On the limiting distribution of a generalized divisor problem for the case $-1 \leq a<-1 / 2$

by
Yuk-Kam Lau (Nancy)

1. Introduction. Let $\sigma_{a}(n)=\sum_{d \mid n} d^{a}$ and define

$$
\Delta_{a}(t)=\sum_{n \leq t} \sigma_{a}(n)-\zeta(1-a) t-\frac{\zeta(1+a)}{1+a} t^{1+a}+\frac{1}{2} \zeta(-a)
$$

We are concerned with the case $-1 \leq a<-1 / 2$. The case $a=-1$ is defined by taking limit. It should be noted that the definition in this case $(-1 \leq a<-1 / 2)$ is slightly different from the case $-1 / 2<a<0$ in [6]. The difference is that the last term is not halved even if x is an integer. It will not have any influence on our results.

Unlike the case $-1 / 2<a<0$, our discussion is not based on the Voronoitype formula. Such a formula also exists in the case $-1 \leq a<-1 / 2$. A truncated form with an explicit error term was obtained by Meurman [7] with a delicate method. However, by means of the Voronoi-type formula, one can only prove

$$
\int_{1}^{T} \Delta_{a}(t)^{2} d t=O(T) \quad(-1<a<-1 / 2)
$$

which is superseded by an old result of Chowla [2] who proved that

$$
\begin{equation*}
\int_{1}^{T} \Delta_{a}(t)^{2} d t=\frac{1}{12} \cdot \frac{\zeta(-2 a) \zeta^{2}(1-a)}{\zeta(2-2 a)} T+O\left(T^{3 / 2+a} \log T\right) \tag{1.1}
\end{equation*}
$$

This gives us evidence that an initial section of the Voronoi-type formula cannot provide a good approximation to $\Delta_{a}(t)$ when $-1 \leq a<-1 / 2$. Moreover, it seems that [4, Theorem 5] and [1, Theorem 4.1] cannot yield results on its limiting distribution.

As was shown in [5], if we define

$$
D_{a, T}(u)=T^{-1} \mu\left\{t \in[1, T]: \Delta_{a}(t) \leq u\right\}
$$

then the limiting distribution $D_{a}(u)=\lim _{T \rightarrow \infty} D_{a, T}(u)$ exists for $-1 \leq a<$ $-1 / 2$. However we do not have any further information about its properties. In the following, we shall show that $D_{a}(u)$ is continuous and symmetric (i.e. $1-D_{a}(u)=D_{a}(-u)$). In addition, we shall discuss its rate of convergence. To study the rate of convergence, we adopt the argument in [5] (i.e. based on the Berry-Esseen Theorem), and so we have to know the modulus of continuity of $D_{a}(u)$.

When $-1 / 2<a<0$, Meurman [7] proved the following mean square formula with a "sharp" remainder term:

$$
\int_{2}^{T} \Delta_{a}(t)^{2} d t=c_{2} T^{3 / 2+a}+O(T)
$$

where $c_{2}=(6+4 a)^{-1} \pi^{-2} \zeta(3 / 2-a) \zeta(3 / 2+a) \zeta(3 / 2)^{2} \zeta(3)^{-1}$. In view of (1.1), one expects that the behaviour of $\Delta_{a}(t)$ is very different in these two regions. The property of $D_{a}(u)$ being symmetric (when $-1 \leq a<-1 / 2$) supports the change in behaviour of $\Delta_{a}(t)$ because it is known that $D_{0}(u)$ is not symmetric (see Heath-Brown [4]). In fact, we expect that $D_{a}(u)$ is also non-symmetric for $-1 / 2<a<0$ and we already know it is partly true. Let us state our results. Bear in mind that the value of a in the following theorems lies in $[-1,-1 / 2)$.

Theorem 1. For any $0<\varepsilon<1 / 4$ and any $y \in \mathbb{R}$, we have $D_{a}(y+\varepsilon)-$ $D_{a}(y) \ll_{a} \sqrt{\varepsilon}$ uniformly in y. In particular, $D_{a}(u)$ is a continuous function.

Theorem 2. We have

$$
D_{a, T}(u)-D_{a}(u) \lll a\left(\frac{\log T}{\log \log T}\right)^{(1+2 a) / 6}
$$

where the implied constant depends only on a.
Theorem 3. D_{a} is symmetric (i.e. $\left.1-D_{a}(u)=D_{a}(-u)\right)$.
2. Proof of Theorem 1. Let $y \in \mathbb{R}$ be fixed and define

$$
p(\alpha)= \begin{cases}2-|y+\varepsilon-\alpha| / \varepsilon, & y-\varepsilon<\alpha<y+3 \varepsilon \\ 0, & \text { otherwise }\end{cases}
$$

Denoting the characteristic function of the interval $(y, y+\varepsilon]$ by $\chi_{(y, y+\varepsilon]}(u)$, we see that

$$
\begin{align*}
D_{a}(y+\varepsilon)-D_{a}(y) & =\int_{-\infty}^{\infty} \chi_{(y, y+\varepsilon]}(u) d D_{a}(u) \tag{2.1}\\
& \leq \int_{-\infty}^{\infty} p(u) d D_{a}(u)=\lim _{T \rightarrow \infty} \int_{-\infty}^{\infty} p(u) d D_{a, T}(u)
\end{align*}
$$

since $D_{a, T}$ converges weakly to D_{a} and p is continuous; moreover, we have

$$
\begin{align*}
\int_{1}^{T} p\left(\Delta_{a}(u)\right) d u & =\int_{1}^{T} \int_{-\infty}^{\infty} \widehat{p}(\alpha) e\left(-\alpha \Delta_{a}(u)\right) d \alpha d u \tag{2.2}\\
& =\int_{1}^{T} \int_{-\infty}^{\infty} \frac{\sin ^{2}(2 \pi \alpha)}{\pi^{2} \alpha^{2}} e\left(\frac{\alpha}{\varepsilon}\left(-\Delta_{a}(u)+y+\varepsilon\right)\right) d \alpha d u
\end{align*}
$$

Define $S_{T}=\left\{u \in[1, T]:\left|y+\varepsilon-\Delta_{a}(u)\right| \leq \sqrt{\varepsilon}\right\}$. Since $\Delta_{a}(u)-\Delta_{a}(v)=$ $-\zeta(1-a)(u-v)+O\left(m^{a}\right)$ for $m \leq v \leq u<m+1$, we have $\mu\left(S_{T}\right) \ll \sqrt{\varepsilon} T$ where the implied constant is independent of y but depends on a. If we set $S_{T}^{\mathrm{c}}=[1, T] \backslash S_{T}$, integration by parts yields that

$$
\begin{aligned}
& \int_{1}^{T} p\left(\Delta_{a}(u)\right) d u \\
& \quad=\varepsilon \int_{S_{T}^{c}}\left\{\left.\frac{e\left(\frac{\alpha}{\varepsilon}\left(-\Delta_{a}(u)+y+\varepsilon\right)\right)}{-\Delta_{a}(u)+y+\varepsilon} \cdot \frac{\sin ^{2}(2 \pi \alpha)}{\pi^{2} \alpha^{2}}\right|_{-\infty} ^{\infty}\right. \\
& \left.\quad-\int_{-\infty}^{\infty} \frac{e\left(\frac{\alpha}{\varepsilon}\left(-\Delta_{a}(u)+y+\varepsilon\right)\right)}{-\Delta_{a}(u)+y+\varepsilon} \cdot \frac{d}{d \alpha}\left(\frac{\sin ^{2}(2 \pi \alpha)}{\pi^{2} \alpha^{2}}\right) d \alpha\right\} d u+\int_{S_{T}} O(1) d u
\end{aligned}
$$

$\ll \sqrt{\varepsilon} T$.
Since $\int_{-\infty}^{\infty} p(u) d D_{a, T}(u)=T^{-1} \int_{1}^{T} p\left(\Delta_{a}(u)\right) d u$, our assertion follows from (2.1) and (2.2).
3. Proof of Theorem 2. Let $\psi(u)=u-[u]-1 / 2$ where $[u]$ is the integral part of u. From Chowla [2, Lemma 15], we have

$$
\Delta_{a}(t)=-\sum_{n \leq \sqrt{t}} n^{a} \psi\left(\frac{t}{n}\right)-t^{a} \sum_{n \leq \sqrt{t}} n^{|a|} \psi\left(\frac{t}{n}\right)+O\left(t^{a / 2}\right)
$$

(Chowla proved the case $-1<a<-1 / 2$ only but the case $a=-1$ can be proved in a similar way.) Following Chowla's argument in [2], we obtain the following result.

Lemma 3.1. Let $-1 \leq a<-1 / 2$ and $1 \leq N \leq \sqrt{T}$. We have

$$
\int_{T}^{2 T}\left|\Delta_{a}(t)+\sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right|^{2} d t \ll_{a} T N^{1+2 a}+T^{3 / 2+a} \log T
$$

where the implied constant depends on a.
Proof. We firstly note that
(a) the Fourier series $-\pi^{-1} \sum l^{-1} \sin (2 \pi l u)$ is square integrable on any bounded interval and converges to $\psi(u)$ in L^{2}-norm;
(b) from [2, Lemma 7],

$$
\begin{equation*}
\sum_{a \leq b \leq x} \sum_{\substack{m, n=1 \\ m b \neq n a}}^{\infty} \frac{1}{m n|m b-n a|} \ll x \log x \tag{3.1}
\end{equation*}
$$

(c) from $[2$, Lemma 8],

$$
\begin{equation*}
\sum_{a \leq b \leq x} \sum_{m, n=1}^{\infty} \frac{1}{m n(m b+n a)} \ll x \tag{3.2}
\end{equation*}
$$

Then we split the integral into three parts:

$$
\begin{align*}
\int_{T}^{2 T} & \left|\Delta_{a}(t)+\sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right|^{2} d t \tag{3.3}\\
& \ll \int_{T}^{2 T}\left|\sum_{N<n \leq \sqrt{t}} n^{a} \psi\left(\frac{t}{n}\right)\right|^{2} d t+\int_{T}^{2 T} t^{2 a}\left|\sum_{n \leq \sqrt{t}} n^{|a|} \psi\left(\frac{t}{n}\right)\right|^{2} d t+T^{1+a}
\end{align*}
$$

The second integral on the right hand side of (3.3) is

$$
\begin{align*}
& \ll T^{2 a} \int_{T}^{2 T}\left|\sum_{n \leq \sqrt{t}} n^{|a|} \psi\left(\frac{t}{n}\right)\right|^{2} d t \tag{3.4}\\
&= T^{2 a} \sum_{m, n \leq \sqrt{2 T}}(m n)^{|a|} \int_{\max \left(m^{2}, n^{2}, T\right)}^{2 T} \psi\left(\frac{t}{m}\right) \psi\left(\frac{t}{n}\right) d t \\
&= \pi^{-2} T^{2 a} \lim _{M \rightarrow \infty} \sum_{m, n \leq \sqrt{2 T}}(m n)^{|a|} \sum_{k, l=1}^{M} \frac{1}{k l} \\
& \times \int_{\max \left(m^{2}, n^{2}, T\right)}^{2 T} \sin \left(\frac{2 \pi k}{m} t\right) \sin \left(\frac{2 \pi l}{n} t\right) d t \\
& \ll T^{1+2 a} \sum_{m, n \leq \sqrt{2 T}}(m n)^{|a|} \sum_{k n=l m} \frac{1}{k l} \\
&+O\left(T^{2 a} \sum_{m, n \leq \sqrt{2 T}}(m n)^{|a|} \sum_{k n \neq l m}\left(k l\left|\frac{k}{m}-\frac{l}{n}\right|\right)^{-1}\right) \\
&+O\left(T^{2 a} \sum_{m, n \leq \sqrt{2 T}}(m n)^{|a|} \sum_{k, l}\left(k l\left(\frac{k}{m}+\frac{l}{n}\right)\right)^{-1}\right) .
\end{align*}
$$

The O-terms in (3.4) are $\ll T^{3 / 2+a} \log T$ by (3.1) and (3.2), while the first sum in (3.4) is

$$
\begin{aligned}
& \ll T^{1+2 a} \sum_{m, n \leq \sqrt{2 T}}(m n)^{|a|} \sum_{k n=l m} \frac{1}{k l} \\
& \ll T^{1+2 a} \sum_{m, n \leq \sqrt{2 T}}(m n)^{|a|-1}(m, n)^{2} \\
& \ll T^{1+2 a} \sum_{d \leq \sqrt{2 T}} d^{2|a|} \sum_{\substack{u, v \leq \sqrt{2 T} / d \\
(u, v)=1}}(u v)^{|a|-1} \\
& \ll T^{3 / 2+a}
\end{aligned}
$$

where (m, n) denotes the greatest common divisor of m and n. Hence, the last integral in (3.3) is absorbed by $O\left(T^{3 / 2+a} \log T\right)$. With the same argument, the first integral on the right hand side of (3.3) is equal to

$$
(2 \pi)^{-2} \sum_{N<n, m \leq \sqrt{2 T}}(m n)^{a} \sum_{k n=l m} \frac{1}{k l} \int_{\max \left(n^{2}, m^{2}, T\right)}^{2 T} d t+O\left(T^{3 / 2+a} \log T\right)
$$

The sum here is

$$
\begin{aligned}
& \ll T \sum_{N<n, m \leq \sqrt{2 T}} \frac{(m, n)^{2}}{(m n)^{1-a}} \\
& \ll T \sum_{d \leq N} d^{2 a} \sum_{N / d<u, v \leq \sqrt{2 T} / d} \frac{1}{(u v)^{1-a}}+T \sum_{N<d \leq \sqrt{2 T}} d^{2 a} \sum_{u, v \leq \sqrt{2 T} / d} \frac{1}{(u v)^{1-a}} \\
& \ll T N^{1+2 a} .
\end{aligned}
$$

Lemma 3.1 then follows, with (3.3).
Now we prove Theorem 2. Let $\chi_{a, T}(\alpha)$ be the characteristic function of $D_{a, T}(u)$. Then $\chi_{a, T}(\alpha)=T^{-1} \int_{1}^{T} e\left(\alpha \Delta_{a}(t)\right) d t$. Choose

$$
\begin{equation*}
R=N^{-(1+2 a) / 3} \quad \text { and } \quad N=[\log T /(4 \log \log T)] \tag{3.5}
\end{equation*}
$$

By the Berry-Esseen Theorem and Theorem 1, we have

$$
\begin{align*}
& \left|D_{a, T}(u)-D_{a}(u)\right| \tag{3.6}\\
& \quad \ll R \int_{0}^{1 / R}\left(D_{a}(u+\alpha)-D_{a}(u-\alpha)\right) d \alpha+\int_{-R}^{R}\left|\frac{\chi_{a, T}(\alpha)-\chi_{a}(\alpha)}{\alpha}\right| d \alpha \\
& \quad \ll \frac{1}{\sqrt{R}}+\int_{-R}^{R}\left|\frac{\chi_{a, T}(\alpha)-\chi_{a}(\alpha)}{\alpha}\right| d \alpha
\end{align*}
$$

where $\chi_{a}(\alpha)$ is the characteristic function of $D_{a}(u)$. Define

$$
\begin{align*}
\chi_{N, T}(\alpha) & =\frac{1}{T} \int_{1}^{T} e\left(-\alpha \sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right) d t \tag{3.7}\\
\chi_{N}(\alpha) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{1}^{T} e\left(-\alpha \sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right) d t
\end{align*}
$$

Note that the limit exists. Then the last integral in (3.6) is

$$
\begin{align*}
\leq & \int_{-R}^{R}\left|\chi_{a, T}(\alpha)-\chi_{N, T}(\alpha)\right| \frac{d \alpha}{|\alpha|}+\int_{-R}^{R}\left|\chi_{N, T}(\alpha)-\chi_{N}(\alpha)\right| \frac{d \alpha}{|\alpha|} \tag{3.8}\\
& +\int_{-R}^{R}\left|\chi_{N}(\alpha)-\chi_{a}(\alpha)\right| \frac{d \alpha}{|\alpha|} \\
= & I_{1}+I_{2}+I_{3}, \text { say. }
\end{align*}
$$

From (3.7), Lemma 3.1 and the fact that $e(u)-1 \ll \min (1,|u|)$, we have (recall that $\left.\chi_{a, T}(\alpha)=T^{-1} \int_{1}^{T} e\left(\alpha \Delta_{a}(t)\right) d t\right)$

$$
\begin{align*}
I_{1} & \ll \frac{R}{T} \int_{1}^{T}\left|\Delta_{a}(t)+\sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right| d t \tag{3.9}\\
& \ll R\left(N^{1 / 2+a}+T^{(1+2 a) / 4} \sqrt{\log T}\right) \ll R N^{1 / 2+a}
\end{align*}
$$

by (3.5), and so

$$
\begin{equation*}
I_{3} \ll R N^{1 / 2+a} \tag{3.10}
\end{equation*}
$$

To evaluate I_{2}, we first note that from the periodicity of $\psi(u)$,

$$
\chi_{N}(\alpha)=\frac{1}{N!} \int_{1}^{N!+1} e\left(-\alpha \sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right) d t
$$

Write $A=\log ^{2} T$ and $T=N!q+r(0 \leq r<N!)$, and split the integral I_{2} into two parts,

$$
\begin{equation*}
I_{2}=\int_{|\alpha| \leq 1 / A}+\int_{1 / A<|\alpha| \leq R} \tag{3.11}
\end{equation*}
$$

Using $e(u)-1 \ll|u|$ shows that the first part $\int_{|\alpha| \leq 1 / A}$ is

$$
\begin{align*}
& \ll \int_{|\alpha| \leq 1 / A}\left(\frac{1}{T} \int_{1}^{T}\left|\sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right| d t+\frac{1}{N!} \int_{1}^{N!+1}\left|\sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right| d t\right) d \alpha \tag{3.12}\\
& <A^{-1}
\end{align*}
$$

since $T^{-1} \int_{1}^{T}\left|\sum_{n \leq N} n^{a} \psi(t / n)\right|^{2} d t \ll 1$ (see the proof of Lemma 3.1). The integrand in the second part $\int_{1 / A<|\alpha| \leq R}$ can be expressed as

$$
\begin{aligned}
& \frac{q}{T} \int_{1}^{N!+1} e\left(-\alpha \sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right) d t-\frac{1}{N!} \int_{1}^{N!+1} e\left(-\alpha \sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right) d t \\
&+\frac{1}{T} \int_{1}^{r} e\left(-\alpha \sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right) d t \ll N!T^{-1}
\end{aligned}
$$

Again, we have used the fact that $\sum_{n \leq N} n^{a} \psi(t / n)$ is periodic and its period divides N !. Hence $\int_{1 / A<|\alpha| \leq R} \ll(\log \log T+\log R) N!T^{-1}$. Together with (3.12) and (3.11), we get $I_{2} \ll(\log T)^{-2}+(\log \log T+\log R) N!T^{-1}$. Putting this estimate, (3.10) and (3.9) into (3.8) and then (3.6), we get
$D_{a, T}(u)-D_{a}(u) \ll R^{-1 / 2}+R N^{1 / 2+a}+(\log T)^{-2}+(\log \log T+\log R) N!T^{-1}$.
Theorem 2 follows with the choice (3.5) and Stirling's formula.
4. Proof of Theorem 3. It is known that a distribution function is symmetric if and only if its characteristic function is a real-valued function. (One direction follows from the definition and the other can be seen by the inversion formula, see [3, Lemma 1.10].)

Let $\chi_{N}(\alpha)$ be defined as in (3.7). Then

$$
\chi_{a}(\alpha)=\lim _{N \rightarrow \infty} \chi_{N}(\alpha)
$$

It suffices to show $\chi_{N}(\alpha)$ is real-valued. Since $\psi(u)$ is periodic and $\psi(-u)=$ $-\psi(u)$ for $u \in(0,1)$, we have

$$
\begin{aligned}
\chi_{N}(\alpha) & =\frac{1}{N!} \int_{0}^{N!} e\left(-\alpha \sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right) d t \\
& =\frac{1}{N!} \int_{-N!/ 2}^{N!/ 2} e\left(-\alpha \sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right) d t \\
& =\frac{2}{N!} \int_{0}^{N!/ 2} \cos \left(2 \pi \alpha \sum_{n \leq N} n^{a} \psi\left(\frac{t}{n}\right)\right) d t
\end{aligned}
$$

This completes the proof.

References

[1] P. M. Bleher, Z. Cheng, F. J. Dyson and J. L. Lebowitz, Distribution of the error term for the number of lattice points inside a shifted circle, Comm. Math. Phys. 154 (1993), 433-469.
[2] S. Chowla, Contributions to the analytic theory of numbers, Math. Z. 35 (1932), 279-299.
[3] P. D. T. A. Elliott, Probabilistic Number Theory I, Springer, New York, 1979.
[4] D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), 389-415.
[5] Y. K. Lau, On the existence of limiting distributions of some number-theoretic error terms, manuscript.
[6] -, On the limiting distribution of a generalized divisor problem for the case $-1 / 2<$ $a<0$, this issue, 229-236.
[7] T. Meurman, The mean square of the error term in a generalization of Dirichlet's divisor problem, Acta Arith. 74 (1996), 351-364.

Institut Élie Cartan
Université Henri Poincaré (Nancy 1)
54506 Vandœuvre-lès-Nancy Cedex, France
E-mail: lau@antares.iecn.u-nancy.fr

Received on 25.2.2000
and in revised form on 18.9.2000

