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1. Introduction. Among the circles drawn through three distinct inte-
ger points in the plane, are circles which pass through four or more integer
points rare? This question is a simplification of one asked by Huxley and
Žunić in their investigation of configurations of integer points in convex plane
sets [6, 7]. For a convex plane set S, the discrete version of S is the set J(S)
of integer points in S. The (discrete) weight of S is the size N(S) of J(S), the
number of integer points in S. There is a natural equivalence relation on sets
of integer points, that J is equivalent to J ′ when J ′ is the translation of J
by an integer vector. We extend this equivalence to the convex sets S and
S′ themselves, which we call equivalent when the configurations J(S) and
J ′(S) are equivalent. The question which arose in [7] is: among the equiva-
lence classes of circles of fixed weight drawn through three distinct points in
the plane, are circles which pass through four or more integer points rare?
More generally, Huxley and Žunić define the family of S-ovals to be all sets
S′ obtained from a given convex plane set S (the “oval”) by enlargement
and translation, and they ask the same question with the family of circles
replaced by the family of S-ovals. In this generality the answer can be No,
as when S is a square.

Let Pk(R) denote the number of equivalence classes of sets of k distinct
integer points such that the k points lie on some circle radius r ≤ R.

Theorem 1. For R sufficiently large

P3(R) = π2R4 +O(R2+κ(logR)λ),

where κ = 131/208 and λ = 18627/8320.

Theorem 2. Let ε > 0. For R sufficiently large

P4(R) =
32(3 +

√
2)

21ζ(3)
ζ

(
3
2

)
L

(
3
2
, χ

)
R3 +O(R76/29+ε),
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where L(s, χ) is the Dirichlet L-function formed with the non-trivial char-
acter mod 4. The constant implied in the O-sign depends on ε.

Theorem 3. There is a constant c such that for each k ≥ 5 and R
sufficiently large (depending on k)

Pk(R) ≥ cR2 logR.

Let ε > 0. For each k ≥ 5 there is a constant C(k, ε) such that for R
sufficiently large

Pk(R) ≤ C(k, ε)R76/29+ε.

The proof of Theorem 1 follows a suggestion of Kolountzakis developed
for general ovals in [8].

With more work we can replace the factor c logR in Theorem 3 by a
polynomial in logR of degree 2k−1 − 1, so for large enough R the lower
estimate increases with k for small k ≥ 5. This is because we consider a
small number of circles (decreasing with k), which however contain many
integer points.

Let P ′k(R) be the number of equivalence classes of sets of k distinct
integer points which form the complete set of integer points on some circle
radius r ≤ R. Schinzel [9] showed that P ′k(R) is non-zero for large R. Then
we have

P4(R) =
K(R)∑
k=4

kC4P
′
k(R).

In [7] Huxley and Žunić consider M(N), the number of equivalence
classes of S-ovals with weight at most N . They impose the Line Condi-
tion, that S is a convex bounded plane set with no straight line segment of
rational gradient in the boundary. The unit circle satisfies the Line Condi-
tion, but the unit square does not. In particular, when S is the circle, the
argument of [7] shows that

N2 ≥M(N) ≥ N2 −O
(K(R)∑
k=4

k2P ′k(R)
)

for some value of R of the form O(
√
N). Since k2 ≤ 16kC4 for k ≥ 4, we

deduce that
M(N) = N2 +O(C(ε)N3/2+ε)

for any ε > 0, with C(ε) some constant depending on ε.

2. Proof of Theorem 1 and Theorem 3 (lower bound)

Proof of Theorem 1. Each equivalence class contains three triangles with
one vertex at the origin. The next vertex M1 lies in the closed circular disc
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centre the origin, radius 2R. The third vertex lies on some circle of the
coaxial system through O and M1 with radius at most R. Two circles of
the system, C1 and C2, have radius R. If M2 lies on or inside C1, and on
or outside C2, but not at O or M1, then the circle OM1M2 has some radius
r ≤ R, and O, M1, M2 are numbered anticlockwise; if M2 lies on or inside C2,
and on or outside C1, but not at O or M1, then the circle OM1M2 has some
radius r ≤ R, but O, M1, M2 are numbered clockwise. The search region
for M2 consists of the points of the circular disc bounded by C1 which do
not lie in the circular disc bounded by C2, and also the shorter arc of C2

strictly between M1 and O. Let OM1 = 2d, and let the chord OM1 subtend
an angle 2θ at the centre of C1. Then

(2.1) d = R sin θ,

and the area of the search region for M2 is

πR2 − 2(θR2 −R2 sin θ cos θ).

We regard the search region as a disc radius R minus a “vesica”, a region
bounded by arcs of two equal circles. Theorem 5 of [5] applies to the disc
and the vesica, so the number of integer points in this region is

(π − 2θ + sin 2θ)R2 +O(Rκ(logR)λ)

for R sufficiently large, where κ = 131/208 and λ = 18627/8320.
In order to sum over M1, we take a continuous variable t corresponding

to 2d in (2.1), and we put

F (t) = π − 2θ + sin 2θ,

where θ in 0 < θ < π/2 is defined by sin θ = t/2R. Then

3P3(R) =
∑
M1

(R2F (
√
m2

1 + n2
1) +O(Rκ(logR)λ)),

where the sum is over integer points M1 = (m1, n1) in the circle centre O,
radius 2R. We use Theorem 5 of [5] again to pass from the discrete sum
to the integral. For t ≤ 2R, let I(t) be the number of integer points in the
circle centre O, radius t. Then

(2.2) I(t) = πt2 +O(tκ(log(t+ 2))λ) +O(1)

uniformly in 0 ≤ t ≤ 2R. We can write

3P3(R) = R2
2R�

0

F (t) dI(t) +O(R2+κ(logR)λ)(2.3)

= 2πR2
2R�

0

F (t)t dt+O(R2+κ(logR)λ).



112 M. N. Huxley and S. V. Konyagin

We evaluate the integral by the substitution t = 2R sin θ, so

2R�

0

F (t)t dt = 4R2

π/2�

0

(π − 2θ + sin 2θ) sin θ cos θ dθ =
3πR2

2

by an elementary calculation. We substitute into (2.3) to obtain the result
of Theorem 1.

Proof of Theorem 3 (lower bound). We consider cyclic polygons with
centre at the origin; we expect these to provide the majority of equivalence
classes when k ≥ 5. For n ≥ 1, let r(n) be the number of solutions in
integers (not necessarily positive) of n = x2 + y2. Let Q`(N) be the num-
ber of integers n in 1 ≤ n < N with r(n) = `; we know that Q`(N) = 0
unless 4 | `. Using the notation I(t) as in (2.2), we have for N sufficiently
large

(2.4)
∑
`

`Q`(N) =
N∑
n=1

r(n) = I(
√
N)− 1 = πN +O(Nκ/2(logN)λ).

We compare (2.4) with a result stated by Ramanujan and proved by Wil-
son [10]: ∑

`

`2Q`(N) =
N∑
n=1

r(n)2 =
(

1
4

+ o(1)
)
N logN.

If r(n) = ` ≥ k, then the number of ways of selecting k vertices of a
cyclic polygon centre O is the binomial coefficient

`Ck =
`(`− 1) · · · (`− k + 1)

k!
≥ `(`− 1)
k(k − 1)

.

Hence

Pk(
√
N) ≥

∑
`≥k

`(`− 1)
k(k − 1)

Q`(N)

≥ 1
k(k − 1)

(∑
`

`2Q`(N)−
∑
`

`Q`(N)−
∑
`<k

`2Q`(N)
)

≥
(

1
4k(k − 1)

+ o(1)
)
N logN,

which establishes Theorem 3.

Wilson’s closing remarks in [10] imply further moments:∑
`

`mQ`(N) =
N∑
n=1

r(n)m = (cm + o(1))N(logN)bm
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with bm = 2m−1 − 1. A careful residue calculation will show that

Pk(
√
N) ≥

∑
`≥k

`CkQ`(N) = (1 + o(1))NFk(logN)

for fixed k and large N , where Fk(x) is a polynomial in x of degree bk, with
leading coefficient ck/k!, whose terms correspond to the Laurent expansion
of a certain Dirichlet series at the pole s = 1 of order bk + 1.

3. Symmetric cyclic quadrilaterals. We need ten lemmas to prove
Theorem 2. We set up some notation. The integer points Mi are (mi, ni). By
equivalence we can suppose that one vertex of the polygon is the origin O.
The centre of the circle OM1M2 is the point (A/2Q,B/2Q) with

A = (m2
1 + n2

1)n2 − (m2
2 + n2

2)n1,(3.1)
B = m1(m2

2 + n2
2)−m2(m2

1 + n2
1),(3.2)

Q = m1n2 −m2n1.(3.3)

Let d be the highest common factor d = (A,B,Q), with A = ad, B = bd,
Q = dq.

We adopt the convention that ε denotes any exponent which can be
taken arbitrarily small, not always the same at each occurrence, and the
order-of-magnitude constants implied in the O() and � notations depend
on the choice of any exponent ε in the same formula.

Lemma 1. The size of K(R), the maximum number of integer points on
a circle with radius r ≤ R, is

K(R) = O(Rε).

Proof. By (3.3) the denominator has q ≤ 8R2, so that

(3.4) (2qmj − a)2 + (2qnj − b)2 = 4q2r2.

The left hand side of (3.4) is an integer, so the right hand side of (3.4)
is an integer T ≤ 256R6 which does not depend on the integer point Mj .
The number of integer points on the circle x2 + y2 = T is O(T ε) (Hardy
and Wright [3, Chapter 18]), and the result follows, using our convention on
exponents ε.

Lemma 2. The number of equivalence classes of triangles of integer
points with circumradius r ≤ R and with common factor d > D is

O

(
R4 log7R

D

)
.

Proof. We represent the vertices of the triangle OM1M2 as Gaussian
integers 0, m1 + in1, and m2 + in2. By (3.1)–(3.3) the centre of the circle
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OM1M2 in the complex plane is

a+ ib

2q
=

(m2
1 + n2

1)(n2 − im2)− (m2
2 + n2

2)(n1 − im1)
2(m1n2 −m2n1)

=
(m1 + in1)(m1 − in1)(m2 + in2)− (m2 + in2)(m2 − in2)(m1 + in1)

(m1 − in1)(m2 + in2)− (m1 + in1)(m2 − in2)

=
(m1 + in1)(m2 + in2)(m1 −m2 − i(n1 − n2))
(m1 − in1)(m2 + in2)− (m1 + in1)(m2 − in2)

.

Let δ be a generator of the ideal

〈δ〉 = 〈m1 + in1,m2 + in2〉.
Then there are Gaussian integers α1, α2, and α3 with

m1 + in1 = α1δ, m2 + in2 = α2δ, m2 −m1 + i(n2 − n1) = α3δ

and with

(3.5) α2 = α1 + α3.

Since 〈a1, α2〉 = 〈1〉 by construction, the ideals 〈α1〉, 〈α2〉 and 〈α3〉 are
pairwise coprime. In this notation, the centre of the circle OM1M2 is

(3.6)
a+ ib

2q
= − α1α2α3δ

α1α2 − α1α2
,

where we have cancelled a factor Norm δ.
There may be further cancellation by positive integer factors on the right

of (3.6). If so, then there is cancellation by Gaussian ideal factors. We have

〈α1, α1α2 − α1α2〉 = 〈α1, α1α2〉 = 〈α1, α1〉,
and similarly

〈α2, α1α2 − α1α2〉 = 〈α2, α2〉.
By (3.5),

α1α2 − α1α2 = α1α3 − α1α3

and we obtain similarly

〈α3, α1α2 − α1α2〉 = 〈α3, α3〉.
We call a Gaussian integer α primitive if we cannot write α = cβ, where

c is a positive integer and β is another Gaussian integer. If β is primitive,
then

〈β, β〉 =

{
〈1〉 if β is odd,

〈1 + i〉 if β is even.

We write αj = cjβj , where cj is a positive integer, and βj is a primitive
Gaussian integer. Then

(3.7) 〈αj , αj〉 = 〈cj〉 or 〈1 + i〉〈cj〉.
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Since the ideals 〈α1〉, 〈α2〉, 〈α3〉 are pairwise coprime, at most one of 〈β1〉,
〈β2〉, 〈β3〉 is even, and the extra factor 〈1 + i〉 in (3.7) occurs for at most
one value of j. The positive integers c1, c2, c3 are pairwise coprime, so the
factor c1c2c3 cancels in (3.6).

Finally, let e be the largest integer with

〈e〉 | 〈δ〉, 〈c1c2c3e〉 | 〈α1α2 − α1α2〉.

The largest positive integer factor which cancels in (3.6) is either c1c2c3e or
2c1c2c3e. Hence

(m1 − in1)(m2 + in2)− (m1 + in1)(m2 − in2) = 2dqi,

where

d = c1c2c3eNorm δ or
1
2
c1c2c3eNorm δ,

and the positive integer e satisfies

e2 | Norm δ, e3 | d.

Suppose that the common factor d and the factors c1, c2, c3, and e and
the ideal 〈δ〉 have been fixed. We choose β1 and β3 so that the triangle
OM1M2 has circumradius at most R, with

(3.8) Normβ1 ≤
4R2

c21 Norm δ
, Normβ3 ≤

4R2

c23 Norm δ
.

From (3.5) we have
c2β2 = c1β1 + c3β3,

and β2 is determined by the values of β1 and β3, which must satisfy the
congruence

(3.9) c1β1 + c3β3 ≡ 0 (mod 〈c2〉).

The solutions of (3.9) form a complex lattice Γ of Gaussian vectors
(β1, β3) in C2, and a lattice Λ of real vectors in R4 of determinant detΛ = c22.
As a real set in R4, the search region in (3.8) is a polydisc D, the product
of two two-dimensional discs.

We distinguish two cases.

Major arc case. All points of the lattice Γ in D are multiples of a single
basis vector (η1, η3). At most four of these multiples can have 〈β1, β3〉 =
〈η1, η3〉 = 〈1〉.

Minor arc case. There are two vectors (η1, η3) and (ζ1, ζ3) of Γ in D that
are linearly independent over C. We also consider the vectors (iη1, iη3) and
(iζ1, iζ3) to form a set of four vectors linearly independent over R. Let N
be the number of vectors of Γ in D. In R4 we have N vectors in a convex
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region of volume
16π2R4

c21c
2
3(Norm δ)2

.

These include a linearly independent set of four vectors, their negatives, and
the zero vector, so N ≥ 9. By triangulating the convex hull of the N points,
we form N − 4 disjoint simplices. The volume of each simplex is an integral
multiple of detΛ/24. Hence the number of non-zero vectors of Λ in D is

N − 1 ≤ 2(N − 4) ≤ 768π2R4

c21c
2
3(Norm δ)2 detΛ

=
768π2R4

c21c
2
2c

2
3(Norm δ)2

.

The total number of choices for the Gaussian integers β1, β2, β3 is

(3.10) O

(
R4

c21c
2
2c

2
3(Norm δ)2

+ 1
)

= O

(
e2R4

d2

)
in both cases. We write 8d = e3f , so the bound (3.10) is O(R4/e4f2).

Let h = Norm δ. Then h = e2g for some integer g | f . Let d(n) denote
the usual divisor function (Hardy and Wright [3, Chapters 16–18]), and let
d5(n) denote the number of representations of n as a product of five posi-
tive integers, with analogous properties. The number of primitive Gaussian
integers whose Norm is h is at most d(e)d(g). If e and f are given, then
there are at most d(e)d5(f) choices for c1, c2, c3, and the ideal 〈δ〉. Hence
the number of triangles OM1M2 with circumradius at most R, and common
factor d in a range

8D < 8d = e3f ≤ 256R2,

is

O

(
R4

∑
e

∑
f

8D<e3f≤256R2

d(e)d5(f)
e4f2

)

= O

(
R4

∑
f≤256R2

d5(f)
f2

∑
e>2(D/f)1/3

d(e)
e4

)

= O

(
R4

∑
f≤256R2

d5(f)
f2

· f logR
D

)
= O

(
R4 log7R

D

)
,

as asserted in the lemma.
When we consider cyclic quadrilaterals, there are four triangles with the

same circumcentre (a/2q, b/2q). We put

(3.11) m1n2−m2n1 = d3q, m1n3−m3n1 = d2q, m2n3−m3n2 = d1q,

d0 = d1 + d3 − d2,
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so that the areas of the triangles OM1M2, OM1M3, OM2M3 and M1M2M3

are d3q/2, d2q/2, d1q/2 and d0q/2 respectively. If we shift the vertex M1 to
the origin, then OM1M2M3 becomes a quadrilateral N3ON1N2. The centre
of the circle moves by an integer vector, so the denominator q is unchanged.
The vertices are renumbered, so the new common factors d′0, d′1, d′2, and d′3
are related to the old d0, d1, d2, and d3 by

d′0q = 2 areaN1N2N3 = 2 areaM2M3O = d1q,

d′1q = 2 areaON2N3 = 2 areaM1M3O = d2q,

d′2q = 2 areaON1N3 = 2 areaM1M2O = d3q,

d′3q = 2 areaON1N2 = 2 areaM1M2M3 = d0q,

so the suffixes are renumbered cyclically.
It is often convenient to remove the highest common factor e =

(d1, d2, d3), which is also a factor of d0, and to write dj = efj for j = 0, 1, 2, 3,
with

(3.12) f0 + f2 = f1 + f3.

There are interesting special cases when d1 = d2 or d2 = d3. If d1 = d2,
then the triangles OM2M3, OM1M3 have equal area, so the line M1M2 is
parallel to OM3, and there is a symmetry axis through the centre of the
circle, bisecting M1M2 and OM3 at right angles. Similarly, if d2 = d3, there
is a symmetry axis through the centre of the circle bisecting OM1 and M2M3

at right angles. We call these cases symmetrical cyclic quadrilaterals or cyclic
trapezia. They provide the main term in Theorem 2.

Lemma 3. The number of equivalence classes of symmetrical cyclic quad-
rilaterals with vertices at integer points and circumradius r ≤ R is

32(3 +
√

2)
21ζ(3)

ζ

(
3
2

)
L

(
3
2
, χ

)
R3 +O(R2 logR),

where L(s, χ) is the Dirichlet L-function formed with the non-trivial char-
acter mod 4.

Proof. Each equivalence class of symmetric cyclic quadrilaterals contains
two representatives (four if it is a rectangle) in which one vertex is the
origin O, and M1M2 is parallel to M3O with the vertices numbered anti-
clockwise round the circle. As in Lemma 2 we represent the vertices O,
M1, M2, and M3 by Gaussian integers 0, µ1, µ2, µ3. Let δ be a generator
of the ideal 〈µ1, µ2, µ3〉. Then there are Gaussian integers α1, α2, α3 with
µj = αjδ, and highest common factor 〈α1, α2, α3〉 = 〈1〉. As in (3.5) and (3.6)
of Lemma 2, the centre of the circle OM1M2 is

a+ ib

2q
=
α1α2(α1 − α2)δ
α1α2 − α1α2

,
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where the denominator is pure imaginary. Considering the two triangles
OM2M3 and OM1M3, we also have

a+ ib

2q
=
α2α3(α2 − α3)δ
α2α3 − α2α3

=
α1α3(α1 − α3)δ
α1α3 − α1α3

.

Again, the denominators are pure imaginary.
We introduce an equivalence relation β ∼ γ on Gaussian integers, mean-

ing that there are non-zero integers s and t with sβ = tγ. Then

i(a+ ib) ∼ α2α3(α2 − α3)δ ∼ α1α3(α1 − α3)δ ∼ α1α2(α1 − α2)δ,

and since M1M2 is parallel to M3O,

µ1 − µ2 ∼ µ3.

For any non-zero Gaussian integer η we have

β ∼ γ ⇔ βη ∼ γη.
Hence

(3.13) α1−α2 ∼ α3, α1−α2 ∼ α3, α3(α2−α3) ∼ α1(α1−α2) ∼ α1α3.

We call the Gaussian prime ideal 〈φ〉 a balanced factor of the ideal 〈β〉 if
〈φ〉 and 〈φ〉 occur to the same power in the factorisation of 〈β〉, and a heavy
factor, written 〈φ〉 |! 〈β〉, if 〈φ〉 occurs to a greater power than 〈φ〉. We note
two basic properties:

〈φ〉 |! 〈β〉 ⇔ 〈φ〉 |! 〈β〉,
and when β ∼ γ then

〈φ〉 |! 〈β〉 ⇔ 〈φ〉 |! 〈γ〉.
We use (3.13) to show that all prime ideal factors of 〈α3〉 are balanced.

Suppose that 〈φ〉 is a heavy prime ideal factor of 〈α3〉. Since 〈φ〉 occurs to
a greater power in 〈α3〉 than in 〈α3〉, we have 〈φ〉 | 〈α1〉. As 〈φ〉 occurs to a
greater power in 〈α3〉 than in 〈α3〉, we have 〈φ〉 | 〈α2〉, and so 〈φ〉 | 〈α2〉. But
this is impossible, since 〈α1, α2, α3〉 = 〈1〉.

We deduce that all Gaussian integer prime ideal factors of 〈α3〉 are bal-
anced, so for some positive integer c,

〈α3〉 = 〈c〉 or 〈1 + i〉〈c〉.
We can choose the generator δ of the ideal 〈δ〉 so that µ3 = δα3,

α3 = c or (1 + i)c.

In the case α3 = c, the symmetry axis is x = c/2 with

1 ≤ c ≤ R′ = R

Norm δ
,

and the symmetry acts by (u, v) 7→ (c− u, v). In the case α3 = (1 + i)c, the
symmetry axis is x+ y = c with
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1 ≤ c ≤ R′
√

2
2

=
R
√

2
2 Norm δ

,

and the symmetry acts by (u, v) 7→ (c− v, c− u).
Not all choices ofα1 = u+iv give primitive quadrilaterals with 〈α1, α2, α3〉

= 〈1〉. For a general choice of α3 = c, α1 = u+ iv we have

〈α1, α2, α3〉 = 〈u+ iv, c− u+ iv, c〉 = 〈u+ iv, u− iv, c〉.

The highest common factor is of the form 〈e〉 or 〈1 + i〉〈e〉 for some positive
integer e with e | c/(2, c). Similarly, for a general choice of α3 = c, α1 = u+iv
we have

〈α1, α2, α3〉 = 〈u+ iv, c− v + ic− iu, c+ ic〉 = 〈u+ iv, u− iv, c+ ic〉.

The highest common factor is of the form 〈e〉 or 〈1 + i〉〈e〉 with e | c. When
counting the Gaussian integers α1, we must sieve out multiples of odd primes
which divide α3, and multiples of 〈1 + i〉 if α3 is even.

We choose α3 first, and perform a simple asymptotic sieve ([4], [1]) to
enforce the condition 〈α1, α2, α3〉 = 〈1〉. For fixed α3, we must count Gaus-
sian integers α1 which lie in ideals 〈η〉 of the form 〈e〉 or 〈1 + i〉〈e〉 with
〈η〉 | 〈α3〉.

Let A1, A2 and A3 be the integer points α1, α2 and α3. If A3 is fixed,
then O, A1, A2, A3 lie in anti-clockwise order on some circle of the coaxial
system through O and A3. The search region for A1 and A2 lies on one side
of OA3, and between the two circles of the coaxial system which have radius
R′ = R/Norm δ, as in Theorem 1. The point A1 lies on the same side of the
symmetry axis as O, and the point A2 lies on the same side as A3. Let

|α3| = 2R′ sin θ.

By the calculation in the proof of Theorem 1, the area of the search region
for A1 is

1
2
πR′2 − (θR′2 −R′2 sin θ cos θ) =

1
2
R′2f(θ),

say.
We want to count Gaussian integers α1 in the ideal 〈η〉 lying in this

region. Part of the boundary of the search region is a straight line segment
containing integer points, so the best estimate for the number of integer
points A1 with α1 in 〈η〉 is

(3.14) A(R′, η, θ) =
f(θ)

2
· R′2

Norm η
+O

(
R′

|η|

)
.

Let t = 2R′ sin θ be a continuous variable corresponding to |α3|. The an-
gle θ = θ(t) runs from 0 to π/2. We approximate the sum of A(R′, η, θ(|α3|))
by an integral over t.
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Case (1, 1). When α3 = c, η = e, then Norm η = e2, and the steps in t
have length e. Then∑

c≤R′

A(R′, e, θ(c)) =
R′2

2e2

2R′�

0

f(θ)
dt

e
+O

(
R′2

e2

)
.

We have
2R′�

0

f(θ) dt = 2R′
π/2�

0

f(θ) d(sin θ),

and by an elementary calculation
π/2�

0

f(θ) d(sin θ) = −
π/2�

0

f ′(θ) sin θ dθ =
cos θ=1�

cos θ=0

(4− 4 cos2 θ) d(cos θ) =
8
3
,

and

(3.15)
∑
c≤R′

A(R′, e, θ(c)) =
8R′3

3e3
+O

(
R′2

e2

)
.

Case (1, 2). When α3 = c, η = (1 + i)e, then Norm η = 2e2, and the
steps in t have length 2e. The sum of A(R′, (1 + i)e, θ(c)) is given by (3.15)
with the factor 8/3 replaced by 2/3.

Case (2, 1). When α3 = (1 + i)c, η = e, then Norm η = e2, and the
steps in t have length e

√
2. The sum of A(R′, e, θ(c

√
2)) is given by (3.15)

with the factor 8/3 replaced by 4
√

2/3.

Case (2, 2). When α3 = (1 + i)c, η = (1 + i)e, then Norm η = 2e2, and
the steps in t have length e

√
2. The sum of A(R′, (1 + i)e, θ(c

√
2)) is given

by (3.15) with the factor 8/3 replaced by 2
√

2/3.

The four sums of type (3.15) count numberings of vertices of equivalence
classes of cyclic trapezia. A rectangle can be labelled OM1M2M3 in four
ways; this does not affect the ideals 〈δ〉 and 〈η〉, and the four numberings
will belong to the same case, either Case (1, 1) or Case (1, 2). Other cyclic
trapezia can be labelled OM1M2M3 in two ways; this does not affect the
ideals 〈δ〉 and 〈η〉, and the two numberings will belong to the same case.
If the trapezium OM1M2M3 is a rectangle, then A1 lies on a straight line
perpendicular to OM3. The number of rectangles in any case is O(R′2/e2),
within the error allowed in (3.15). Hence the number of equivalence classes
of cyclic trapezia in Case (1, 1) with 〈η〉 fixed is given by (3.15) with the
factor 8/3 halved to 4/3, and similarly in the other cases.

In the simple asymptotic sieve, the possible common factors to remove
are built up from odd primes and the Gaussian prime ideal 〈1 + i〉. The
number of equivalence classes of primitive cyclic trapezia with α3 of the
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form c is
4
3
R′3
(

1− 1
4

) ∏
p odd

(
1− 1

p3

)
+O

(
R′3

∑
e>R′/2

1
e3

)
+O

(
R′2

∑
e≤R′

1
e2

)

=
8R′3

7ζ(3)
+O(R′2).

In the case with α3 of the form (1 + i)c, the numerical factor (4/3)(1− 1/4)
is replaced by

2
√

2
3

(
1− 1

2

)
=
√

2
3
,

so the total number of equivalence classes of primitive cyclic trapezia is

8(3 +
√

2)
21ζ(3)

R′3 +O(R′2) =
8(3 +

√
2)

21ζ(3)
· R3

(Norm δ)3/2
+O

(
R2

Norm δ

)
.

The final step is to replace the common factor 〈δ〉. We chose a particular
generator δ of the ideal 〈δ〉, so we sum over non-zero Gaussian integers δ with
Norm δ ≤ R2. This introduces an extra factor in the main term, 4 times the
Dedekind zeta function of the Gaussian field at 3/2. We deduce the result
of the lemma.

4. Factorisation. We extend the notation of (3.11) and (3.12), putting
d4 = d1 + d3 = d0 + d2 to correspond to the area of the whole quadrilateral,
and dj = efj .

Lemma 4. Let d0, d1, d2, d3 and d4 be positive integers. Then there are
31 positive integers eα, the total decomposition set of d0, . . . , d4, indexed by
the non-empty subsequences of 01234, such that

(4.1) dj =
∏
j∈α

eα,

with the highest common factor property

(4.2) (eα, eβ) > 1 ⇒ α ⊂ β or β ⊂ α.
If

(4.3) d0 + d2 = d1 + d3 = d4,

then all the eα are 1 except possibly for the uncommon factors e0, e1, e2,
e3 and e4, the side factors e01, e03, e12, e23, e024 and e134, and the common
factor e = e01234, so that

d0 = e0e01e03e024e, d1 = e1e01e12e134e,(4.4)
d2 = e2e12e23e024e, d3 = e3e03e23e134e,(4.5)
d4 = e4e024e134e,(4.6)
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and (4.3) gives the relations

e0e01e03 + e2e12e23 = e4e134,(4.7)
e1e01e12 + e3e03e23 = e4e024.(4.8)

Proof. The total decomposition set was introduced by Hall in [2]. The
basic property (4.2) allows us to read off highest common factors, such as

(d1, d2, d3, d4) = e1234e, (d1, d3, d4) = e134e0134e1234e,

(d1, d3) = e13e013e123e134e0123e0134e1234e.

Since d4 = d1 +d3, we have (d1, d3) = (d1, d3, d4) and so eα = 1 if α contains
1 and 3 but not 4. Similarly, eα = 1 if α contains 1 and 4 but not 3, or 3 and
4 but not 1, or 0 and 2 but not 4, or 0 and 4 but not 2, or 2 and 4 but not 0.
With these restrictions we can write out (4.1) explicitly in the five cases as
in (4.4) to (4.6). Substituting in (4.3) and cancelling common factors gives
(4.7) and (4.8).

Lemma 5. Let OM1M2M3 be a cyclic quadrilateral , with vertices at
the Gaussian integers 0, µ1, µ2, µ3. Let the circum-centre be (a + ib)/2q,
where (a, b, q) = 1. Let the areas of the triangles M1M2M3, OM2M3,
OM1M3, OM1M2 and of the quadrilateral OM1M2M3 be d0q/2, d1q/2,
d2q/2, d3q/2 and d4q/2 respectively. Let {eα} be the total decomposition
set of d0, . . . , d4. Then we have the Gaussian factorisations

(4.9) µ1 = e23δσ2σ3τ1, µ2 = e134δσ1σ3τ2, µ3 = e12δσ1σ2τ3,

µ2 − µ3 = e01δσ0σ1τ1,(4.10)
µ1 − µ3 = e024δσ0σ2τ2,(4.11)
µ1 − µ2 = e03δσ0σ3τ3,(4.12)

where 〈δ〉 = 〈µ1, µ2, µ3〉, and Normσj = ej , and

(4.13) a+ ib =
σ1σ2σ3τ1τ2τ3δNorm δ

ie
.

There are the relations

e134σ3τ2 − e12σ2τ3 = e01σ0τ1,(4.14)
e23σ3τ1 − e12σ1τ3 = e024σ0τ2,(4.15)
e23σ2τ1 − e134σ1τ2 = e03σ0τ3,(4.16)
e01σ1τ1 + e03σ3τ3 = e024σ2τ2,(4.17)

and

(4.18) e01e23 Norm τ1 + e03e12 Norm τ3 = e024e134 Norm τ2.

Proof. The perpendicular bisector of OM1 is

m1x+ n1y =
1
2

(m2
1 + n2

1).
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This line passes through the centre of the circle, (a/2q, b/2q), so

am1 + bn1 = (m2
1 + n2

1)q,

and similarly we have

amj + bnj = (m2
j + n2

j )q

for j = 2, 3. Hence

(4.19) d1(m2
1 + n2

1)− d2(m2
2 + n2

2) + d3(m2
3 + n2

3)

=
d1

q
(am1 + bn1)− d2

q
(am2 + bn2) +

d3

q
(am3 + bn3)

=
1
q2

∣∣∣∣∣∣∣
am1 + bn1 am2 + bn2 am3 + bn3

m1 m2 m3

n1 n2 n3

∣∣∣∣∣∣∣ = 0.

Next we write µj = mj + inj for j = 1, 2, 3. Then

(4.20) d1µ1 − d2µ2 + d3µ3 =
1
q

∣∣∣∣∣∣∣
m1 + in1 m2 + in2 m3 + in3

m1 m2 m3

n1 n2 n3

∣∣∣∣∣∣∣ = 0.

Eliminating µ3 from (4.19) using (4.20), we have

d1d2µ1µ1 + d2d3µ3µ3 = (d1µ1 + d3µ3)(d1µ1 + d3µ3),
d1(d2 − d1)µ1µ1 + d3(d2 − d3)µ3µ3 = −d1d3(µ1µ3 + µ1µ3).

Completing the square on the right, we have

(4.21) d1d3 Norm(µ1 − µ3) = d1d3(µ1 − µ3)(µ1 − µ3)
= d1(d1 − d2 + d3)µ1µ1 + d3(d1 − d2 + d3)µ3µ3

= d0d2µ2µ2 = d0d2 Normµ2,

where we have used (4.19).
To remove common factors from (4.21), we pick a generator δ of the ideal

〈µ1, µ2, µ3〉, and we write µj = αjδ. Then

d1d3 Norm(α1 − α3) = d0d2 Normα2.

We express d0, . . . , d3 in terms of the total decomposition set of Lemma 4
and cancel common factors to obtain

(4.22) e1e3e
2
134 Norm(α1 − α3) = e0e2e

2
024 Normα2.

Now we remove highest common factors from (4.20). First we have

d1α1 + d3α3 = d2α2,

then in terms of the total decomposition set

(4.23) e1e01e12e134α1 + e3e03e23e134α3 = e2e12e23e024α2.
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By the highest common factor property (4.2) we see that 〈e134〉 | 〈α2〉, so
α2 = e134β2 for some Gaussian integer β2. Similarly we can write

(4.24) α1 = e23β1, α2 = e134β2, α3 = e12β3.

Eliminating d2 from (4.20) leads to

d1(α1 − α2) + d0α2 = d3(α2 − α3),

so 〈e03〉 | 〈α1 − α2〉, and similarly we can write

(4.25) α2 − α3 = e01β01, α1 − α3 = e024β02, α1 − α2 = e03β03,

and (4.23) reduces to

(4.26) e1e01β1 + e3e03β3 = e2e024β2.

The centre of the circle OM1M2 was calculated in Lemma 2 as
a+ ib

2q
=
µ1µ2(µ1 − µ2)

2id3q
=
α1α2(α1 − α2)δNorm δ

2id3q
(4.27)

=
β1β2β03δNorm δ

2ie3eq
.

This point is also the centre of the circles OM1M3 and OM2M3, so

a+ ib

2q
=
β1β3β02δNorm δ

2ie2eq
=
β2β3β01δNorm δ

2ie1eq
.

We deduce that

(4.28)
β01

e1β1
=

β02

e2β2
=

β03

e3β3
.

We can write (4.22) using (4.24) and (4.25) as

e1e3 Normβ02 = e0e2 Normβ2.

Hence the expression in (4.28) is a Gaussian fraction whose Norm equals
e0/e1e2e3. The positive integers e0, e1, e2 and e3 are pairwise coprime
by (4.2) of Lemma 4, so the expression in (4.28) must be of the form
σ0/σ1σ2σ3, where σj is a Gaussian integer with Normσj = ej , and

σ1σ3β02 = σ0σ2β2.

The ideals 〈σ0〉, 〈σ1〉, 〈σ2〉 and 〈σ3〉 are pairwise coprime, so for some Gaus-
sian integer τ2 we have

β2 = σ1σ3τ2, β02 = σ0σ2τ2.

Similarly, there are Gaussian integers τ1 and τ3 with

β1 = σ2σ3τ1, β01 = σ0σ1τ1, β3 = σ1σ2τ3, β03 = σ0σ3τ3,

and we substitute in (4.24) and (4.25) to obtain (4.9) to (4.12), in (4.27) to
get (4.13), and in (4.26) to get (4.17). The relations (4.14), (4.15) and (4.16)
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are found by substituting (4.9) into (4.10), (4.11) and (4.12). Finally, we
substitute (4.9) into (4.19) to obtain the Norm relation (4.18).

5. Non-symmetric cyclic quadrilaterals. We aim for an upper esti-
mate, which allows certain simplifications. Each equivalence class contains
four quadrilaterals with a vertex at the origin. The vertices are numbered
anti-clockwise from the origin. We pick a representative with

(5.1) e0e2e
2
024 ≥ e1e3e2134.

As in the proof of Lemma 2, we first count primitive cyclic quadrilaterals
for which the ideal 〈δ〉 in Lemma 5 is 〈1〉. We replace the common factors
at the end of the argument. The common factor e = e01234 in Lemma 4 may
still be non-trivial. We put dj = efj , and we consider size ranges

(5.2) D ≤ f4 = f1 + f3 ≤ 2D.

Our main strategy is to fix components of the total decomposition set
of d0, . . . , d4, and to count the number of possible Gaussian integers τ1, τ2
and τ3 in Lemma 5. Cyclic quadrilaterals for which τ1, τ2 and τ3 are small are
treated by fixing τ1, τ2 and τ3, and counting the possible Gaussian integers
σ0, σ1, σ2 and σ3 in Lemma 5. The Dirichlet interchange principle “sum the
largest range first and the shortest range last” leads to further case-splitting.

Lemma 6. Let all the total decomposition set except e = e01234 be fixed ,
and let the Gaussian integers σ0, σ1, σ2 and σ3 be fixed. Then the number
of different cyclic quadrilaterals OM1M2M3 with circumradius r ≤ R is at
most

(5.3) O

(
R2

e1e3e4e2134 Norm δ
+ 1
)
.

Proof. The choice of τ2 determines τ1 and τ3 by the simultaneous equa-
tions (4.15) and (4.17), which give

(e1e01e12 + e3e03e23)τ1 = e12e024σ1σ2τ2 + e03e024σ0σ3τ2,

(e1e01e12 + e3e03e23)τ3 = e23e024σ2σ3τ2 − e01e024σ0σ1τ2.

We can simplify again using (4.8) to

e4τ1 = e12σ1σ2τ2 + e03σ0σ3τ2,(5.4)
e4τ3 = e23σ2σ3τ2 − e01σ0σ1τ2.(5.5)

Let τ2 = x + iy. Then (5.4) and (5.5) both imply congruences for x and y
modulo e4. These congruences are not independent because of (4.7). Since

〈e4, e12σ1σ2〉 = 〈e4, e03σ0σ3〉 = 〈1〉,

the only possible common factor is 2, and (5.4) gives a linear congruence of
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the form
kx+ `y ≡ 0 (mod e4/(2, e4)),

whose solutions form a lattice Λ of determinant e4/(2, e4).
From (4.9) we have

Norm τ2 ≤
4R2

e1e3e2134 Norm δ
,

so τ2 lies within a circle in the complex plane.

Major arc case. All points of the lattice Λ within the circle lie on a
straight line through the origin, so the values of τ2 are positive and negative
multiples of the smallest non-zero point λ of Λ on this straight line. By
homogeneity, only two multiples ±nλ will give 〈µ1, µ2, µ3〉 = 〈δ〉. Hence
there are only two possible values of τ2.

Minor arc case. The points of Λ within the circle do not all lie on a
straight line. By triangulating the convex hull, we see that the number of
non-zero lattice points in the circle is

O

(
R2

e1e3e2134 Norm δ · detΛ

)
= O

(
R2

e1e3e4e2134 Norm δ

)
.

These two cases give the two terms in (5.3) of the lemma.

In the symmetric case some of the side factors in Lemma 4 are large, and
the uncommon factors are small. Our next lemma discusses non-symmetric
quadrilaterals of this type.

Lemma 7. Let ε > 0 and let θ in 0 ≤ θ ≤ 1 be given. Let D be a
large positive integer. We consider a sum over quintuples of positive inte-
gers d0, . . . , d4 related by (4.3) and satisfying conditions involving the total
decomposition set of Lemma 4:

e01234 = (d0, d1, d2, d3, d4) = 1,(5.6)
D ≤ d4 ≤ 2D,(5.7)

e0e2e
2
024 ≤ D1+θ.(5.8)

Let
∑(1) denote a sum over sets of integers satisfying (5.6)–(5.8). Then

(5.9)
∑

d2 6=d1,d3

(1) 1
e1e3e4e2134

= O(Dθ+ε),

with the implied constant depending on ε.

Proof. We fix e0, e1, e2, e3, e024 and e134 in the total decomposition set,
and we consider the possible values of the side factors e01, e03, e12 and e23.
Combining (4.7) and (4.8), we have

e01(e0e03e024 − e1e12e134) = e23(e3e03e134 − e2e12e024),
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and since (e01, e23) = 1 by (4.2), we have, for some integer a,

e0e03e024 − e1e12e134 = ae23,(5.10)
e3e03e134 − e2e12e024 = ae01.(5.11)

The pairs of terms on the left of (5.10) and (5.11) are coprime. Hence if
a = 0, then we have

e0 = e1 = e2 = e3 = e03 = e12 = e024 = e134 = 1.

The factors e01 and e23 are unconstrained, and

d0 = d1 = e01, d2 = d3 = e23.

This case is explicitly excluded in the sum on the left of (5.9).
Suppose that a 6= 0. The equations (5.10) and (5.11) give congruences

modulo the absolute value of a. We deduce that
e0e2e03e

2
024 ≡ e1e2e12e024e134 ≡ e1e3e03e

2
134 (mod |a|),

e1e3e12e
2
134 ≡ e0e3e03e024e134 ≡ e0e2e12e

2
024 (mod |a|).

Let

(5.12) h = e0e2e
2
024 − e1e3e2134.

Then we have
|a| | e03h, |a| | e12h.

The highest common factor (e03, e12) is 1 by (4.2), so |a| |h.
The integer h in (5.12) is a difference of two coprime integers, so if h = 0,

then
e0 = e1 = e2 = e3 = e024 = e134 = 1.

The left-hand sides of (5.10) and (5.11) are now both e03− e12. Since a 6= 0,
we have e01 = e23, and since (e01, e23) = 1 by (4.2), the common value must
be 1. Thus

d0 = d3 = e03, d1 = d2 = e12.

This case also is explicitly excluded in the sum on the left of (5.9).
Suppose that e0, e1, e2, e3, e024, and e134 have been fixed, with h 6= 0 in

(5.12). The absolute value |a| is one of the O(Dε) divisors of h, so there are
O(Dε) possibilities for a. When a has also been fixed, then the integer vector
(e01, e03, e12, e23) lies in a two-dimensional lattice by (5.10) and (5.11). There
is a necessary condition from (5.11):

(5.13) ae01 ≡ e3e03e134 (mod e2e024).

When (5.13) is satisfied, then the values of e01 and e03 determine e12 by
(5.11) and e23 by (5.10). The value of e23 given by (5.10) will be an integer;
this follows from (5.12) and the congruence (5.13).
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We count the two-dimensional projections (e01, e03) of the vectors
(e01, e03, e12, e23), which lie in a lattice of determinant e2e024 defined by
the congruence (5.13). By (5.7) we have

e0e01e03e024 = d0 < d4 ≤ 2D.

Hence the integer vector (e01, e03) lies in one of O(logD) boxes of the form

(5.14) 1 ≤ e01 ≤ E1, 1 ≤ e03 ≤ E3,

with

E1E3 = O

(
D

e0e024

)
.

For each box (5.14), either all the lattice points in the box lie on a straight
line (the major arc case), or the convex hull has non-zero area (the minor
arc case). In the minor arc case, we can estimate the number of lattice points
in the box by triangulating the convex hull as

O

(
E1E3

e2e024

)
= O

(
D

e0e2e2024

)
.

In the major arc case, since the highest common factor of e01 and e03 is 1,
only one point on the straight line gives a valid solution. By (5.8) the esti-
mate

O

(
D1+θ

e0e2e2024

)
is valid in both cases.

Hence we can write the sum in the lemma as

(5.15) O

(∑
e0

∑
e1

∑
e2

∑
e3

∑
e024

∑
e134

D≤e4e024e134≤2D

∑
a

∑
h

1
e1e3e4e2134

· D
1+θ logD
e0e2e2024

)

= O

(
Dθ+2ε logD

∑
e0

∑
e1

∑
e2

∑
e3

∑
e024

∑
e134

1
e0e1e2e3e024e134

)
= O(Dθ+2ε log7D),

since the number of choices of a and h is of the order of a divisor function, at
most O(Dε). By our convention on exponents ε, we can write the expression
in (5.15) as O(Dθ+ε), which completes the proof of the lemma.

Lemma 8. Let ε > 0 and let θ in 0 ≤ θ ≤ 1 be given. Let D be a
large positive integer. We consider a sum over quintuples of positive inte-
gers d0, . . . , d4 related by (4.3) and satisfying conditions involving the total
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decomposition set of Lemma 4:

e01234 = (d0, d1, d2, d3, d4) = 1,(5.16)
D ≤ d4 ≤ 2D,(5.17)

e01e03e12e23 ≤ 4D1−θ.(5.18)

Let
∑(2) denote a sum over sets satisfying (5.16)–(5.18). Then

(5.19)
∑

d2 6=d1,d3

(2) 1
e1e3e4e2134

= O(D2(1−θ)/3+ε),

with the implied constant depending on ε.

Proof. We fix all the total decomposition set except e0, e2, e4 and e024.
The product e4e024 is fixed by (4.8) of Lemma 4, so there are O(Dε) possi-
bilities for e4 and e024. When e4 has been chosen, then by (4.7),

e0e01e03 + e2e12e23 = e4e134,

which is a linear relation between e0 and e2 with highest common factor
(e01e03, e12e23) = 1 by (4.2) of Lemma 4. The integer values of e0 which
give integer values of e2 are spaced e12e23 apart. Since d0 ≤ 2D, the integer
values of e0 lie in an interval of length

O

(
D

e01e03e024

)
.

The number of positive solutions for e0 and e2 is

O

(
D

e01e03e12e23e024
+ 1
)
.

We want to estimate the sum

(5.20)
∑
e01

∑
e03

∑
e12

∑
e23

∑
e1≤D

∑
e3≤D

∑
e134≤D

∑
e024

(2) 1
e1e3e4e2134

×
(

D

e01e03e12e23e024
+ 1
)
.

There are O(Dε) values of e4 and e024, and by (5.17) the main term is

(5.21) O

(∑
e01

∑
e03

∑
e12

∑
e23

∑
e1

∑
e3

∑
e134

(2) Dε

e1e3e01e03e12e23e134

)
= O(Dε log7D).

We can write this bound as O(Dε) with our convention on exponents ε.
Next we consider the remainder term +1 in (5.20). We pick a parameter

E in 1 ≤ E ≤ D. If e024 ≤ E then by (5.17), e4e134 ≤ D/E, so the remainder
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terms when e024 ≤ E in (5.20) contribute

O

(∑
e01

∑
e03

∑
e12

∑
e23

∑
e1

∑
e3

∑
e134

∑
e024≤E

(2) E

e1e3e134D

)

= O

(∑
e01

∑
e03

∑
e12

∑
e23

(2) EDε log3D

D

)
= O(D−θ+εE log7D),

which we can write as

(5.22) O(D−θ+εE)

with our convention on exponents ε.
From (5.17),

e0e2e01e03e12e23e
2
024 = d0d2 < d2

4 ≤ 4D2,

so if e024 > E then

e01e03e12e23 <
4D2

E2
.

The remainder terms in (5.20) when e024 > E contribute

O

(∑
e01

∑
e03

∑
e12

∑
e23

∑
e1

∑
e3

∑
e134

∑
e024

(2)

e01e03e12e23<4D2/E2

1
e1e3e2134

)

= O
(
Dε log2D

∑
e01

∑
e03

∑
e12

∑
e23

e01e03e12e23<4D2/E2

1
)

= O

(
Dε log2D · D

2 log3D

E2

)
,

which we can write as

(5.23) O

(
D2+ε

E2

)
with our convention on exponents ε.

When we choose
E = D(2+θ)/3,

then both bounds (5.22) and (5.23) become

O(D2(1−θ)/3+ε),

which establishes the lemma.

Lemma 6 has to be complemented by a counting argument that still
works when the Gaussian factors τj in Lemma 5 are small. Lemma 9 is
based on the identity (4.18), which corresponds to Ptolemy’s theorem in
the geometry of circles. We thank W. Zudilin for suggesting that Ptolemy’s
theorem was relevant.
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Lemma 9. Let ε > 0 be given. Let E be a large positive integer. Let the
Gaussian integer δ be fixed. Then the number of different cyclic quadrilat-
erals OM1M2M3 with circumradius r ≤ R and

(5.24) e024e134 Norm τ2 ≤ E

is

(5.25) O

(
R2+ε

Norm δ
+ E2Rε

)
,

where the implied constant depends on ε.

Proof. We write (4.18) as

(5.26) u1 + u3 = u2,

where

u1 = e01e23 Norm τ1, u2 = e024e134 Norm τ2, u3 = e03e12 Norm τ3.

When u2 has been chosen to satisfy (5.24), then there are O(Rε) choices for
e024, e134 and the Gaussian integer τ2. There are u2 − 1 choices for u1 < u2

by (5.26), and then O(Rε) choices for e01, e23 and the Gaussian integer τ3.
The integer u3 is determined by (5.26), and there are O(Rε) choices for e03,
e12 and the Gaussian integer τ3.

When e134 ≥ e024, then we see from (4.9) that

(5.27) Normσ1σ3 ≤
4R2

e2134 Norm δNorm τ2
.

When the non-zero Gaussian integers σ1 and σ3 have been chosen, then
(4.15) gives the value of σ0 and (4.17) gives the value of σ2, provided that
σ1 and σ3 satisfy the necessary congruences

e23σ3τ1 ≡ e12σ1τ3 (mod 〈e024τ2〉),(5.28)
e03σ3τ3 ≡ −e01σ1τ1 (mod 〈e024τ2〉).(5.29)

Let 〈η〉 be the ideal
〈η〉 = 〈e23τ1, e03τ3, e024τ2〉.

We see from (4.9), (4.10) and (4.11) that the Gaussian integers α1, α1 − α2

and α1 − α3 in the proof of Lemma 5 are all in 〈η〉. But 〈α1, α2, α3〉 = 〈1〉,
so 〈η〉 = 〈1〉. Hence (5.28) and (5.29) can be combined into one congruence
of the form

(5.30) σ3 ≡ γσ1 (mod 〈e024τ2〉).

As in the proof of Lemma 2, the solutions of (5.30) form a complex
lattice Γ of Gaussian vectors (σ1, σ3) in C2, and a lattice Λ of real vec-
tors in R4 of determinant detΛ = e2024 Norm τ2. We cover the region of C2
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satisfying (5.27) by O(logR) domains D(U, V ), defined by the inequalities

Normσ1 ≤ U, Normσ3 ≤ V,
with

(5.31) UV ≤ 16R2

e2134 Norm δNorm τ2
.

As a real set in R4, D(U, V ) is a polydisc, the product of two two-dimensional
discs.

We distinguish two cases.

Major arc case. All points of the lattice Γ in D(U, V ) are multiples
of a single basis vector (η1, η3). At most four of these multiples can have
〈σ1, σ3〉 = 〈η1, η3〉 = 〈1〉.

Minor arc case. There are two vectors (η1, η3) and (ζ1, ζ3) of Γ in
D(U, V ) that are linearly independent over C. We also consider the vectors
(iη1, iη3) and (iζ1, iζ3) to form a set of four vectors linearly independent
over R. Let N be the number of vectors of Γ in D(U, V ). In R4 we have
N vectors in a convex region of volume π2UV . These include a linearly in-
dependent set of four vectors, their negatives, and the zero vector, so N ≥ 9.
By triangulating the convex hull of the N points, we form N − 4 disjoint
simplices. The volume of each simplex is an integral multiple of detΛ/24.
Hence the number of non-zero vectors of Λ in D(U, V ) is

N − 1 ≤ 2(N − 4) ≤ 48π2UV

detΛ
≤ 768π2R2

u2
2 Norm δ

,

where we have substituted from (5.31).

We sum over O(logR) regions D(U, V ), so the number of choices for the
Gaussian integers σ1 and σ3, which determine σ0 and σ2, is

(5.32) O

(
R2 logR
u2

2 Norm δ
+ logR

)
,

where the first term comes from the minor arc case and the second term
from the major arc case.

When e024 ≥ e134, then we see from (4.11) that

Normσ0σ2 ≤
4R2

e2024 Norm δNorm τ2
.

When the non-zero Gaussian integers σ0 and σ2 have been chosen, then
(4.16) gives the value of σ1 and (4.14) gives the value of σ3, provided that
σ0 and σ2 satisfy the necessary congruence conditions

e23σ2τ1 ≡ e03σ0τ3 (mod 〈e134τ2〉),(5.33)
e12σ2τ3 ≡ −e01σ0τ1 (mod 〈e134τ2〉).(5.34)
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The ideal 〈e23τ1, e12τ3, e134τ2〉 contains α1, α3 and α2, so it is 〈1〉, and we
can combine (5.33) and (5.34) into one congruence of the form

σ2 ≡ γσ0 (mod 〈e134τ2〉).
We obtain the bound (5.32) for the number of choices of σ0, σ1, σ2 and σ3

again.
To estimate the number of cyclic quadrilaterals in the lemma, we sum the

bound (5.32) over positive integers u1, u2 and u3 satisfying (5.24) and (5.26).
We obtain

O

(
R3ε

E∑
u2=2

u2−1∑
u1=1

(
R2 logR
u2

2 Norm δ
+ logR

))
= O

(
R2+3ε log2R

Norm δ
+E2R3ε logR

)
,

which gives the result of the lemma by our convention on exponents ε.

Lemma 10. Let ε > 0 be given. Then the number of different non-
symmetric cyclic quadrilaterals OM1M2M3 with circumradius r ≤ R is

(5.35) O(R76/29+ε),

where the implied constant depends on ε.

Proof. First we consider primitive quadrilaterals, for which the ideal
〈δ〉 = 〈µ1, µ2, µ3〉 is 〈1〉. We count representatives of equivalence classes for
which (5.1) holds. The denominator q and the highest common factor e =
e01234 do not enter the argument. We consider size ranges of the form (5.2).

We apply Lemmas 7 and 8 to the total decomposition set of f0, . . . , f4,
which is the same as that of d0, . . . , d4, except that the highest common
factor e01234 is replaced by 1. From (4.4), (4.5) and (5.2) we have

e0e1e2e3(e01e03e12e23e024e134)2 = f0f1f2f3 ≤ 16D4.

Hence either the condition (5.8) of Lemma 7 or the condition (5.18) of
Lemma 8 must hold. We take θ = 2/5, and then the bounds in both Lemma 7
and Lemma 8 are

O(D2/5+ε).

We pick a parameter K ≥ 1. If

(5.36) e1e3e4e
2
134 ≤ KR2,

then the upper bound in Lemma 6 is

(5.37) O

(
KR2

e1e3e4e2134

)
.

The number of primitive non-symmetric cyclic quadrilaterals with circum-
radius r ≤ R satisfying (5.1), (5.2) and (5.36) is

(5.38) O(D2/5KR2+ε).



134 M. N. Huxley and S. V. Konyagin

In the contrary case to (5.36) we have

(5.39) e0e2e4e
2
024 ≥ e1e3e4e2134 > KR2,

so that by (5.2),

K2R4 < e0e1e2e3e
2
4e

2
024e

2
134 < 4e0e1e2e3D2.

Now by (4.9) and (4.11),

e0e1e2e3e
2
024e

2
134(Norm τ2)2 = Norm(µ2(µ1 − µ3)) ≤ 16R4,

and in Lemma 9,

u2 = e024e134 Norm τ2 ≤
4R2

√
e0e1e2e3

<
8D
K
.

We take E = [8D/K] in Lemma 9. Then the number of primitive cyclic
quadrilaterals with circumradius r ≤ R satisfying (5.1), (5.2) and (5.39) is

(5.40) O

(
R2+ε +

D2Rε

K2

)
.

We choose

K =
D8/15

R2/3
+ 1,

so that both bounds (5.38) and (5.40) are

(5.41) O(D14/15R4/3+ε +R5/2+ε).

We sum the bound (5.41) over all ranges (5.2) with D ≤ R40/29 to get the
bound

(5.42) O(R76/29+ε).

The remaining primitive cyclic quadrilaterals of integer points have

dj ≥
1
2
d4 ≥

1
2
R40/29

for some j = 1, 2, or 3. By Lemma 2, the four points O, M1, M2, M3 include
the vertices of one of the

O(R76/29 log7R)

equivalence classes of triangles with 2d > R40/29. By Lemma 1 each such
triangle can be completed to a cyclic quadrilateral OM1M2M3 of integer
points in at most K(R) = O(Rε) ways. With our convention on exponents ε,
the number of cyclic quadrilaterals of integer points with some common
factor dj large and with circumradius r ≤ R is again estimated by (5.42).

To count imprimitive quadrilaterals, we replace R2 by R2/Norm δ
in (5.42). We sum over Gaussian integers δ with Norm δ ≤ 4R2 to obtain
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O

(
Rε

∑
Norm δ≤4R2

(
R2

Norm δ

)38/29)
= O(R76/29+ε),

which is the result of the lemma.

Theorem 2 follows at once from the asymptotic formula of Lemma 2 and
the upper bound of Lemma 10.

6. Completion of the proof of Theorem 3. To prove the upper
bound in Theorem 3 we need a combinatorial lemma.

Lemma 11. Let V be a set of five or more integer points lying on a
circle. Then there is some subset of four points of V which does not form
the vertices of a symmetric trapezium.

Proof. Let A, B, C, D, E be five distinct points on a circle, in cyclic
order, such that among any subset of four points, there is a pair of parallel
joins. Line segments which share a vertex cannot be parallel. Line segments
which cross within the circle cannot be parallel. Each of the five quadrilat-
erals ABCD, ABCE, ABDE, ACDE and BCDE contains a different pair
of parallel line segments. The only configuration consistent with these con-
straints has AD ‖ BC, AB ‖ CE, AE ‖ BD, AC ‖ DE and BC ‖ CD. In
each case a side of the pentagon ABCDE is parallel to the proper diagonal
which does not meet that side.

The five trapezia ABCD, ABCE, ABDE, ACDE and BCDE are sym-
metric, so the angles of the pentagon ABCDE are all equal. Since the pen-
tagon is inscribed in a circle, it is regular. The complex numbers α, β and γ
representing A, B and C have γ−β = ζ(β−α), where ζ is some fifth root of
unity. Since ζ does not lie in the Gaussian field Q(i), the complex numbers
α, β and γ cannot all be Gaussian integers. The set V in the lemma cannot
be the vertices of a regular pentagon, and some four-point subset of V does
not form a symmetric trapezium.

We complete the proof of Theorem 3 using the following trivial upper
bound for k ≥ 5:

Pk(R) ≤ K(R)k−4P ∗4 (R),

where P ∗4 (R) is the number of equivalence classes of non-symmetric cyclic
quadrilaterals with circumradius r ≤ R, and K(R) is the maximum number
of integer points on a circle of radius r ≤ R. The estimates for K(R) in
Lemma 2 and for P ∗4 (R) in Lemma 9 give the upper bound in Theorem 3.
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