk
be positive integers. Motivated by a question of M. Pohst, L. Hajdu [4]
proved that there exist infinitely many primes which cannot be represented
as
∑k

i=1 aib
ui
i with ai ∈ A. However, this result is ineffective in the sense

that on the one hand it does not give any detail about the distribution of the
non-represented primes, and on the other hand it does not provide any in-
formation on the set of primes which can be represented in the desired form.

In this paper, we make some progress in this direction. First we prove
that only a small fraction of integers can be represented as a linear combi-
nation of integral S-units for any fixed S, where the coefficients come from
an arbitrary fixed finite set. An immediate consequence is that almost all
primes are not representable as linear combinations of S-units. In the spe-
cial but important case of combinations of pure powers, we get more precise
results about the distribution of the numbers which can be represented in
that form. The main tools of our proofs are the subspace theorem, and a
classical result of Erdős, Pomerance and Schmutz [1] on the small values of
the Carmichael function.

2. Results. To formulate our results, we need to introduce some nota-
tion. Let S = {p1, . . . , pt} be some finite set of primes of cardinality t, and
put P = max1≤i≤t pi. Let T = {pu1

1 · · · p
ut
t : ui ≥ 0} be the set of all positive

integers whose prime factors belong to S. Further, let A be some finite set
of integers, and write n = #A and a∗ = maxa∈A |a|. Finally, let k be a fixed
positive integer. Throughout the paper, k will denote the number of terms
in the representations by certain linear combinations. Put

HA,S,k =
{
v ∈ N : v =

k∑
i=1

aisi where ai ∈ A, si ∈ T (i = 1, . . . , k)
}
.
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For a real number x ≥ 1, we put HA,S,k(x) = HA,S,k ∩ [1, x]. Our first result
shows that HA,S,k(x) is very small.

Theorem 1. The estimate

#HA,S,k(x)� (log x)tk

holds for all large x. The implied constant depends on n, a∗, P , t and k.

Remark 1. Under a certain rather strong assumption which is not sat-
isfied in our case, Everest [2] proved a general asymptotic formula which,
in particular, applies to count the number of those k-term linear combina-
tions b of S-units which have no vanishing subsum and whose S-norm is
smaller than x (see [2] for the precise result). The asymptotic formula in [2]
is of the size O((log x)tk). Hence, our result is an upper bound of the same
strength as the result of Everest but with no extra conditions imposed. It
would be interesting to give a common generalization of Everest’s result and
our Theorem 1.

As a simple and immediate consequence of Theorem 1, we deduce that
almost all primes are outside HA,S,k. For the precise formulation of this
statement, let P denote the set of all positive primes, and for L ⊆ P denote
by D(L) the density of L inside P, if it exists.

Theorem 2. In the above notation, let L = P∩HA,S,k. Then D(L) = 0.

Remark 2. It is widely believed that the number of Mersenne primes
(i.e., primes of the form 2u − 1) is infinite. If this conjecture is true, then
for the choice k = 2, S = {2} and A = {−1, 1}, we find that P ∩HA,S,k is
infinite. Hence, Theorem 2 seems to be best possible in some sense.

Now we give a variant of Theorem 1 concerning representations of inte-
gers by linear combinations of pure powers. For this purpose we need some
new notation. Let b1, . . . , bk be positive integers and write b = (b1, . . . , bk).
Put

HA,b =
{
v ∈ N : v =

k∑
i=1

aib
ui
i where ai ∈ A, ui ≥ 0 (i = 1, . . . , k)

}
.

Note that if we choose S to be the set of prime divisors of b1 · · · bk, then
HA,b is a subset of HA,S,k. For H ⊆ Z and m ∈ Z, m ≥ 2, we put

H (mod m) = {r : 0 ≤ r < m, d ≡ r (mod m) for some d ∈ H}.

Our main result in this direction is the following.

Theorem 3. Let C be an arbitrary positive real number. There exists a
positive integer m = m(k, n, C) > C depending only on k, n and C such that

#(HA,b (mod m)) < c0(k, n)(logm)c1k log log logm.
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Here, c0(k, n) is a constant depending only on k and n, and c1 is an absolute
constant.

Roughly speaking, Theorem 3 states that for any A and b one can find
a “large” modulus m such that “many” residue classes modulo m remain
outside the set HA,b.

As before, for x ≥ 1, we write HA,b(x) = HA,b ∩ [1, x]. As an immediate
consequence of Theorem 3, we get the following statement.

Corollary 1. There exists a strictly increasing sequence X = (xi)∞i=1

of positive integers such that the inequality

#HA,b(xi) < c0(k, n)(log xi)c1k log log log xi

holds for all i ∈ N, where the constants c0(k, n) and c1 are specified in
Theorem 3.

Remark 3. Theorem 1 concerns a more general situation than Corol-
lary 1, and further, the bound in Theorem 1 is better in terms of x. However,
a remarkable property of the upper bound in Corollary 1 is that it depends
only on k and n, and is independent of b and a∗. Further, in view of Theo-
rem 3, one has some extra information about the distribution of the elements
of the set HA,b (see the remark after Theorem 3). Finally, we note that using
the well-known fact that there is some positive constant c∗ such that the
inequality

ϕ(m) > c∗
m

log logm
holds if m is large enough, one can easily prove that D(P ∩ HA,b) = 0 for
any A and b.

3. Proofs of the theorems

Proof of Theorem 1. We proceed by induction on t. Assume that t = 1.
If k = 1, then HA,S,1 consists of the positive integers of the form apl for
some a ∈ A and l ≥ 0. Clearly, a is non-negative. Obviously, the condition
apl ≤ x leads to l ≤ log x/log 2. Hence,

#HA,S,1(x)� n log x� log x.

Assume still that t = 1 but k > 1. Write v ∈ HA,S,k as

v = a1p
l1 + · · ·+ akp

lk ,

where ai ∈ A and l1 ≥ · · · ≥ lk ≥ 0. Let C1 be a positive integer such that
pC1 > 2ka∗. If l1 − l2 > C1, then

v ≥ pl1
(

1−
∣∣∣ k∑
i=2

aip
li−l1

∣∣∣) > pl1
(

1− ka∗

pC1

)
>
pl1

2
,
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therefore l1 ≤ log(2x)/log 2. Since li ≤ l1 for i = 2, . . . , k, we get

#HA,S,k ≤ nk(C2 log x)k � (log x)k,

where we can take C2 = 2 provided that x is large. If, on the contrary,
l1 − l2 ≤ C1, then we enlarge the set A to the set A′ consisting of all
elements of the form a1p

α + a2, where a1, a2 ∈ A and α ∈ {0, 1, . . . , C1}.
Then note that

v = (a1p
l1−l2 + a2)pl2 + · · ·+ akp

lk ∈ HA′,S,k−1,

and apply the induction hypothesis.
Assume now that t > 1. Again, if k = 1, then v = as1, where s1 =

pl11 · · · p
lt
t . Obviously, li � log x for i = 1, . . . , t, therefore

HA,S,1 � (log x)t.

Assume now that t > 1 and that k > 1. Write

v =
k∑
i=1

aisi,

and assume that s1 ≥ · · · ≥ sk. One may also assume, because of the
induction hypothesis, that ai 6= 0 for all i = 1, . . . , k. Let v ≤ x. If s1 ≤ x2,
then, by the argument used in the case t > 1, k = 1, we deduce that the
number of possibilities for s1 is O((log x)t). Since si ≤ s1 for all i = 1, . . . , k,
it follows that the number of possibilities for si is O((log x)t) for each of
i = 1, . . . , k. Since the coefficients a1, . . . , ak can be chosen in at most nk

ways, we see that the number of such v’s is O((log x)kt).
It remains to deal with the case when s1 > x2. For this, we use the

subspace theorem. Let S = S ∪ {∞} regarded as a set of valuations of Q
containing the infinite one. For each µ ∈ S, let Li,µ(x) ∈ Z be the linear
form of k variables given by Li,µ(x) = xi if µ is finite, or µ =∞ and i > 1,
and L1,∞ =

∑k
i=1 aixi. We evaluate the double product

(1)
k∏
i=1

∏
µ∈S

|Li,µ(s)|µ,

where s = (s1, . . . , sk). Since s2, . . . , sk are all S-units, we get

(2)
∏
µ∈S

|Li,µ(s)|µ = 1 for all i = 2, . . . , k.

When i = 1, again since s1 is an S-unit, we get

(3)
∏

µ∈S\{∞}

|Li,µ(s)|µ = s−1
1 .
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Finally,

(4) |L1,∞(s)|∞ = |a1s1 + · · ·+ aksk| < x < s
1/2
1 .

Estimates (2)–(4) show that for the double product given by (1), we have

(5)
k∏
i=1

∏
µ∈S

|Li,µ(s)|µ < s
−1/2
1 .

By the subspace theorem, there exist finitely many hyperplanes such that
all solutions s of equation (5) are contained in these hyperplanes. More
precisely, there exist non-zero integral vectors d(1), . . . ,d(λ) with

λ < C3(t, k, n, a∗, P ),

where C3(t, k, n, a∗, P ) is an explicitly computable constant depending on
the specified parameters (see e.g. [3]) such that each solution s of (5) satisfies

(6)
k∑
i=1

d
(j)
i si = 0 for some j = 1, . . . , λ.

For each j = 1, . . . , λ, let ij denote the minimal index for which d
(j)
ij
6= 0.

Put

A′ = A ∪ {a− a′d(j)
i /d

(j)
ij

: a, a′ ∈ A, i = 1, . . . , k, j = 1, . . . , λ, i 6= ij}.

Observe that #A′ ≤ C4(k, t, n, a∗, P ), where C4(k, t, n, a∗, P ) is also a con-
stant depending on k, t, n, a∗ and P .

Let now v ∈ HA,S,k(x), and write

v =
k∑
i=1

aisi

with ai ∈ A. Then, as s satisfies (6) with the appropriate d(j), we get

sij = −
k∑
i=1
i 6=ij

(d(j)
i /d

(j)
ij

)si.

Then

v =
k∑
i=1
i 6=ij

a′isi,

where a′i = ai − aij (d(j)
i /d

(j)
ij

). In particular, a′i ∈ A′. By the induction
hypothesis for A′, the number of such v’s is � (log x)(k−1)t � (log x)kt,
which finishes the argument.
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Proof of Theorem 2. As is well-known by the Prime Number Theorem,
#(P ∩ [1, x]) = π(x) is asymptotically x/log x as x→∞. Thus, the desired
statement follows immediately from Theorem 1.

We continue with the proof of Theorem 3. For this purpose, we need
some new notation and two lemmas.

Let λ(m) be the Carmichael function of the positive integer m. Recall
that for m ∈ N, λ(m) denotes the least positive integer for which

bλ(m) ≡ 1 (mod m)

for all b ∈ Z with gcd(b,m) = 1.

Lemma 1. Let m = qα1
1 · · · qαz

z where q1, . . . , qz are distinct primes, and
let b ∈ Z. Then

#{bu (mod m) : u ≥ 0} ≤ λ(m) + max
1≤i≤z

αi.

Proof. Let β = max1≤i≤z αi. Write m = m1m2, where m2 is maximal
with the property that gcd(m2, b) = 1. Consequently, the powers bu are
congruent to 0 (mod m1) if u ≥ β. So, for u ≥ β, the class bu (mod m)
“varies” only modulo m2. Since (b,m2) = 1, the length of the period of the
powers bu, with u ≥ β, is at most λ(m2) modulo m2. As (m1,m2) = 1,
the length of the period modulo m is at most λ(m2) as well by the Chinese
remainder theorem. Since λ(m2) ≤ λ(m), the period length modulo m is at
most λ(m), while the length of the preperiod is at most β. The statement
now follows.

The next lemma is a nice result of Erdős, Pomerance and Schmutz [1]
concerning “small” values of the Carmichael function.

Lemma 2. There exists a positive constant c1 and a strictly increasing
sequence N = (ni)∞i=1 of natural numbers such that for all i ∈ N we have

λ(ni) < (log ni)c1 log log logni .

We are now ready to prove Theorem 3.

Proof of Theorem 3. Let k, n and C be fixed, and choose an element m =
ni from the sequence N in Lemma 2 such that m > C. Write m = qα1

1 · · · qαz
z

in the usual manner, where q1, . . . , qz are distinct primes and α1, . . . , αz are
positive integers. Lemma 1 implies that for all b ∈ {b1, . . . , bk},

(7) #{a · bu (mod m) : a ∈ A, u ≥ 0} ≤ n(λ(m) + max
1≤i≤z

αi).

On the other hand, a simple calculation shows that

(8) n(λ(m) + max
1≤i≤z

αi) ≤ n
(

logm
log 2

+ (logm)c1 log log logm

)
,
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where c1 is specified in Lemma 2. The statement is an immediate conse-
quence of inequalities (7) and (8).

Proof of Corollary 1. Arranging in increasing order the resulting values of
the moduli m corresponding to different values of C provided by Theorem 3,
we get an infinite sequence X = (xi)∞i=1 which has the desired property.

Acknowledgements. The authors thank the referees for their useful
remarks.

Research of L. Hajdu was supported in part by the Hungarian Academy
of Sciences, by the grants T48791 and T67580 of the Hungarian National
Foundation for Scientific Research.

Research of F. Luca was supported in part by grants SEP-CONACyT
79685 and PAPIIT 100508.

References
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