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On the limiting distribution of a generalized
divisor problem for the case −1/2 < a < 0

by

Yuk-Kam Lau (Nancy)

1. Introduction. Let σa(n) =
∑
d|n d

a. Define

∆a(x) =
∑′

n≤x
σa(n)− ζ(1− a)x− ζ(1 + a)

1 + a
x1+a +

1
2
ζ(−a)

where
∑′
n≤x means that the last term is halved when x is an integer. Taking

a→ 0−, we recover the classical error term of Dirichlet’s divisor problem

∆(x) =
∑′

n≤x
d(n)− x(log x+ 2γ − 1)− 1/4

with d(n) = σ0(n). The determination of the precise order of magnitude
of ∆(x) remains an open problem. Nevertheless, there are numerous papers
devoted to the study of its properties such as its power moments, Ω±-results,
gaps between sign-changes. In particular, Heath-Brown [3] in 1992 showed
that x−1/4∆(x) has a limiting distribution and explored its properties.

Unlike ∆(x) there are not many results about ∆a(x). In this paper, we
are concerned with the limiting distribution of ∆a(x) with −1/2 < a < 0.
It is worthwhile to note that from the available results, ∆a(x) seems to
behave like ∆(x) only in the range of −1/2 < a < 0 (or even −1/2 ≤ a < 0
perhaps). When −1 ≤ a < −1/2, the behavior of ∆a(x) is rather different.
Nonetheless the limiting distribution in this case also exists, shown in [7].
A further investigation will be carried out in the sequel paper.

Let us go back to the case −1/2 < a < 0. Analogously to the case a = 0,
we can prove that for −1/2 < a < 0 and 1 ≤M ≤ x,

(1.1) ∆a(x) =
x1/4+a/2

π
√

2

∑

n≤M

σa(n)
n3/4+a/2

cos(4π
√
nx− π/4) +O

(
x1/2+ε
√
M

)
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where the O-constant depends on a and ε only. (A proof can be found in
[6].) This is the so-called truncated Voronoi formula, which is the basic tool
in our discussion.

A direct application of (1.1) and [1, Theorem 4.1] yields the following
result.

Theorem 1. For −1/2 < a < 0, t−(1/4+a/2)∆a(t) has a limiting dis-
tribution Da(u) which is also the distribution of the random series X =∑∞
n=1 an(tn) where

(1.2) an(t) =
1

π
√

2
· µ(n)2

n3/4+a/2

∞∑

r=1

σa(nr2)
r3/2+a

cos(2πrt− π/4)

and t1, t2, . . . are independent random variables uniformly distributed on
[0, 1]. Moreover , Da(u) =

� u
−∞ pa(x) dx for some probability density pa(x);

pa(x) can be extended to the whole complex plane as an entire function of x.
Furthermore, for real x,

0 ≤ pa(x)� exp(−|x|4/(1+2|a|)−ε).

Define

tail of Da(u) =
{
Da(u) if u < 0,
1−Da(u) if u ≥ 0.

In particular, Theorem 1 yields that tail of Da(u) � exp(−|u|4/(1+2|a|)−ε).
Our first result is to determine a more precise order of magnitude of Da(u).

Theorem 2. Let |u| ≥ 2. Then

exp(−c1(a)|u|4/(1+2|a|))�a tail of Da(u)�a exp(−c2(a)|u|4/(1+2|a|))

where c1(a) and c2(a) are some constants depending on a. Also, the implied
constants depend on a.

The lower bound is derived by the method in [1, Theorem 5.1] while the
upper bound is obtained from the study of its Laplace transform. Such an
approach has appeared before, for example, in [2] and [5]. Our proof relies
on their underlying principle.

The next result concerns the rate of convergence. The proof follows
closely the argument in [7], so we shall give an outline only.

Theorem 3. Define

Da,T (u) =
1
T
µ{t ∈ [1, T ] : t−(1/4+a/2)∆a(t) ≤ u}

where µ is the Lebesgue measure. Then, for −1/2 < a < 0,

Da,T (u)−Da(u)�a (log log T )−(1+2a)/8

where the implied constant depends on a.
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2. Proof of the lower bound in Theorem 2. Write

A =
1

π
√

2

∞∑

r=1

σa(r2)r−(3/2+a).

Then we have

sup
0≤t≤1

|am(t)| ≤ Aσa(m)m−(3/4+a/2),(2.1)

1�

0

am(t) dt = 0,(2.2)

1�

0

am(t)2 dt =
1

4π2 ·
µ(m)2

m3/2+a

∞∑

r=1

σa(mr2)2

r3+2a .(2.3)

Define a±m(t) = max(0,±am(t)). From (2.2) and (2.3), we have
1�

0

a+
m(t) dt =

1�

0

a−m(t) dt

and
1�

0

a+
m(t)2 dt+

1�

0

a−m(t)2 dt =
1

4π2 ·
µ(m)2

m3/2+a

∞∑

r=1

σa(mr2)2

r3+2a .

Using (2.1), we obtain
1�

0

a±m(t)2 dt ≤ Aσa(m)m−(3/4+a/2)
1�

0

a+
m(t) dt

and hence for any squarefree m,

(2.4)
1�

0

a+
m(t) dt ≥ 2B−1σa(m)m−(3/4+a/2)

where B = 16π2A(
∑∞
r=1 r

−(3+2a))−1 > 1.
Let n be a large integer. For 1 ≤ m ≤ n, we define Am = [0, 1] if m is

non-squarefree, and

Am = {t ∈ [0, 1] : am(t) > B−1σa(m)m−(3/4+a/2)}
otherwise. For squarefree m, it is apparent that

sup
0≤t≤1

|am(t)|µ(Am) +
1
B
· σa(m)
m3/4+a/2

µ(Ac
m) ≥

1�

0

a+
m(t) dt.
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Hence from (2.1), (2.4) and µ(Ac
m) ≤ 1 we get

(2.5) 1/B′ ≤ µ(Am) ≤ 1

where B′ = AB. By Markov’s inequality, we have

Pr
(∣∣∣

∞∑

m=n+1

am(tm)
∣∣∣ ≤ 2

√
K
)
≥ 1− 1

4K

∞∑

m=1

1�

0

am(t)2 dt ≥ 3
4

where Pr(#) denotes the probability of the event # and

K =
∞∑

m=1

1�

0

am(t)2 dt.

Define

En =
{

(t1, t2, . . .) : tm ∈ Am for 1 ≤ m ≤ n and
∣∣∣
∞∑

m=n+1

am(tm)
∣∣∣ ≤ 2

√
K
}
.

Then we get

Pr(En) =
n∏

m=1

Pr(Am)Pr
(∣∣∣

∞∑

m=n+1

am(tm)
∣∣∣ ≤ 2

√
K
)
≥ 3

4
e−n logB′

due to Pr(Am) = µ(Am) and (2.5). When (t1, t2, . . .) ∈ En,
∞∑

m=1

am(tm) ≥ 1
B

∑

m≤n
m squarefree

σa(m)
m3/4+a/2

− 2
√
K � n1/4+|a|/2.

Here and in what follows, the implied constants may depend on a. Replac-
ing n by [u4/(1+2|a|)], we obtain 1 − D(u) � exp(−c1(a)u4/(1+2|a|)) for all
sufficiently large u. The case of D(−u) can be proved in a similar way.

3. Proof of the upper bound in Theorem 2. To prove it, we need
the following result which is contained in [5]. For the sake of completeness,
we give a proof as well.

A positive measurable function φ(x) defined for sufficiently large positive
x is called a regularly varying function with index α if

lim
x→∞

φ(λx)/φ(x) = λα for any λ > 1.

ψ(x) is called an asymptotic inverse of φ(x) if limx→∞ ψ(φ(x))/x = 1.

Lemma 3.1. Let X be a real random variable with probability distribution
D(x), let φ(x) be a regularly varying function with index 0 < α < 1, and let
ψ(x) be an asymptotic inverse of x/φ(x). Suppose that D(x) > 0 for any
x > 0 and L ∈ (0,∞). We have
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(a) if lim supλ→∞ ψ(λ)−1 logE(exp(λX)) ≤ L, then

lim sup
x→∞

1
x

log(1−D(φ(x))) ≤ −α
(

1− α
L

)(1−α)/α

,

(b) if lim supλ→∞ ψ(λ)−1 logE(exp(−λX)) ≤ L, then

lim sup
x→∞

1
x

logD(−φ(x)) ≤ −α
(

1− α
L

)(1−α)/α

.

Proof. The proofs of (a) and (b) are similar and we prove part (b) only.
Write A = lim supx→∞ logD(−φ(x))/x ≤ 0; the result is obviously true if
A = −∞. Let ξ > 0 be fixed and η > 0. Then

E

(
exp
(
− η

φ(η)
X

))
=
∞�

−∞
exp
(
− η

φ(η)
x

)
dD(x)

≥
−φ(ξη)�

−∞
exp
(
− η

φ(η)
x

)
dD(x)

≥ exp
(
η
φ(ξη)
φ(η)

)
D(−φ(ξη)).

Hence,

1
η

logE
(

exp
(
− η

φ(η)
X

))
≥ φ(ξη)

φ(η)
+

1
η

logD(−φ(ξη)).

Then, for any ε ∈ (0, 1), there exist infinitely many η ≥ η0(ε) such that

1
η

logE
(

exp
(
− η

φ(η)
X

))
≥ φ(ξη)

φ(η)
+ (A− ε)ξ.

Therefore,

lim sup
η→∞

1
η

logE
(

exp
(
− η

φ(η)
X

))
≥ ξα + Aξ.

Taking λ = η/φ(η), we have λ → ∞ as η → ∞ since 0 < α < 1 (see [8,
Section 1.1]), and so

lim sup
λ→∞

1
ψ(λ)

logE(exp(−λX)) ≥ ξα + Aξ.

From the hypothesis in (b), we obtain L ≥ ξα + Aξ, which holds for all
ξ > 0. Let us write A = −H (H > 0). Then we get L ≥ ξα − Hξ and by
taking ξ = (α/H)1/(1−α), we have

H ≥ α
(

1− α
L

)(1−α)/α

.

Our assertion follows.
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As X =
∑∞
n=1 an(tn) where tn’s are independent random variables uni-

formly distributed on [0,1], we have

E(exp(±λX)) =
∞∏

n=1

E(exp(±λan(tn))) =
∞∏

n=1

1�

0

exp(±λan(t)) dt.

Now, we take φ(x) = x(1+2|a|)/4, ψ(x) = x4/(3+2a) and N = [λ4/(3+2a)]. We
want to give an upper bound for logE(exp(±λX)) where λ ≥ 1. Therefore,
we consider the integrals (inside the product) according to the following
three cases.

Case (i): n ≤ N . Using σa(nr2) ≤ σa(n)σa(r2),

1�

0

exp(±λan(t)) dt ≤ exp
(
λA

σa(n)µ(n)2

n3/4+a/2

)
.

Recall that A = (π
√

2)−1∑∞
r=1 σa(r2)r−(3/2+a).

Case (ii): n > N and λAσa(n) < n3/4+a/2. Using the inequality ex ≤
1 + x + x2 for −∞ < x ≤ 1 and an(t) ≤ λAσa(n)/n3/4+a/2, we obtain
with (2.2),

1�

0

exp(±λan(t)) dt ≤
1�

0

(1 + λan(t) + λ2an(t)2) dt

≤ 1 + (λA)2 σa(n)2µ(n)2

n3/2+a

≤ exp
(

(λA)2σa(n)2µ(n)2

n3/2+a

)

since ex ≥ 1 + x for all real x.

Case (iii): n > N and λAσa(n) ≥ n3/4+a/2. As ex ≤ ex
2

for |x| ≥ 1 or
x = 0,

1�

0

exp(±λan(t)) dt ≤ exp
(
λA

σa(n)µ(n)2

n3/4+a/2

)
≤ exp

(
(λA)2σa(n)2µ(n)2

n3/2+a

)
.

Since
∑

n≤x
σa(n) = ζ(1− a)x+O(x1+a),

∑

n≤x
σa(n)2 = ζ(1− 2a)ζ(1− a)2ζ(1− 2a)−1x+O(x1+a),

we have
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logE(exp(±λX)) ≤ λA
∑

n≤N

σa(n)µ(n)2

n3/4+a/2
+ (λA)2

∑

n>N

σa(n)2µ(n)2

n3/2+a

≤ c1λAN1/4+|a|/2 + c2(λA)2N−1/2+|a|

≤ c3λ4/(3+2a)

where c1, c2 and c3 are some positive constants depending on a.
Thus,

lim sup
λ→∞

1
ψ(λ)

logE(exp(±λX)) ≤ c3.

Note that Da(u) > 0 for all u from the lower bound. By Lemma 3.1 and
replacing φ(x) by u, i.e. x = u4/(1+2|a|), our proof is then complete.

4. Proof of Theorem 3. Define Fa(t) = t−(1/2+a)∆a(t2) and let an(t)
be defined as in (1.2). By taking M = T 2 in (1.1), we have for 1 ≤ N ≤ T ,

2T�

T

∣∣∣Fa(t)−
∑

n≤N
an(γnt)

∣∣∣
2
dt

�
2T�

T

∣∣∣∣
∑′

N<n≤T 2

σa(n)
n3/4+a/2

cos(4π
√
nt− π/4)

∣∣∣∣
2

dt

+
2T�

T

∣∣∣∣
∑

n≤N

µ(n)2

n3/4+a/2

∑

r>T/
√
n

σa(nr2)
r3/2+a

cos(4πr
√
nt− π/4)

∣∣∣∣
2

dt+ T 2|a|+ε

where
∑′ sums over integers of the form n = mr2 where m > N is square-

free. Then the first integral on the right hand side is evaluated as in Ivić
[4, Theorem 13.5] while the second one is bounded trivially. We obtain for
1 ≤ N ≤ T ,

(4.1)
2T�

T

∣∣∣Fa(t)−
∑

n≤N
an(γnt)

∣∣∣
2
dt� TN |a|−1/2 + T 2|a|+εN1+ε.

Let us write DF,T (u) = T−1µ{t ∈ [1, T ] : Fa(t) ≤ u}. Then, applying
the argument in [7, (5.1)], we have for any r > 2,

(4.2) Da,T (u)−Da(u)� sup
T 1/r≤v≤T 1/2

|DF,v(u)−Da(u)|+ T 2/r−1.

Thus, we consider Da(u)−DF,T (u) and we have

Da(u)−DF,T (u)� 1
R

+
R�

−R

∣∣∣∣
χa,T (α)− χa(α)

α

∣∣∣∣ dα
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where χa,T (α) and χa(α) are the characteristic functions of DF,T and Da

respectively. Define

χN,T (α) =
1
T

T�

1

N∏

n=1

e(αan(γnt)) dt and χN (α) =
N∏

n=1

1�

0

e(αan(t)) dt.

Taking N = 2[(log log T )/4], R = N (1−2|a|)/8 and following [7, (5.3)–(5.4)],
we obtain by (4.1),

(4.3) Da(u)−DF,T (u)� 1
R

+RN |a|/2−1/4 +
R�

−R

∣∣∣∣
χN,T (α)− χN (α)

α

∣∣∣∣ dα.

We follow [7, (5.5)–(5.7)] (with the same choices of M and δ) to evaluate
|χN,T (α)− χN (α)|. Then we can get

|χN,T (α)− χN (α)| � (|α|+ 1)(logT )−1/4+|a|/2+ε,

and |χN,T (α)− χN (α)| � |α|N1/4+|a|/2+ε if |α| ≤ (log T )−1. This yields
R�

−R

∣∣∣∣
χN,T (α)− χN (α)

α

∣∣∣∣ dα� (log T )−1/4+|a|/2+ε.

Together with (4.2) and (4.3), our result follows.
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