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by

Christophe Smet and Walter Van Assche (Leuven)

1. Introduction. The ζ-function at integer points, ζ(s) =
∑∞

k=1 1/ks

(s ∈ N), has a q-analogue, defined by

ζq(s) =
∞∑
k=1

ks−1qk

1− qk
.

It makes sense to call this a q-analogue, since

lim
q→1−

(1− q)sζq(s) = (s− 1)!ζ(s).

One property this ζq(s) shares with ζ(s) is that a lot of questions concerning
irrationality remain to be answered. So far, for q = 1/p with p ∈ N \ {0, 1},
only ζq(1) and ζq(2) have been shown to be irrational. The former was
done by Borwein [5, 6] in 1991–1992, and, using a different approach, by
Bundschuh and Väänänen [7] in 1994. Note that a 1988 result by Bézivin
[3] can be used to prove this irrationality. The irrationality of ζq(2) was
proven by Duverney [9] in 1995, the transcendence of ζq(2) (and in fact
of ζq(2s), s ∈ N) is a consequence of a general result by Nesterenko [12],
[13]. Moreover, the three values 1, ζq(1), ζq(2) have been shown to be Q-
linearly independent by Bundschuh and Väänänen [8], by Zudilin [18] and
by Postelmans and Van Assche [14].

In this paper we will prove the following result.

Theorem 1.1. Let q = 1/p, with p ∈ N\{0, 1}; let % = 10π2/(5π2− 24).
Then ζq(2) is irrational , and the inequality∣∣∣∣ζq(2)− a

b

∣∣∣∣ ≤ |b|−%
has at most finitely many integer solutions (a, b).
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Another way of putting this statement is by using the irrationality mea-
sure µ. There are a number of equivalent definitions for this irrationality
measure (Liouville–Roth constant, order of approximation, irrationality ex-
ponent). One of them is

µ(x) = inf
{
% :
∣∣∣∣x− a

b

∣∣∣∣ > 1
b%+ε

, ∀ε > 0, ∀a, b ∈ Z, b sufficiently large
}
.

Notice that for a rational number x we have µ(x) = 1, whereas for an
irrational number x we have µ(x) ≥ 2 ([10, Theorem 187]). So the theorem
implies that

2 ≤ µ(ζq(2)) ≤ 10π2

5π2 − 24
≈ 3.8936.

This is sharper than the upper bound 4.07869374 given by Zudilin [17].
The proof of the theorem is a q-adaptation of proofs of the irrationality of

ζ(2), as given by Apéry [1], based on Hermite–Padé approximation [2, 15].
It uses type I Hermite–Padé approximation to two functions f1 and f2,
with the property that f1(1) = ζq(1) and f2(1) = ζq(2). The polynomials
that arise in this approximation can be found explicitly because they are
closely related to a specific family of orthogonal polynomials, namely the
little q-Jacobi polynomials.

We can prove the irrationality and give the upper bound for the measure
of irrationality of ζq(2) using the following two lemmas:

Lemma 1.2. Let x be a real number and suppose there exist integer se-
quences an, bn (n ∈ N) such that

1. bnx− an 6= 0 for all n ∈ N;
2. limn→∞(bnx− an) = 0.

Then x is irrational.

Lemma 1.3. If the conditions of the previous lemma hold , with |bnx−an|
= O(1/bsn) and bn < bn+1 < b

1+o(1)
n , then µ(x) ≤ 1 + 1/s.

For the latter, see e.g. [4, Ex. 3, p. 376].

Remark 1.4. Since an easy calculation shows that for a natural num-
ber r,

∞∑
k=1

kqk

1− qk
−
∞∑
k=1

kqrk

1− qk
=

r−1∑
i=1

qi

(1− qi)2
∈ Q,

we also obtain the irrationality of the series
∞∑
k=1

kqrk

1− qk
.
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Moreover, these numbers obviously have the same irrationality measure
as ζq(2).

2. Some q-calculus. The following elements of q-calculus will often be
used:

• the q-Pochhammer symbols (a; q)n =
∏n−1
j=0 (1 − aqj) and (a; q)∞ =∏∞

j=0(1− aqj);
• the q-binomial factors[

n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
and

[
n

k

]
p

=
(p; p)n

(p; p)k(p; p)n−k
,

where a straightforward calculation shows that[
n

k

]
q

= qk(n−k)
[
n

k

]
p

;

• the q-derivative

Dqf(x) =


f(x)− f(qx)
x(1− q)

if x 6= 0,

f ′(0) if x = 0;
• the q-integral

qi�

0

f(x) dqx =
∞∑
k=i

qkf(qk)

and
qi�

qj

f(x) dqx =
qi�

0

f(x) dqx−
qj�

0

f(x) dqx;

• the q-Leibniz rule

Dn
q [f(x)g(x)] =

n∑
k=0

[
n

k

]
q

Dk
q (f(x))Dn−k

q (g(qkx)).

In the literature, the q-integral is often defined with an extra factor 1−q,
which makes the q-integration and the q-derivation inverse operations. Since
we do not need this property, we drop the factor to prevent it from arising
everywhere in the approximations and the analysis. We will need the little
q-Jacobi polynomials. These are given by the explicit formula (see [11])

Pn(x; a, b|q) = 2φ1

(
q−n, abqn+1

aq

∣∣∣∣ q; qx)(2.1)

=
n∑
k=0

(q−n; q)k(abqn+1; q)k
(q; q)k(aq; q)k

qkxk,
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and there also exists a Rodrigues formula

(2.2)
(qx; q)∞

(qβ+1x; q)∞
xαPn(x; qα, qβ | q)

=
qnα+n(n−1)/2(1− q)n

(qα+1; q)n
Dn
p

(
(qx; q)∞

(qβ+n+1x; q)∞
xα+n

)
.

The orthogonality is given by

(2.3)
∞∑
k=0

(bq; q)k
(q; q)k

(aq)kPn(qk; a, b | q)qkm = 0, m = 0, . . . , n− 1.

For q-integrals there exists an analogue to integration by parts, which is
called summation by parts.

Lemma 2.1 (Summation by parts). If g(p) = 0 or f(1) = 0 and if both
series converge, then

∞∑
k=0

qkf(qk)Dpg(x)|qk = −q
∞∑
k=0

qkg(qk)Dqf(x)|qk .

3. Approximations to ζq(2)

3.1. The Hermite–Padé approximation problem. The following Hermite–
Padé approximation problem is considered: find polynomials An, Bn of de-
gree ≤ n and Cn of degree ≤ n− 1 for which

Fn(z) = An(z) +Bn(z) logq(z) = 0 for z = 1, p, p2, . . . , pn,(3.1)

An(z)f1(z) +Bn(z)f2(z)− Cn(z) = O(1/zn+1), z →∞,(3.2)

with logq z = log z/log q the logarithm to base q and

f1(z) =
1�

0

dqx

z − x
, f2(z) =

1�

0

logq x
dqx

z − x
.

We suggest the following expression for Fn(x), whereRn is a yet unknown
polynomial of degree n and x is any point on the grid {qi : i ∈ Z}:

(3.3) Fn(x) =
1�

x

Rn

(
x

t

)
(qt; q)n

dqt

t
.

This choice of Fn satisfies the first condition (3.1): if we use the definition
of the q-integral we get

(3.4) Fn(pl) = −
−1∑
k=−l

Rn(pl+k)(qk+1; q)n = −
l−1∑
k=0

Rn(pk)(qk+1−l; q)n.
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It is now obvious that for 1 ≤ l ≤ n we have (qk+1−l; q)n = (1− qk+1−l) · · ·
(1 − qk+n−l), and since the summation index k runs from 0 to l − 1, the
factor (1 − q0) is present in every term, hence Fn(pl) = 0. If l = 0, then
Fn(pl) is an empty sum, hence also zero.

The orthogonality conditions that follow from the second part of the
Hermite–Padé approximation problem are given by

(3.5)
1�

0

Fn(x)xm dqx = 0, m = 0, . . . , n− 1,

and they will allow us to find what the polynomials Rn really are:

0 =
1�

0

Fn(x)xm dqx =
1�

0

1�

x

Rn

(
x

t

)
(qt; q)n

dqt

t
xm dqx(3.6)

= qm+1
1�

0

(qt; q)ntm dqt
1�

0

Rn(qy)ym dqy.

Remark 3.1. The diligent reader may think that there is a mistake in
this last expression: by switching the order of integration and replacing x
by yt, one would expect a factor Rn(y) in the last line. However, if one
replaces the integrals by sums according to the definition of q-integration,
and one then switches the order of summation, this factor turns out to be
Rn(qy). This shows that one has to be extremely careful when working with
q-integrals.

The first integral of (3.6) is the integral over [0, 1] of a strictly positive
integrand, so this factor is positive, which means that the other integral
has to be zero. Comparing this to (2.3), we conclude that the polynomials
Rn should really be the little q-Jacobi polynomials Pn(px; 1, 1 | q) (up to a
constant factor), which are in fact little q-Legendre polynomials [11, §3.12.1].

We use the explicit expression for the little q-Jacobi polynomials (2.1)
and insert it in (3.3), to get

Fn(x) =
1�

x

(qt; q)n
n∑
k=0

(q−n; q)k(qn+1; q)k
(q; q)2k

xk

tk
dqt

t

=
n∑
k=0

(−1)k pk(k+1)/2−nk
[
n

k

]
p

[
n+ k

k

]
p

xk
1�

x

(qt; q)n
tk+1

dqt.

Since

(qt; q)n =
n∑
k=0

pk(k−1)/2−nk
[
n

k

]
p

(−1)ktk,

we only need an expression for
	1
x t
m dqt with m = −n − 1, . . . , n − 1. It is
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easily shown that

1�

x

tm dqt =


1− xm+1

1− qm+1
if m 6= −1,

logq x if m = −1.

Hence

Fn(x) =
n∑
k=0

(−1)kpk(k+1)/2−nk
[
n

k

]
p

[
n+ k

k

]
p

×
n∑

i=0, i 6=k

[
n

i

]
p

pi(i+1)/2−ni(−1)i
xk − xi

pi − pk

+
n∑
k=0

p−2kn+k2

[
n

k

]2

p

[
n+ k

k

]
p

xk logq x.

So, using the definition of Fn in (3.1), we find that the polynomials An
and Bn are given by

An(x) =
n∑
k=0

(−1)kpk(k+1)/2−nk
[
n

k

]
p

[
n+ k

k

]
p

(3.7)

×
n∑

i=0, i 6=k

[
n

i

]
p

pi(i+1)/2−ni(−1)i
xk − xi

pi − pk
,

Bn(x) =
n∑
k=0

p−2kn+k2

[
n

k

]2

p

[
n+ k

k

]
p

xk.(3.8)

The Hermite–Padé approximation theory also gives us an expression for the
third polynomial Cn. We have

(3.9) Cn(x) =
∞∑
l=0

ql
An(x)−An(ql)

x− ql
+
∞∑
l=0

lql
Bn(x)−Bn(ql)

x− ql
.

Plugging in the formulae (3.7)–(3.8) for An and Bn and changing the order
of summation, we arrive at

Cn(x) =
n∑
k=0

n∑
i=0, i 6=k

(−1)k+i
[
n

k

]
p

[
n

i

]
p

[
n+ k

k

]
p

p−nk−ni+k(k+1)/2+i(i+1)/2

pi − pk

×
∞∑
l=0

ql
qli − qlk + xk − xi

x− ql

+
n∑
k=0

[
n

k

]2

p

[
n+ k

k

]
p

p−2kn+k2
∞∑
l=0

lql

x− ql
(xk − qlk).
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Using three times the identity

An −Bn

A−B
=

n−1∑
t=0

AtBn−t−1

we can further isolate the infinite sums, which can now be calculated. To
that end we use the series

∞∑
l=0

lAl =
A

(1−A)2
, |A| < 1,

in the second term. This leads us to a closed formula for Cn:

Cn(x) =
n∑
k=0

n∑
i=0,i 6=k

(−1)k+i
[
n

k

]
p

[
n

i

]
p

[
n+ k

k

]
p

(3.10)

× p−nk−ni+k(k+1)/2+i(i+1)/2

pi − pk

[k−1∑
t=0

pk−txt

pk−t − 1
−

i−1∑
t=0

pi−txt

pi−t − 1

]

+
n∑
k=0

[
n

k

]2

p

[
n+ k

k

]
p

p−2kn+k2
k−1∑
t=0

pk−txt

(pk−t − 1)2
.

Evaluating (3.2) at pn and using (3.1) shows that a∗n/b
∗
n is an approximation

for ζq(2), with

a∗n = Bn(pn)
n−1∑
k=1

k

pk − 1
+ Cn(pn),(3.11)

b∗n = Bn(pn).(3.12)

3.2. Integer sequences. To get some results regarding irrationality and
the irrationality measure, the numerator and denominator of the approxi-
mant should be integers. So we will have to multiply them by an expres-
sion en, in such a way that the numbers

(3.13) an = ena
∗
n and bn = enb

∗
n

are integers. Looking at the explicit formulae (3.8)–(3.10) for Bn(pn) and
Cn(pn), we can deduce the factors that are needed in en. Keep in mind that
p = 1/q is a natural number greater than 1.

It is well-known that the p-binomial factors are integers, hence only
powers of p can arise in the denominator of Bn(pn). There is a factor pk

2−nk

in Bn(pn), with the summation index k going from 0 to n. The minimum
of this exponent is obviously −bn2/4c (with b·c the floor function), so we
conclude that

pbn
2/4cBn(pn) ∈ Z.
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The possible denominators that arise in the term

Bn(pn)
n−1∑
k=1

k

pk − 1

are then clearly cancelled out by pbn
2/4c lcm{pj − 1 : 1 ≤ j ≤ n− 1}, where

lcm denotes the least common multiple.
Finally, we need to find the denominator of Cn(pn). This denominator

consists of factors pj and pj − 1. Looking at (3.10), we see that the latter
are completely cancelled by the factor

(lcm{pj − 1 : 1 ≤ j ≤ n})2.

It is well-known that, as a polynomial in x,

lcm{xj − 1 : 1 ≤ j ≤ n} = dn(x),

with

(3.14) dn(x) =
n∏
d=1

Φd(x),

where Φd are the cyclotomic polynomials defined by

Φd(x) =
d∏

k=1
gcd(k,d)=1

(x− ωkd) with ωd = e2πi/d.

Hence, putting a factor d2
n(p) in en will cancel all factors of type pj −1. The

only other denominators that can originate from Cn(pn) are powers of p.
At first glance, the factor needed to cancel these powers of p would

be pn
2−n. However, calculations using Maple indicate that a factor pbn

2/4c

is enough. This will indeed be proved in the next section. This leads us to
the following

Lemma 3.2. If we choose

(3.15) en = pbn
2/4cd2

n(p),

then an and bn, as defined in (3.13), are integers.

Remark 3.3. From (3.9) or (3.10), we see that Cn(pn) consists of two
terms: one originating from An, the other originating from Bn. It is easy
to show that both these terms have the predicted denominator pn

2−n, but
as mentioned before, putting these two terms together results in the dis-
appearance of these high power denominators, making bn2/4c the largest
remaining exponent of p in the denominator of Cn(pn).
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3.3. Proof of Lemma 3.2. We will work with the q-Mellin transform of
the expression Fn. The q-Mellin transform of a measurable function f on
the q-exponential lattice on (0, 1] is given by

f̂(s) =
1�

0

f(x)xs dqx.

The particular structure of Fn as given in (3.1), and the orthogonality con-
ditions as stated in (3.5), allow us to give an explicit expression for F̂n:

F̂n(s) =
(p; p)n
pn2+n+1

qs(qs−n+1; q)n
(qs+1; q)2n+1

.

The Hermite–Padé theory gives us an expression for the error term of the
approximation. In this case we get

b∗nζq(2)− a∗n =
∞∑
k=0

qk

pn − qk
Fn(qk) = qn

∞∑
l=0

qnlF̂n(l).

Let us now introduce the rational function

Rn(T ; q) =
Tn(Tq−n+1; q)n

(qT ; q)2n+1

and the series

Sn(q) =
∞∑
l=0

qlRn(ql; q).

Then obviously

(3.16) Sn(q) =
pn

2+n+1

(p; p)n

∞∑
l=0

qnlF̂n(l) =
pn

2+2n+1

(p; p)n
(b∗nζq(2)− a∗n).

A partial fraction decomposition gives

Rn(T ; q) =
2∑
s=1

n+1∑
j=1

ds,j,n(q)
(1− qjT )s

with

ds,j,n(q) = (−1)sqjs
d2−s

dT 2−s (Rn(T ; q)(T − q−j)2)
∣∣∣∣
T=q−j

for s = 1, 2. Isolation of the infinite sums allows us to recognize the expres-
sions for ζq(1) and ζq(2), and we obtain

Sn(q) =
n+1∑
j=1

d1,j,n(q)q−jζq(1) +
n+1∑
j=1

d2,j,n(q)q−jζq(2)−D1(n, q)−D2(n, q)
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with

D1(n, q) =
n+1∑
j=1

d1,j,n(q)q−j
j−1∑
l=1

ql

1− ql
,

D2(n, q) =
n+1∑
j=1

d2,j,n(q)q−j
j−1∑
l=1

ql

(1− ql)2
.

Since we already know from (3.16) that Sn(q) is a Q-linear combination
of 1 and ζq(2), and since the three numbers 1, ζq(1), ζq(2) are Q-linearly
independent (see [14]), we see that the coefficient of ζq(1) has to be zero.
Moreover, calculating D1 and D2 in terms of the integer p = 1/q, we obtain

D1(n, q) = −p(n+1)(n+2)
n+1∑
j=1

pj
2−nj−2j(p; p)−2

j−1(p; p)−2
n−j+1

j−1∑
l=1

1
pl − 1

×
(
n−

n∑
k=1

pn−k+j

1− pn−k+j
− 2

j−1∑
k=1

pj−k

pj−k − 1
− 2

n+1∑
k=j+1

1
1− pk−j

)
,

D2(n, q) = p(n+1)(n+2)
n+1∑
j=1

pj
2−nj−2j(pj ; p)n(p; p)−2

j−1(p; p)−2
n−j+1

j−1∑
l=1

pl

(pl − 1)2
.

Now it is an easy task to see that both these quantities contain a power
pd3n

2/4e+2n+1 as a factor in their numerator. Together with (3.16) this allows
us to conclude that the highest possible exponent of p in the denominator
of a∗n is bn2/4c, and hence that the factor en as proposed in (3.15) indeed
makes an and bn integers.

Since we have an explicit expression for the coefficient of ζq(1), its van-
ishing yields a q-binomial identity:

Corollary 3.4. The following identity holds:
n∑
j=0

q−2nj+j2
[
n+ j

n

]
q

[
n

j

]2

q

×
(
n+

n+j∑
k=1

1
1− qk

− 3
j∑

k=1

1
1− qk

+ 2
n−j∑
k=1

qk

1− qk

)
= 0.

Multiplying by 1− q and letting q tend to 1, we obtain the identity
n∑
j=0

(
n+ j

n

)(
n

j

)2

(H(n+ j) + 2H(n− j)− 3H(j)) = 0,

where H(n) =
∑n

k=1 1/k are harmonic numbers.
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4. Irrationality of ζq(2)

4.1. Estimate for the error term. So far we know that an and bn are
integers, and that an/bn is an approximation of ζq(2). Now we want to
estimate |bnζq(2)− an|. To meet the conditions of Lemma 1.2, we need to
prove that this quantity tends to zero as n tends to infinity, and that it
is never zero. Once again we use the expression for the error term of the
approximation:

(4.1) bnζq(2)− an = en

∞∑
k=0

qk

pn − qk
Fn(qk).

In this last expression we need Fn(qk). This can be calculated using (3.3):

(4.2) Fn(qk) =
1�

qk

Rn

(
qk

t

)
(qt; q)n

dqt

t
=

k−1∑
l=0

Pn(qk−l−1; 1, 1 | q)(ql+1; q)n.

If we now use the Rodrigues formula for the little q-Jacobi polynomials (2.2)
and plug this into (4.2), then after changing the order of summation we get

|bnζq(2)− an| = en
qn(n−1)/2+1(1− q)n

(q; q)n

×
∣∣∣∣ ∞∑
l=0

(ql+1; q)nql
∞∑
k=0

qk

pn − qk+l+1
Dn
p [(qx; q)nxn]

∣∣∣∣
x=qk

∣∣∣∣.
Applying n times summation by parts (Lemma 2.1) we have

|bnζq(2)− an| = en
qn(n+1)/2+1(1− q)n

(q; q)n

×
∣∣∣∣ ∞∑
l=0

(ql+1; q)nql
∞∑
k=0

(qk+1; q)nqkqnkDn
q

(
1

pn − ql+1x

)∣∣∣∣
x=qk

∣∣∣∣.
Now it can be proven by induction that the q-derivative needed in this last
expression is given by

Dn
q

1
pn − ql+1x

=
qln(q; q)npn(n−1)/2

(1− q)n
∏n
j=0(pn+j − xql+1)

.

We recognize a double q-integral for |bnζq(2)− an|:

|bnζq(2)− an| = enq
n+1

∣∣∣∣1�
0

1�

0

(qx; q)nxn(qy; q)nyn∏n
j=0(pn+j − qxy)

dqx dqy

∣∣∣∣.
None of these factors is zero, and the integrand is strictly positive on (0, 1]2,
so we see that the first condition of Lemma 1.2 is satisfied.
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Obviously,
∏n
j=0(pn+j − qxy) reaches its minimum at (x, y) = (1, 1).

Moreover, the function (qx; q)nxn reaches its maximum in x = 1, as long
as 0 < q ≤ 1/2, which is the case we are working with since p = 1/q is an
integer. To see this, it is enough to show that x(1− qmx)/(1− qm) ≤ 1 for
all x ∈ [0, 1] and for m = 1, . . . , n. So we can make the estimate

|bnζq(2)− an| ≤ en
(q; q)2n

(1− q)2
qn+1∏n

j=0(pn+j − q)
(4.3)

= en
(q; q)2nq

n+1

(1− q)2(qn+1; q)n+1
q3n(n+1)/2.

4.2. Asymptotic behaviour. The asymptotic behaviour of the cyclotomic
polynomials is known (see e.g. [16]) and is given in the following lemma.

Lemma 4.1. Suppose p is an integer greater than one and let dn be given
by (3.14). Then

lim
n→∞

dn(p)1/n
2

= p3/π2
.

Hence the expression (3.15) has the asymptotic behaviour

(4.4) lim
n→∞

e1/n
2

n = p6/π2+1/4

and (4.3) has the asymptotic behaviour

(4.5) lim
n→∞

|bnζq(2)− an|1/n
2 ≤ p6/π2+1/4−3/2 ≈ p−0.6421.

So we conclude that also the second condition of Lemma 1.2 is satisfied, and
hence that ζq(2) is irrational.

Remark 4.2. One could try to use the same method to prove the irra-
tionality of

ζq1,q2(2) =
∞∑
k=1

kqk1
1− qk2

with q2 = 1/p2, q1 = 1/p1 and integers p1, p2. Little q-Jacobi polynomials
with different parameters are needed in this case. However, the en which is
needed to cancel the denominators turns out to be too large and

lim
n→∞

|bnζq1,q2(2)− an|1/n
2
> 1.

Hence we cannot deduce the irrationality for this family of numbers. The
case where p1 and p2 are related in a certain way (they are both powers of
the same integer p) gives asymptotically better results, but still not good
enough to prove irrationality. So we only obtain the irrationality result for
the family of numbers mentioned in Theorem 1.1 and Remark 1.4.
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4.3. The measure of irrationality. To use Lemma 1.3, we need to get a
value for s in |bnζq(2)− an| = O(1/bsn). We already know that

lim
n→∞

|bnζq(2)− an|1/n
2

≤ p6/π2−5/4.

If we can now find the asymptotic relation between bn = enBn(pn) and pn
2
,

then we obtain the desired value for s. From the explicit formula (3.8) for
Bn(pn) and the asymptotic behaviour of en in (4.4), it is clear that

lim
n→∞

b1/n
2

n = p6/π2+1/4+1 = p(24+5π2)/4π2
.

Together with (4.5), this means that

|bnζq(2)− an| = O(1/b(5π
2−24)/(5π2+24)

n ).

Hence Lemma 1.3 gives us an upper bound for the measure of irrationality:

µ(ζq(2)) ≤ 1 +
5π2 + 24
5π2 − 24

=
10π2

5π2 − 24
,

which concludes the proof of Theorem 1.1.

5. Concluding remark. It is worth noticing that our sequence of ra-
tional approximants coincides with Zudilin’s [17]. However, thanks to the
treatment in Section 3.3, we were able to extract a better exponent of p:
compare our

lim
n→∞

|bnζq(2)− an|1/n
2

≤ p6/π2−5/4

to formulas (70)–(72) in [17], which give Zudilin’s estimate

lim
n→∞

|H̃n|1/n
2 ≤ p6/π2−1,

where H̃n is a Z-linear combination of 1 and ζq(2).
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