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1. Introduction. A sequence (xn)n≥0 in Rs is said to be uniformly
distributed modulo one if for all intervals [a, b) ⊆ [0, 1)s we have

(1) lim
N→∞

#{n : 0 ≤ n < N, {xn} ∈ [a, b)}
N

= λs([a, b)),

where λs denotes the s-dimensional Lebesgue measure and {x} denotes the
fractional part of a vector x applied componentwise. Furthermore, a se-
quence (xn)n≥0 in Rs is said to be well distributed modulo one if for all
intervals [a, b) ⊆ [0, 1)s we have

(2) lim
N→∞

#{n : ν ≤ n < ν +N, {xn} ∈ [a, b)}
N

= λs([a, b))

uniformly in ν ∈ N0.
Of course, a sequence that is well distributed modulo one is also uni-

formly distributed modulo one but the converse is not true in general.
Quantitative versions of (1) resp. (2) are often stated in terms of dis-

crepancy resp. uniform discrepancy. For a sequence ω = (xn)n≥0 in Rs the
discrepancy is defined by

DN (ω) = sup
a≤b

∣∣∣∣#{n : 0 ≤ n < N, {xn} ∈ [a, b)}
N

− λs([a, b))
∣∣∣∣,

where the supremum is taken over all subintervals [a, b) of the unit cube
[0, 1)s. The so-called uniform discrepancy is defined as

D̃N (ω) = sup
ν∈N0

DN ((xn+ν)n≥0).

2000 Mathematics Subject Classification: 11K06, 11J71.
Key words and phrases: uniform distribution, well distribution, discrepancy, Cantor ex-
pansions, Q-additive functions.

DOI: 10.4064/aa138-2-6 [179] c© Instytut Matematyczny PAN, 2009



180 R. Hofer et al.

A sequence is uniformly distributed modulo one if and only if its discrepancy
tends to zero as N goes to infinity, and it is well distributed modulo one if
and only if its uniform discrepancy tends to zero as N goes to infinity.

An excellent introduction to these and related topics can be found in the
books of Kuipers and Niederreiter [16] and of Drmota and Tichy [5]. See
also [19].

In this paper we consider uniform and well distribution properties of
special sequences which are generated by so-calledQ-additive functions, with
respect to Cantor digit expansion with base Q = {q0, q1, . . .} where qi ≥ 2
are integers for all i ∈ N0.

Details about Cantor digit expansions (sometimes also called mixed-
radix systems) can be found, e.g., in [15]. We will call Q = {q0, q1, . . .}
with integers qi ≥ 2 for all i ∈ N0 a Cantor base and we set Q0 := 1,
Qk := q0 · · · qk−1 for k ∈ N (we can, e.g., take Qk = (k + 1)!). The spe-
cial case of ordinary q-adic expansions, q ≥ 2 an integer, is recovered if
we choose q0 = q1 = · · · = q and hence Qk = qk. The main difference
between Q-adic and ordinary q-adic expansions is that in the general case
the ith digit can take values in {0, . . . , qi − 1}, which may vary with i and
even become arbitrarily large. Each integer n has a unique finite represen-
tation

n = n0 + n1q0 + n2q0q1 + · · · =
∑
i≥0

niQi,

with ni ∈ {0, . . . , qi − 1} for i ∈ N0. We will call this the Q-adic expansion
or the Cantor expansion of n. Additionally, each real number x ∈ [0, 1) has
a representation of the form

x =
x0

q0
+

x1

q0q1
+

x2

q0q1q2
+ · · · =

∑
i≥0

xi
Qi+1

with xi ∈ {0, . . . , qi − 1} for i ∈ N0.
Let Q = {q0, q1, . . .} be a Cantor base. A function f : N0 → R is called

Q-additive if for n ∈ N0 with Cantor expansion n = n0 +n1q0 +n2q0q1 + · · ·
we have

f(n) = f (0)(n0) + f (1)(n1) + f (2)(n2) + · · ·

for a sequence of functions f (i) : N0 → R, i ≥ 0. Because the domains of
definition of the f (i) exceed the ranges of the ni, the f (i) are not uniquely
determined by f . If in addition there exist f (i) and an f∗ : N0 → R such
that

f (0) = f (1) = f (2) = · · · = f∗,

then f is called strongly Q-additive. For the q-adic case see, for example,
[5, 6, 11].
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Remark 1. Note that we want the sum-of-digits function to be strongly
Q-additive, so we cannot simply define strong Q-additivity by the condition

(3) f(n0 + n1Q1 + · · ·) = f(n0) + f(n1) + · · ·
as would perhaps seem natural in view of the ordinary q-adic example.
Indeed, let Q = {3, 5, . . . } and f equal to the sum-of-digits function, sQ.
Then f∗(n) = n and f(3) = f(0 + 1 · 3) = f∗(0) + f∗(1) = f∗(1) = 1
and similarly f(9) = f∗(3) = 3 6= f(3), which would lead to contradictions
under condition (3). Therefore, to avoid the recursivity which causes this
contradiction we distinguish the function f from the “digit function” f∗.

An example of a Q-additive function is given by the function n 7→ αn, or
more generally, the weighted sum-of-digits function of the Cantor expansion,
defined for a sequence γ = (γi)i≥0 by sQ,γ(n) = n0γ0 + n1γ1 + · · · if n ∈ N0

has Cantor expansion n = n0+n1q0+· · · . If the weights γi are constant, then
sQ,γ is even strongly Q-additive. (We remark here that asymptotic formulas
for the average values of the sum-of-digits function and the average numbers
of occurrences of fixed subblocks in Cantor representations of integers are
established in [14].) By choosing γi = Q−1

i+1 we obtain the “Cantor version”
of the van der Corput radical inverse function. For γi = αQi we obtain the
function n 7→ αn and for γi = α we obtain the function n 7→ αsQ(n), where
sQ(n) is the usual (unweighted) Cantor sum-of-digits function. Hence all
those functions are examples of Q-additive functions.

For Cantor bases Q(1), . . . , Q(s) and 1 ≤ i ≤ s, let fi denote a Q(i)-
additive function and let f : N0 → Rs, f(n) = (f1(n), . . . , fs(n)). In the
case of strongly Q-additive functions we write f∗ for (f∗1 , . . . , f

∗
s ). Now we

consider the s-dimensional sequence

(4) ωf := (f(n))n≥0.

If f is a one-dimensional, ordinary q-additive function, then it is known
that if the sequence (4) has uniform distribution modulo one, then it is
already well distributed. In this paper we give a quantitative, multi-dimen-
sional version of this fact for Q-additive functions in terms of discrepancy.
Our aim is to give an if and only if condition under which the sequence (4) is
uniformly distributed modulo one in the case where Q(1) = · · · = Q(s) =: Q.
Such a condition was given in [18] in the case of the weighted q-adic sum-
of-digits function. For the one-dimensional q-additive case such conditions
were proved in [12]. Furthermore, for strongly Q-additive functions we also
provide quantitative results in terms of discrepancy.

In the case of different but pairwise coprime Cantor bases Q(1), . . . , Q(s)

(meaning that gcd(Q(i)
k , Q

(j)
l ) = 1 for all i, j ∈ {1, . . . , s}, i 6= j, k, l ≥ 0) we

can give a sufficient condition for uniform distribution modulo one and, in
case each fi is strongly Q(i)-additive, also a necessary one.
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Well distribution properties of one-dimensional sequences (αf(n))n≥0 for
irrational α and strongly q-additive functions f attaining only non-negative
integer values are studied in [3] in more detail. Of course, the sequences given
by (4) contain such sequences as special case. Results on one-dimensional
Q-additive functions that slightly improve ours and various special cases can
be found in [10].

We close this introduction with some notation. Throughout the paper
the dimension s ∈ N is fixed. By x · y we denote the usual inner product
of the vectors x and y in Rs, b·c denotes the integer-part function and ‖ · ‖
the distance-to-the-nearest-integer function. Finally, if f is an s-dimensional
vector of Q-additive functions with the same base Q in each component,
we set f (l) := (f (l)

1 , . . . , f
(l)
s ), where f (l)

i (a) = fi(aQl) (i.e., the upper indices
have the same meaning as in the definition of Q-additivity) for l ≥ 0, a < qi,l,
i ∈ {1, . . . , s}, and analogously in the case of strongly Q-additive functions
for f∗.

2. Results for equal Cantor bases. It was first shown by Coquet [2]
(see also [1]) that a one-dimensional uniformly distributed sequence which
is generated by a q-additive function is already well distributed. Here we
give a quantitative version of this fact in terms of discrepancy. We consider
the more general multi-dimensional Cantor case.

Theorem 1. Let Q be a Cantor base and let f : N0 → Rs, f(n) =
(f1(n), . . . , fs(n)), where each fi is Q-additive. Then

D̃N (ωf )�s (DQkN
(ωf ))1/(s+1),

where kN is such that QkN
≤
√
N < qkN

QkN
= QkN+1.

Proof. First we use a technique from [3]. Fix ν ∈ N0. For N ∈ N choose k
such that Qk ≤ N and m1,m2 such that (m1 − 1)Qk ≤ ν < m1Qk and
m2Qk ≤ ν +N − 1 < (m2 + 1)Qk − 1. Then for h ∈ Zs \ {0} we have∣∣∣ν+N−1∑

n=ν

e2πih·f(n)
∣∣∣ ≤ 2Qk +

m2−1∑
t=m1

∣∣∣(t+1)Qk−1∑
n=tQk

e2πih·f(n)
∣∣∣

= 2Qk +
m2−1∑
t=m1

∣∣∣Qk−1∑
n=0

e2πih·f(n+tQk)
∣∣∣

= 2Qk + (m2 −m1)
∣∣∣Qk−1∑
n=0

e2πih·f(n)
∣∣∣.

We have N +m1Qk − 1 ≥ N + ν − 1 ≥ m2Qk and so m2−m1 ≤ N/Qk. Let
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kN be maximal such that QkN
≤
√
N . Hence for all h ∈ Zs \ {0},∣∣∣∣ 1

N

ν+N−1∑
n=ν

e2πih·f(n)

∣∣∣∣ ≤ min
k∈N0

Qk≤N

(
2Qk
N

+
∣∣∣∣ 1
Qk

Qk−1∑
n=0

e2πih·f(n)

∣∣∣∣)

�s min
k∈N0

Qk≤N

(
2Qk
N

+r(h)DQk
(ωf )

)
�s r(h)DQkN

(ωf ),

where for the second inequality we have used [17, Corollary 3.17] and where
we define r(h) =

∏s
i=1 max{1, |hi|} for h = (h1, . . . , hs) ∈ Zs. Now we use

the Erdős–Turán–Koksma inequality (see, for example, [5, Theorem 1.21])
to obtain, for all H ∈ N,

DN ((f(n+ ν))n≥0)�s
1
H

+
∑

0<‖h‖∞≤H

1
r(h)

∣∣∣∣ 1
N

ν+N−1∑
n=ν

e2πih·f(n)

∣∣∣∣
�s

1
H

+HsDQkN
(ωf ).

Choosing H = b(DQkN
(ωf ))−1/(s+1)c we find that DN ((f(n + ν))n≥0) �s

(DQkN
(ωf ))1/(s+1) uniformly in ν ∈ N0, and hence the result follows.

We give a full characterization of Q-additive functions f : N0 → Rs for
which the sequence (4) is uniformly (resp. well) distributed modulo one. The
proof is based on estimates for exponential sums and Weyl’s criterion for
uniform distribution modulo one (see, for example, [5, 16]).

Theorem 2. Let Q be a Cantor base and let f : N0 → Rs, f(n) =
(f1(n), . . . , fs(n)), where each fi is Q-additive. Then the sequence ωf is
uniformly distributed modulo one if and only if for each h ∈ Zs \ {0}, either

∞∑
k=0

1
q2k

qk−1∑
a=1

‖h · f (k)(a)‖2 =∞,

or there exists at least one k ∈ N0 such that
qk−1∑
a=0

e2πih·f (k)(a) = 0.

Before giving the proof of this result we state a corollary for strongly
Q-additive functions and we give some examples.

Corollary 1. Let Q= {q0, q1, . . .} be a Cantor base such that
∑

k≥0 1/q2k
=∞. Set qAP equal to the maximal finite accumulation point of the sequence
(qi)i≥0 if one exists and qAP :=∞ otherwise, i.e., if there are either zero or
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infinitely many finite accumulation points. Let

(5) q∗ :=


qAP if qAP <∞,

∑
k≥0

qk>qAP

1/q2k <∞,

∞ if qAP <∞,
∑
k≥0

qk>qAP

1/q2k =∞ or if qAP =∞.

Let f : N0 → Rs, f(n) = (f1(n), . . . , fs(n)), where each fi is strongly Q-
additive. Then the sequence ωf is uniformly distributed modulo one if for
every h ∈ Zs \ {0} there is an a with 1 ≤ a < q∗ such that h · f∗(a) 6∈ Z.

For all Cantor bases Q such that

either qk is bounded , or ∀a ≥ 0 :
∑
k≥0
qk>a

1
q2k

=∞,(6)

the statement can be sharpened to an equivalence. (Of the cases considered
in the first part this excludes Q such that qAP <∞ and lim supk≥0 qk =∞.
See also Example 3.)

The proof of Corollary 1 will be given after the proof of Theorem 2.

Example 1. Let Q be a Cantor base with
∑

k>0 1/q2k = ∞. Consider
the two-dimensional sequence ωQ,α where the first component is the Q-adic
van der Corput sequence and the second component is (αsQ(n))n≥0 with
α ∈ R \ Q, where sQ(n) denotes the sum-of-digits function with respect to
the Cantor expansion Q. Hence f1(n) = n0/Q1 + n1/Q2 + · · · and f2(n) =
n0α+ n1α+ · · · whenever n = n0 + n1Q1 + n2Q2 + · · · . Both functions are
Q-additive and f (k)(a) = (a/Qk+1, aα). For h = (h1, h2) ∈ Z2 \ {(0, 0)} we
consider two cases. If h2 = 0, then h1 6= 0. Choose k ∈ N0 maximal such
that Qk |h1. Then

∑qk−1
a=0 e2πih1a/Qk+1 = 0. If h2 6= 0 we have
∞∑
k=0

1
q2k

qk−1∑
a=1

∥∥∥∥h1
a

Qk+1
+ h2aα

∥∥∥∥2

=∞.

Hence the sequence ωQ,α is uniformly distributed modulo one for α irra-
tional.

Example 2. Let f , Q, q∗ be as in Corollary 1. If there is an a with
1 ≤ a < q∗ such that 1, f∗1 (a), . . . , f∗s (a) are linearly independent over Q,
then the sequence ωf is uniformly distributed modulo one.

Example 3. Consider the Cantor base Q = {2, 4, 2, 8, 2, 16, 2, . . . } to-
gether with the strongly Q-additive one-dimensional function f given
through f∗ defined by

f∗ =
〈

0, 0,
1
2
,
1
2
,
1
4
,
1
4
,
1
4
,
1
4
,
1
8
, . . .

〉
,
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i.e.,

f∗(n) :=
{

0 if 0 ≤ n < 2,
2−blog2 nc if n ≥ 2.

Then by the second condition of Theorem 2, f(n) is uniformly distributed
modulo one, but there is no a with 1 ≤ a < q∗ = 2 such that hf∗(a) 6∈ Z.

Note that this function is closely related to the binary van der Corput
radical inverse function which itself is only q-additive but not strongly. Sim-
ilarly, f∗ and f can be constructed with respect to arbitrary Cantor bases
Q′ and any q∗.

Proof of Theorem 2. Let h ∈ Zs \ {0}. For fixed k ∈ N0 and u ∈
{0, . . . , qk − 1} we have∣∣∣qk−1∑

a=0

e2πih·f (k)(a)
∣∣∣ ≤ qk − 4‖h · f (k)(u)‖2

and hence∣∣∣qk−1∑
a=0

e2πih·f (k)(a)
∣∣∣ ≤ qk − 4

qk

qk−1∑
a=1

‖h · f (k)(a)‖2 =: qk − νk(h).

For h ∈ Zs \ {0} and k ∈ N0 we consider the condition

(∗k)
qk−1∑
a=0

e2πih·f (k)(a) = 0.

For j ∈ N0 we have∣∣∣∣ 1
Qj

Qj−1∑
n=0

e2πih·f(n)

∣∣∣∣ =
1
Qj

j−1∏
k=0

∣∣∣qk−1∑
a=0

e2πih·f (k)(a)
∣∣∣ ≤ j−1∏

k=0

qk − νk(h)
qk

j−1∏
k=0

(∗k) holds

0;

here and later on an empty product is considered to be one.
Let N ∈ N with Cantor base Q representation N = N0 +N1Q1 + · · ·+

NmQm with Nm 6= 0. As in [18] for the special case of q-adic weighted
sum-of-digits function, we can show that∣∣∣N−1∑

n=0

e2πih·f(n)
∣∣∣ ≤ r−1∑

j=0

NjQj +
m∑
j=r

NjQj

j−1∏
k=0

qk − νk(h)
qk

j−1∏
k=0

(∗k) holds

0

for any r ∈ N0.
If there exists a k ∈ N0 such that (∗k) holds, let k0 be minimal with this

property. Then we have∣∣∣N−1∑
n=0

e2πih·f(n)
∣∣∣ ≤ k0∑

j=0

NjQj

j−1∏
k=0

qk − νk(h)
qk

≤
k0∑
j=0

(qj − 1)Qj = Qk0+1 − 1.
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If (∗k) holds for no k ∈ N0, then∣∣∣N−1∑
n=0

e2πih·f(n)
∣∣∣ ≤ Qr +N

r−1∏
k=0

qk − νk(h)
qk

.(7)

Define xr := Qr/
∏r−1
k=0

qk−νk(h)
qk

≥ Qr and choose r such that xr ≤ N <
xr+1. Then

Qr ≤ N
r−1∏
k=0

qk − νk(h)
qk

.(8)

Since νk(h) ≤ 4
qk

qk−1
4 < 1, we have, on the other hand,

r∏
k=0

qk − νk(h)
qk

≥
r∏

k=0

1
qk

=
1

Qr+1

and hence

N < Qr+1

/ r∏
k=0

qk − νk(h)
qk

≤ Q2
r+1.

Thus r > rN , where rN is minimal such that QrN ≥ b
√
Nc. Hence

r−1∏
k=0

qk − νk(h)
qk

≤
rN−1∏
k=0

qk − νk(h)
qk

.(9)

From (7)–(9) we find

(10)
∣∣∣N−1∑
n=0

e2πih·f(n)
∣∣∣ ≤ 2N exp

(
−
rN−1∑
k=0

4
q2k

qk−1∑
a=1

‖h · f (k)(a)‖2
)
.

In both cases we obtain N−1
∑N−1

n=0 e2πih·f(n) → 0 as N → ∞. Hence
the result follows by Weyl’s criterion.

Assume now that there is an h ∈ Zs \ {0} such that
∞∑
k=0

1
q2k

qk−1∑
a=1

‖h · f (k)(a)‖2 <∞

and (∗k) never holds, i.e.,
∑qk−1

a=0 e2πih·f (k)(a) 6= 0 for all k ∈ N0. Then for
j ∈ N0 we have∣∣∣∣ 1

Qj

Qj−1∑
n=0

e2πih·f(n)

∣∣∣∣ =
1
Qj

j−1∏
k=0

∣∣∣qk−1∑
a=0

e2πih·f (k)(a)
∣∣∣ 6= 0.

Using [18, Lemma 1] we obtain∣∣∣qk−1∑
a=0

e2πih·f (k)(a)
∣∣∣ ≥ qk(1− π2νk(h)).
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Let 0 < c < 1 and let l ∈ N be so large that 1− π2
∑

k>l νk(h) > c > 0. For
j > l we have∣∣∣∣ 1

Qj

Qj−1∑
n=0

e2πih·f(n)

∣∣∣∣ ≥ l∏
k=0

1
qk

∣∣∣qk−1∑
a=0

e2πih·f (k)(a)
∣∣∣ j−1∏
k=l+1

(1− π2νk(h))

≥ c′
(

1− π2
∑
k>l

νk(h)
)
> c′ · c > 0

and by Weyl’s criterion ωf is not uniformly distributed modulo one.

Proof of Corollary 1. If each fi, 1 ≤ i ≤ s, is strongly Q-additive, then
the condition from Theorem 2 reads as follows: for every h ∈ Zs \{0}, either

∞∑
k=0

1
q2k

qk−1∑
a=1

‖h · f∗(a)‖2 =∞,

or there exists a k ∈ N0 such that
∑qk−1

a=0 e2πih·f∗(a) = 0.
Assume that for every h ∈ Zs \ {0} there exists an a′ with 1 ≤ a′ < q∗

such that h · f∗(a′) 6∈ Z. We want to show equidistribution and distinguish
two cases:

1. q∗ = qAP <∞. Then
∞∑
k=0

1
q2k

qk−1∑
a=1

‖h · f∗(a)‖2 ≥ 1
(q∗)2

∞∑
k=0
qk=q∗

q∗−1∑
a=1

‖h · f∗(a)‖2

≥ ‖h · f
∗(a′)‖2

(q∗)2

∞∑
k=0
qk=q∗

1,

and the last sum diverges since qk = q∗ for infinitely many k ∈ N0.
2. q∗ = ∞. Note that if qAP < ∞ and the required sum diverges, and

also if qAP = ∞, i.e., qk has zero or infinitely many accumulation
points, the second condition of (6),

∑
qk>a

q−2
k = ∞ for all a ≥ 0,

holds. Hence
∞∑
k=1

1
q2k

qk−1∑
a=1

‖h · f∗(a)‖ ≥
∞∑
k=1
qk>a

′

1
q2k
‖h · f∗(a′)‖ =∞.

In any of the two cases the sequence ωf is uniformly distributed modulo
one.

Now assume that ωf is uniformly distributed modulo one but there exists
an h ∈ Zs \ {0} such that h · f∗(a) ∈ Z for every a with 1 ≤ a < q∗. We
distinguish the same two cases, slightly enhancing the requirements in the
first case for this direction:
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1. q∗ = qAP = lim supk≥0 qk < ∞, i.e., the case of bounded qk remains.
Since for a uniformly distributed sequence each coordinate sequence
has to be uniformly distributed as well, it is enough to consider the
case s = 1 only. Fix an integer h 6= 0 such that h · f∗(a) ∈ Z for all a
with 1 ≤ a < q∗. We may assume that h > 0. Define

I :=
h−1⋃
z=0

[z/h, z/h+ ε)

with ε > 0 small enough to be determined later. The set J := {k ∈
N0 : qk > q∗} is finite. We distinguish two cases:

(a) If J is empty, then for any n≥0 with Cantor expansion
∑

i≥0 niQi
we get hf(n) = hf∗(n0)+hf∗(n1)+· · · = z ∈ Z, hence {f(n)} ∈ I
for all n ∈ N0. But λ(I) = hε < 1 for ε > 0 small enough, so
(f(n))n≥0 is not uniformly distributed modulo one.

(b) If 1 ≤ |J | <∞, then J contains a maximal element k. For l > k
we define Nl = Ql. We will deduce

(11) #{n : 0 ≤ n < Nl, f(n) ∈ I} ≥ Nl∏
k∈J qk

.

For any n =
∑

i≥0 niQi with nj = 0 for all j ∈ J we have
hf(n) ∈ Z and {f(n)} ∈ I as in the case above.
Since #{n : 0 ≤ n < Nl, nj = 0 for all j ∈ J} = Nl/

∏
k∈J qk the

inequality (11) holds true for all Nl with l > k. So for ε chosen
appropriately we have

(12)
#{n : 0 ≤ n < N, {f(n)} ∈ I}

N
≥ 1∏

k∈J qk
> hε = λ(I)

for infinitely many N ∈ N. Thus (f(n))n≥0 is not uniformly dis-
tributed modulo one.

2. q∗ =∞. Then h · f∗(a) ∈ Z for all a ≥ 1. Hence
∞∑
k=0

1
q2k

qk−1∑
a=1

‖h · f∗(a)‖2 = 0

and
∑qk−1

a=0 e2πih·f∗(a) = qk for all k ∈ N0. This contradicts the uni-
form distribution modulo one of the sequence ωf by Theorem 2.

In both cases we have obtained a contradiction, so there exists an a′ with
1 ≤ a′ < q∗ such that h · f∗(a′) 6∈ Z.

We close this section with a quantitative result for strongly Q-additive
functions.
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A vector α = (α1, . . . , αs) with irrational components αi is said to be
of approximation type η if η is the infimum over all reals σ for which there
exists a positive constant c = c(σ,α) such that ‖h · α‖ ≥ c/r(h)σ for all
h ∈ Zs \ {0}. Here r(h) is as in the proof of Theorem 1.

Theorem 3. Let Q be a Cantor base and let f : N0 → Rs, f(n) =
(f1(n), . . . , fs(n)), where each fi is strongly Q-additive and q∗ := lim infk≥0 qk
≤ ∞. If there exists an integer a with 1 ≤ a < q∗ such that f∗(a) is of
approximation type η, then for every ε > 0 we have

DN (ωf )�s,f ,ε
1

L
(1/s)(1/2η−ε)
N

where LN := 4
rN−1∑
k=0

q−2
k

and rN is minimal such that QrN ≥
√
N . (In the special case q0 = q1 =

· · · = q we have 1/LN �q 1/logN .)

Proof. From the Erdős–Turán–Koksma inequality, we obtain for allH∈N,

DN (ωf )�s
1
H

+
∑

0<‖h‖∞≤H

1
r(h)

∣∣∣∣ 1
N

N−1∑
n=0

e2πih·f(n)

∣∣∣∣
�s,f

1
H

+
∑

0<‖h‖∞≤H

1
r(h)

exp(−cLN (r(h))−2(η+ε))

�s,f
1
H

+ (1 + logH)s exp(−cLNH−2s(η+ε)),

where we have used inequality (10). With the choice H = bL(1/s)(1/2η−ε)
N c

we obtain

(1 + logH)s exp(−cLNH−2s(η+ε))

�s

(
1

2sη
logLN

)s
exp(−cL2ε2−ε/η+2εη

N )

�s

(
1

2sη
logLN

)s
exp(−cL2ε2+ε

N )�s,ε
1
H
,

and hence the result follows.
For the special case q1 = q2 = · · · = q we note that rN ≥ log

√
N

log q and

hence LN ≥ 2 logN
q2 log q

.

3. Results for different, pairwise coprime Cantor bases. Now
we turn to the case where Q(1) = {q1,0, q1,1, . . . }, . . . , Q(s) = {qs,0, qs,1, . . . }
are different, but pairwise coprime, which we define by the condition
gcd(Q(u)

k , Q
(v)
l ) = 1 for all u, v ∈ {1, . . . , s}, u 6= v, k, l ≥ 0. We provide

an upper bound for Weyl sums, from which we deduce distribution proper-
ties of ωf .
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We need some further notations: for u ∈ {1, . . . , s}, l ≥ 0, a ≥ 0 we
define

θ(l)
u (a) := f (l)

u (a+ 1)− f (l)
u (a)− f (l)

u (1),

δ(l)u (hu) := max{4‖huθ(l)
u (a)‖2 : 1 ≤ a ≤ qu,l − 2},

(we set δ(l)u (hu) := 0 for qu,l = 2) and then

τ (l)
u (hu) :=

{
max{δ(l)u (hu)/q2u,l, δ

(l+1)
u (hu)/q2u,l+1} if this expression is 6= 0,

1
4‖hu(f (l+1)

u (1)− qu,lf
(l)
u (1))‖2 else.

Note that unless Q reduces to the ordinary q-adic case we cannot omit the
superscript (l) for strongly Q-additive fu in δ

(l)
u , τ

(l)
u since the values over

which a ranges may vary with l.
For strongly Q-additive functions we set in addition θ∗u(a) := f∗u(a+1)−

f∗u(a)− f∗u(1).

Proposition 1. Let Q(1), . . . , Q(s) be pairwise coprime Cantor bases
and let f : N0 → Rs, f(n) = (f1(n), . . . , fs(n)), where each fu is Q(u)-
additive. For all h = (h1, . . . , hs) ∈ Zs \{0}, if for all 1 ≤ u ≤ s with hu 6= 0
we have

(13)
∞∑
l=0

τ (l)
u (hu) =∞, then

1
N

N−1∑
n=0

e2πih·f(n) = o(1).

In particular , the sequence ωf is uniformly distributed modulo one.

Remark 2. In a way, the first line in the definition of τ (l)
u (h) measures

how much the functions fu are locally additive, modulo (1/h)Z: the first
line covers the additivity local to the digit ranges while the second considers
additivity with respect to the consecutive digit functions.

In view of Proposition 1 this means that for good equidistribution con-
vergence we are looking for fu that are Q-additive without being “too much”
additive overall.

Proposition 1 generalizes [8, Theorem 1], which deals with the special
case of ordinary weighted qu-ary sum-of-digits functions. We will prove the
proposition at the end of this section. First, we use it to show the following
theorem.

Theorem 4. Let Q(1), . . . , Q(s) be pairwise coprime Cantor bases and
let f : N0 → Rs, f(n) = (f1(n), . . . , fs(n)), where each fu is strongly Q(u)-
additive. Assume that each Cantor base Q(u) satisfies (6) and has at least
one finite accumulation point. Then ωf is uniformly distributed modulo one
if and only if for all u ∈ {1, . . . , s} the uth coordinate sequence (fu(n))n≥0

is uniformly distributed modulo one.
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Proof. Necessity is obvious because each component of a uniformly dis-
tributed sequence has to be uniformly distributed.

Now assume that each sequence (fu(n))n≥0 is uniformly distributed mod-
ulo one. Set q∗u as in (5) (with infinite value allowed). By Corollary 1, for all
1 ≤ u ≤ s and for all integers h 6= 0 there exists some j with 1 ≤ j < q∗u
such that hf∗u(j) 6∈ Z. We will show that the divergence condition in (13)
holds.

First we argue that for this it is sufficient that there exists some a with
1 < a + 1 < q∗u such that hθ∗u(a) 6∈ Z, or alternatively that there is a finite
accumulation point q′u ≤ q∗u with h(q′u − 1)f∗u(1) 6∈ Z. Either of those two
conditions implies there is an l0 with τ

(l0)
u (hu) 6= 0 and qu,l0 ≤ q∗u.

Now in case the first condition holds, since δ
(l)
u (hu) is increasing as a

function of qu,l (though not necessarily as a function of l) there is a q′u = qu,l0
such that δ(l)u (hu) ≥ δ(l0)

u (hu) for all l with qu,l ≥ q′u, and by our assumption
of (6),∑
l≥0

τ (l)
u (hu) ≥

∑
l≥l0

qu,l≥q′u

max
{
δ
(l)
u (hu)
q2u,l

,
δ
(l+1)
u (hu)
q2u,l+1

}
≥ δ(l0)

u (hu)
∑
l≥l0

qu,l≥q′u

1
q2u,l

=∞.

In the second case, we have∑
l≥0

τ (l)
u (hu) ≥ τ (l0)

u (hu)
∑
l≥0

qu,l=q
′
u

1 =∞.

We are now going to prove that one of these two conditions is always
true.

If q∗u = 2 Corollary 1 shows that hf∗u(1) /∈ Z for all nonzero integers h
and we are done in view of the second condition.

On the other hand, if q∗u ≥ 3 we choose the minimal j with 1 ≤ j < q∗u
such that hf∗u(j) 6∈ Z and distinguish the following cases:

• If j > 1 then hθ∗u(j − 1) = h(f∗u(j) − f∗u(j − 1) − f∗u(1)) /∈ Z since
hf∗u(j − 1) ∈ Z and hf∗u(1) ∈ Z and we are done as the first condition
is satisfied.

• For j = 1 we assume that none of the two conditions holds, which
implies on the one hand that

hθ∗u(a) = h(f∗u(a+ 1)− f∗u(a)− f∗u(1)) ∈ Z
for all a with 1 < a+ 1 < q∗u, and on the other hand that

h(q′u − 1)f∗u(1) ∈ Z
for all finite accumulation points q′u ≤ q∗u. Therefore we have

exp(2πih(f∗u(a+ 1)− f∗u(a)− f∗u(1))) = 1,
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and, by induction, exp(2πihf∗u(a)) = exp(2πihaf∗u(1)) for all 0 ≤
a < q∗u. We now consider h′ = h(q′u − 1), where q′u is any of the
finite accumulation points. Then also h′θ∗u(a) ∈ Z and hence again
exp(2πih′f∗u(a)) = exp(2πiah′f∗u(1)) for all 0 ≤ a < q∗u, which equals 1
since h(q′u−1)f∗(1) ∈ Z. But this contradicts our assumption that for
all nonzero integers h′ there exists some j with 0 ≤ j < q∗u such that
h′f∗u(j) 6∈ Z.

Remark 3. That one finite accumulation point is needed in the con-
dition for the Cantor base can be seen with the following counterexample
to the second case of the “sufficient” direction. Consider f(n) = sQ(n)λ,
λ =

∑
k≥0 2−k!, where Q contains enough ql of the form 2k! + 1 to satisfy

the divergence condition in (13).

Proof of Proposition 1. We use a technique developed by Kim [13], ad-
vanced by Drmota and Larcher [4] and further generalized by Hofer [8, 9].
To present the proof in convenient units we will highlight the main steps in
several lemmas.

Our goal is to prove the convergence to zero of the Weyl sum given
in the proposition. We fix an h ∈ Zs \ {0} and introduce the notations
gu(n) := exp(2πihufu(n)) for 1 ≤ u ≤ s and g(n) :=

∏s
u=1 gu(n).

The first step is to apply the following lemma, a version of the Weyl–
van der Corput inequality, to g(n). The appropriate choice of K will be
determined at the end of the proof.

Lemma 1 ([7, pp. 10–11]). For integers N ≥ K ≥ 1 and a sequence an
of complex numbers with |an| ≤ 1 we have∣∣∣N−1∑

n=0

an

∣∣∣2 ≤ 2N2

K
+

4N
K

K∑
k=1

∣∣∣N−k+1∑
n=0

anan+k

∣∣∣.
Terms of the form c(k) =

∑
n anan+k as in Lemma 1 are called cor-

relation functions. We will use several of them, sometimes based on other
correlation functions. (To ease notation we will omit the bracketing of single
upper indices of functions since confusion with powers can be ruled out, i.e.,
f i(x) can be clearly distinguished from f(x)i. We will keep the brackets for
constants, however.) For every coordinate u ∈ {1, . . . , s} we set

ΦR1,u(k) :=
1
R

R−1∑
n=0

gu(n) gu(n+ k) for 0 ≤ k ≤ R ≤ N,

ΦK,R2,u (r) :=
1
K

K−1∑
k=0

ΦR1,u(k)ΦR1,u(k+r) for r∈{0, 1} and 0 ≤ K ≤ R ≤ N,



Q-additive functions 193

ΨR(k) :=
R∑
n=1

g(n) g(n+ k) for 0 ≤ R ≤ N.

Furthermore, an additional upper index l ≥ 0 will denote shift by l digits,
e.g., ΦR,l1,u(k) := ΦR1,u(kQ(u)

l ).
Observe that in applying Lemma 1 to g(n) the innermost sum ranges over

terms of the form
∏
u gu(n) gu(n+ k). Our aim will be to move the product

over all u ∈ {1, . . . , s} outside all sums. For this we will use recursions
holding for the correlation functions ΦK,N2,u . To formulate them we will define

several more correlation type functions α(l)
j , β

(l)
j , which are simpler in that

they are only local to a digit range {0, . . . , qu,l − 1} (for some u, l ≥ 0). For
any u, the actual coefficients of the recursion are then defined in terms of
α

(l)
j and β(l)

j and also of shape similar to correlation functions. With a fixed
digit place l ≥ 0 and fixed u ∈ {1, . . . , s}, we set

α
(l)
j :=

1
qu,l

qu,l−j−1∑
i=0

glu(i) glu(i+ j),

β
(l)
j :=

1
qu,l

qu,l−1∑
i=qu,l−j

glu(i) glu(i+ j − qu,l),

for 0 ≤ j ≤ qu,l and

λ(l)
r :=

1
qu,l

qu,l−1∑
i=0

(α(l)
i α

(l)
i+r + β

(l)
i β

(l)
i+r),

µ(l)
r :=

1
qu,l

qu,l−1∑
i=0

α
(l)
i β

(l)
i+r, ν(l)

r :=
1
qu,l

qu,l−1∑
i=0

β
(l)
i α

(l)
i+r,

for r ∈ {0, 1}.

Lemma 2. For fixed u ∈ {1, . . . , s}, any l ≥ 0, r ∈ {0, 1}, and q := qu,l
we have the recursion in l,

ΦqK,qR,l2,u (r) = λ(l)
r Φ

K,R,l+1
2,u (0)(14)

+ µ(l)
r Φ

K,R,l+1
2,u (0) + ν(l)

r ΦK,R,l+1
2,u (0) + El+1

K,R(r),

where |El+1
K,R(r)| ≤ 2/K. Furthermore, for the two-step recursion in l, with

q′ := qu,lqu,l+1, we get the bound

|Φq
′K,q′R,l

2,u (r)| ≤ ρ(l)
r |Φ

K,R,l+2
2,u (0)|+ σ(l)

r |Φ
K,R,l+2
2,u (1)|+ 7

K
,
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where

ρ(l)
r := |λ(l)

r λ
(l+1)
0 + µ(l)

r λ
(l+1)
1 + ν(l)

r λ
(l+1)
1 |,

σ(l)
r := |λ(l)

r µ
(l+1)
0 + µ(l)

r µ
(l+1)
1 + ν(l)

r ν
(l+1)
1 |

+ |λ(l)
r ν

(l+1)
0 + µ(l)

r ν
(l+1)
1 + ν(l)

r µ
(l+1)
1 |,

and
ρ(l)
r + σ(l)

r ≤ 1− τ (l)(hu)/q2u,l.

Proof. In view of the locality of the correlation function Φ2 to the digit
range {0, . . . , qu,l−1} it is tedious but not difficult to prove these recursions
in the same way as the ones in [8] for the ordinary q-adic case, with only
minor adaptation. In particular, this also applies to the two-step recursion.

Since the very last inequality, the estimate of ρ(l)
r + σ

(l)
r , is crucial to the

proof we turn to it now. We have

ρ(l)
r + σ(l)

r ≤ |λ(l)
r |(|λ

(l+1)
0 |+ |µ(l+1)

0 |+ |ν(l+1)
0 |)

+ (|µ(l)
r |+ |ν(l)

r |)(|λ
(l+1)
1 |+ |µ(l+1)

1 |+ |ν(l+1)
1 |)

and

|λ(l)
r |+ |µ(l)

r |+ |ν(l)
r | ≤

1
qu,l

qu,l−1∑
i=0

(|α(l)
i |+ |β

(l)
i |) (|α(l)

i+r|+ |β
(l)
i+r|) ≤ 1,

for r ∈ {0, 1}. There are two cases to distinguish: either at least one of
δ
(l)
u (hu) 6= 0, δ(l+1)

u (hu) 6= 0 holds, or both quantities are zero. Assume the
former, say δ(l)u (hu) 6= 0, so there exists at least one a with 1 ≤ a ≤ qu,l − 2
such that hθ(l)

u (a) 6∈ Z. This, together with the inequality

|r + se2πiθ| ≤ r + s− 4s‖θ‖2 for 0 ≤ s ≤ r,

leads to a bound on |α(l)
1 |:

|α(l)
1 | =

1
qu,l

∣∣∣qu,l−2∑
i=0

e2πih(f
(l)
u (i+1)−f (l)

u (i))
∣∣∣

≤ 1
qu,l
|e2πih(f

(l)
u (1)−f (l)

u (0)) + e2πih(f
(l)
u (a+1)−f (l)

u (a))|+
qu,l − 3
qu,l

=
1
qu,l
|1 + e2πih(f

(l)
u (a+1)−f (l)

u (a)−f (l)
u (1))|+

qu,l − 3
qu,l

≤
qu,l − 1
qu,l

− 4
‖hθ(l)

u (a)‖2

qu,l
.

Inserting this into the above formula and using trivial estimates for the other
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exponential sums αi, βi gives

|λ(l)
r |+ |µ(l)

r |+ |ν(l)
r | ≤ 1− 4

‖hθ(l)
u (a)‖2

q2u,l
,

so that after minimizing over l, l + 1 and all a ∈ {0, . . . , qu,l − 1} we get

ρ(l)
r + σ(l)

r ≤ 1− max{δ(l)u (hu), δ(l+1)
u (hu)}

q2u,l
= 1− τ

(l)
u (hu)
q2u,l

for this case. In the second case, proceed analogously to [8, p. 42].

In order to be able to apply the recursions in Lemma 2, the next result
shows that we can replace K,R by their nearest multiples of Q(u)

z for any
z ≥ 0, introducing an error term.

Lemma 3. Let R ≥ K, and fix u ∈ {1, . . . , s}, z ≥ 0 such that Q(u)
z ≤ K.

Then, setting Q := Q
(u)
z , L := bK/Qc, M := bR/Qc, we have

ΦK,R2,u (0) = ΦQL,QM2,u (0) +O(Q/K).

Proof. This can be shown quite easily by applying the triangle inequality
and trivial estimates to |ΦR1,u(k)−ΦQM1,u (k)| and |ΦK,R2,u (k)−ΦQL,QM2,u (k)| (cf.
the first part of the proof of [13, Prop. 1]).

At the end of the proof we will, for each u ∈ {1, . . . , s}, choose appropri-
ate Q(u)

t = Ru for ΦRu
1,u, etc. Depending on them and K (which we will also

determine there) we set

F1 :=
s∏

u=1

Ru, F2 :=
s∑

u=1

K

Ru
.

We now return to the Weyl sum of f(n). Using Lemma 1 and our notation
we obtain the inequality

K
∣∣∣N−1∑
n=0

g(n)
∣∣∣2 ≤ 2N2 + 4N

K∑
k=1

|ΨN−k−1(k)|.

Lemma 4 makes the connection to the correlation functions Φ1.

Lemma 4. For arbitrary Ru > K, 1 ≤ u ≤ s of the form Ru = Q
(u)
t , we

have

|ΨN−k−1(k)| = N

s∏
u=1

|ΦRu
1,u(k)|+O(NF2 + F1(1 + F2)).

Proof (cf. [13, Prop. 2]). We start by observing that, for ru := n mod Ru
(i.e., ru ≡ n (modRu), 0 ≤ ru < Ru), whenever ru + k < Ru we can reduce
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the argument in the following expression to its remainder modulo Ru (cf.
[13, Lemma 6]; this is where we use the Qu-additivity of fu). We have

g(n) g(n+ k) = exp
(

2πi
s∑

u=1

fu(n+ k)− fu(n)
)

= exp
(

2πi
s∑

u=1

fu(ru + k)− fu(ru)
)

=
s∏

u=1

gu(ru) gu(ru + k) =: G(r),

with r = (r1, . . . , rs). Our aim is now to bound the terms in ΨN−k−1(k)
where the above reduction is not possible. We define

R := {r : 0 ≤ rj < Rj for all 1 ≤ j ≤ s},
R0 := {r : 0 ≤ rj < Rj −K for all 1 ≤ j ≤ s}, R1 := R \R0.

Then

ΨN−k−1(k) =
N−k−1∑
n=1

g(n) g(n+ k)

=
∑
r∈R0

N−k−1∑′

n=1

g(n) g(n+ k) +
∑
r∈R1

N−k−1∑′

n=1

g(n) g(n+ k)

(here and in the following the primed sums denote summation over those n
where ru = n mod Ru for all u ∈ {1, . . . , s})

=
∑
r∈R

G(r)
N−k−1∑′

n=0

1 +
∑
r∈R1

N−k−1∑′

n=0

(g(n) g(n+ k)−G(r))

=: Σ1 +Σ2.

Now by the Chinese remainder theorem, using the condition that the Cantor
bases are coprime in the sense given previously, the number of summands
of the primed sums is (N − k − 1)/F1 +O(1), so that

|Σ1| ≤
∑
r∈R

s∏
u=1

|gu(ru) gu(ru + k)|
(
N

F1
+O(1)

)

=
s∏

u=1

Ru|ΦRu
1,u(ru)|

(
N

F1
+O(1)

)
= N

s∏
u=1

|ΦRu
1,u(ru)|+O(F1).

It remains to estimate |Σ2|, for which we need a bound on the size of |R1|.
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We have

|R1| ≤
s∑

u=1

|{r : 0 ≤ ru < Ru, Rj −K ≤ rj < Rj}|

≤
s∑

u=1

K
s∏
j=1
j 6=u

Rj = F1F2,

so, by trivial estimates,

|Σ2| ≤
∑
r∈R1

N−k−1∑′

n=0

2 ≤ 2|R1|
(
N

F1
+O(1)

)
≤ 2F2N +O(F1F2).

Altogether,

|ΨN−k−1(k)| ≤ N
s∏

u=1

|ΦRu
1,u(ru)|+ 2NF2 +O(F1(1 + F2)),

which concludes the proof.

We have now arrived at an inequality of the form∣∣∣N−1∑
n=0

g(n)
∣∣∣2 ≤ 2N2

K
+

4N2

K

K∑
k=1

s∏
u=1

|ΦRu
1,u(k)|+O(N2F2 +NF1(1 + F2))

=:
4N2

K

(
Σ3 +

1
2

)
+O(N2F2 +NF1(1 + F2)).

Lemma 4 brought the product in front of the inner sum; we now bring it in
front of the outer sum using Hölder’s inequality:

Σ3 ≤ K1/(s+1)
s∏

u=1

( K∑
k=1

|ΦRu
1,u(k)|s+1

)1/(s+1)

≤ K
s∏

u=1

(
1
K

K∑
k=1

|ΦRu
1,u(k)|2

)1/(s+1)

(since |Φ1| ≤ 1)

≤ K
s∏

u=1

(
|ΦK,Ru

2,u (0)|+ 2
K

)1/(s+1)

.

The final lemma of the proof will use the recursions of Lemma 2 to give
the asymptotics of |Φ2(0)|.

Lemma 5. Fix u ∈ {1, . . . , s} and set

s(m) = su(m) :=
1
2

m−1∑
l=0

τ
(l)
u (hu)
q2u,l

.
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Then, for any K,Ru, t ≥ 0, and Q(u)
2t =: Q ≤ K ≤ Ru, we have

|ΦK,Ru
2,u (0)| = O(e−su(t)) +O(Q/K).

Proof. Set

s(i)(m) :=
m−1∑
l=0
l≡i(2)

τ
(l)
u (hu)
q2u,l

, i ∈ {0, 1}.

Then at least one of exp(−s(i)(t)) ≤ exp(−s(t)), i = 0, 1, holds. We first
assume it is the one with s(0)(t).

Let t≥0. First we apply Lemma 3 to reduce the expression to |ΦQL,QM2,u (0)|
+O(Q/K) with L,M ≥ 1 as in Lemma 3.

Now, with S2t := |ΦQL,QM2,u (0)|, T2t := |ΦQL,QM2,u (1)|, the two-step recur-
sion of Lemma 2 can be written in matrix form as(

S2t

T2t

)
≤

(
ρ
(2t)
0 σ

(2t)
0

ρ
(2t)
1 σ

(2t)
1

)(
S

(2)
2t−2

T
(2)
2t−2

)
+

7

Q
(u)
2t−2L

(
1
1

)

=:M(2t)

(
S

(2)
2t−2

T
(2)
2t−2

)
+

7

Q
(u)
2t−2L

(
1
1

)
,

and by applying the recursion repeatedly,(
S2t

T2t

)
≤

t−1∏
l=0

M(2l)

(
S

(2t)
0

T
(2t)
0

)
+

t∑
j=1

7

Q
(u)
2j−2L

t−j−1∏
l=0

M(2l)

(
1
1

)
.

By the bound on ρr+σr in Lemma 2, by [13, Lemma 5] and 1−x ≤ exp(−x)
and also the trivial bounds S, T ≤ 1 we altogether get

S2t ≤ e−s(t) +
t∑

j=1

7

Q
(u)
2(j−1)L

e−s(t−j) ≤ e−s(t)
(

1 +
7
L

t∑
j=1

es(t)−s(t−j)

Q
(u)
2(j−1)

)
,

and so S2t = O(e−s(t)), since∣∣∣∣es(t)−s(t−j)
Q

(u)
2j

∣∣∣∣ ≤ ( e1/4

minu,l q2u,l

)j
<

1
3j
,

which proves the claim.
If exp(−s(1)(t)) ≤ exp(−s(t)), we can proceed analogously, after initially

applying a one-step recursion from Lemma 3. This does not change the
asymptotics.
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Collecting all the results, altogether we get, for t0 > 0,∣∣∣N−1∑
n=0

g(n)
∣∣∣2

= O

(
N2

[
min
u

(
e−su(t0) +

Q
(u)
2t0

+ 2
K

)1/(s+1)

+
1

2K
+ F2

]
+N(F1(1 + F2))

)
,

where we can take the minimum over all u since we can use the trivial
bound 1 for the remaining factors in Σ3.

Now we return to fixing the quantities K,Ru and t0. Since the goal
is to have o(N2) on the right side of the last equation, F2 should be o(1),
considering the N2 term, hence F1 = o(N). This can be achieved by choosing
Ru = o(N1/s) and K = o(minuRu), e.g., by setting

Ru := max{Q(u)
t : Q(u)

t ≤ N1/s−ε, t ≥ 0}, K := min
u
bR1−ε

u c,

for some fixed ε > 0. Finally, t0 is determined by Q
(u)
2t0
/K = o(1) for all u,

e.g., we can set
t0 := max{t : max

u
Q

(u)
2t ≤ K

1−ε}.

Since t0 is ultimately an increasing function in N and su(t) diverges, the sum
N−1

∑N−1
n=0 exp(2πih · f(n)) is o(1) and thus f(n) is uniformly distributed

modulo one by Weyl’s criterion. This closes the proof of Proposition 1.
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