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On the limiting distribution of a generalized
divisor problem for the case —1 <a < —1/2
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1. Introduction. Let o4(n) = }_,, d* and define

(1+a), 1
Ay (t) = o(n) —C(1 —a)t — 22—t 4 —(¢(—a).
()= 3 oaln) = (1 - = ST (-
We are concerned with the case —1 < a < —1/2. The case a = —1 is

defined by taking limit. It should be noted that the definition in this case
(=1 < a < —1/2) is slightly different from the case —1/2 < a < 0 in [6].
The difference is that the last term is not halved even if x is an integer. It
will not have any influence on our results.

Unlike the case —1/2 < a < 0, our discussion is not based on the Voronoi-
type formula. Such a formula also exists in the case —1 < a < —1/2. A trun-
cated form with an explicit error term was obtained by Meurman [7] with a
delicate method. However, by means of the Voronoi-type formula, one can
only prove

T
| A.0)?dt=0(T) (-1<a<-1/2),
1

which is superseded by an old result of Chowla [2] who proved that
T

(1.1) § Ag(t)?dt = 11—2 : C(—?(c;)(_z(;)— D1 4 0T+ 10g T).

This gives us evidence that an initial section of the Voronoi-type formula
cannot provide a good approximation to A,(t) when —1 < a < —1/2.
Moreover, it seems that [4, Theorem 5] and [1, Theorem 4.1] cannot yield
results on its limiting distribution.

As was shown in [5], if we define

Dor(u) =T u{t € [1,T]: Au(t) < u},
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then the limiting distribution D, (u) = lim7_. D47 (u) exists for —1 < a <
—1/2. However we do not have any further information about its properties.
In the following, we shall show that D, (u) is continuous and symmetric (i.e.
1= Dy(u) = Dy(—u)). In addition, we shall discuss its rate of convergence.
To study the rate of convergence, we adopt the argument in [5] (i.e. based
on the Berry—Esseen Theorem), and so we have to know the modulus of
continuity of Dg(u).
When —1/2 < a < 0, Meurman [7] proved the following mean square

formula with a “sharp” remainder term:

T

| Au(t)? dt = cT3/*% + O(T)

2
where ca = (6 + 4a) 7 72¢(3/2 — a)((3/2 + a)¢(3/2)%¢(3)"!. In view of
(1.1), one expects that the behaviour of A,(t) is very different in these two
regions. The property of D,(u) being symmetric (when —1 < a < —1/2)
supports the change in behaviour of A,(t) because it is known that Dg(u)
is not symmetric (see Heath-Brown [4]). In fact, we expect that D, (u) is
also non-symmetric for —1/2 < a < 0 and we already know it is partly true.
Let us state our results. Bear in mind that the value of a in the following
theorems lies in [—1,—1/2).

THEOREM 1. For any 0 < e < 1/4 and any y € R, we have Dy(y +¢) —
D, (y) <4 € uniformly in y. In particular, Dq(u) is a continuous function.

THEOREM 2. We have

DayT(u) — Da(u) <<a <

where the implied constant depends only on a.

log T (142a)/6
loglogT

THEOREM 3. D, is symmetric (i.e. 1 — Dg(u) = Dq(—u)).

2. Proof of Theorem 1. Let y € R be fixed and define

_[2—|y+e—alle, y—e<a<y+ 3¢,
pla) = {0, otherwise.

Denoting the characteristic function of the interval (y,y +¢&] by X (y,y+< (v,
we see that

(2'1) Da(y+5) _Da(y) = S X(%y-ﬁ-e](u) dDa(u)
< | p(w)dDy(u) = lim | p(u)dDyr(u),

T—o0
—00 —00
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since D, converges weakly to D, and p is continuous; moreover, we have

T
(2.2) S SS Ag(u)) dadu
1 1 —o0
T sin? (2ra) [«
= el =(=As(u) +y+¢) | dadu.
| <€ =)

Define Sp = {u € [1,T]: |y + ¢ — Aa(u)| < y/£}. Since Ay(u) — Ay(v) =
—C(1—a)(u—v)+O0(m®) for m <v <u<m+1, we have u(Sr) < T
where the implied constant is independent of y but depends on a. If we set
S =[1,T]\ Sr, integration by parts yields that

T
| p(Aa(w)) du
1

—c {6(%(—Aa(U)+y+a)) sin?(2ra) |

a ge —Ay(u) +y+e w2a? |

T e(2(~Au(u) +y+e) d [sin®(2ma
_,S | —Aa(U)ery—Fs6 | @(#) da}d“+5§ O(1) du
< +/eT.

Since §* _p(u)dDqr(u) = T S?p(Aa(u))du, our assertion follows from
(2.1) and (2.2).

3. Proof of Theorem 2. Let ¢(u) = u — [u] — 1/2 where [u] is the
integral part of u. From Chowla [2, Lemma 15], we have

Aq(t) = —ng/zn%(%) — ¢ g\:ﬁn“q/)(%) + O(tY?).

(Chowla proved the case —1 < a < —1/2 only but the case a = —1 can be
proved in a similar way.) Following Chowla’s argument in [2], we obtain the
following result.

LEMMA 3.1. Let -1 <a< —1/2 and 1 < N < VT. We have
2T ¢ 2

t a —

)+ 3 ()

T n<N

dt <o, TN 4 73/2%a 10T

where the implied constant depends on a.

Proof. We firstly note that
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(a) the Fourier series —7 1" 1~ !sin(27lu) is square integrable on any
bounded interval and converges to ¥(u) in L2-norm:;
(b) from [2, Lemma 7],

- 1
1 _ 1 ;
(3:1) Z Z mn|mb — nal < Tlog®;

a<b<zr m,n=1
mb#na

(c) from [2, Lemma 8§],

a<b<zr m,n=1

Then we split the integral into three parts:

2T |2
33) | Aa(t)+2nw<ﬁ> dt
T n<N
2T " 2 2T " 2
a -~ 2a lal - 1+a
<\l > n¢<n> dt+ § | Y 1/;(”) dt + T
T N<n<vVit T n<vi

The second integral on the right hand side of (3.3) is

o S nlely (%)

(3.4) <1 |
n<vi

T
s Y e § w(L)e(L)a

m,n<vV2T max(m?,n2,T)

M
1
. —2m2a 7 |al il
=T Mmoo Y, e Yo
mn<v2T kil=1
2T

. 27k . (27l
X S sin[ —¢ | sin| —¢ | dt
m n

max(m?2,n2,T)

< TH2 Z (mn)le Z %

2
dt

m,n<vV2T kn=Ilm
Eool\t
+0<T2a > () Y <k;z'———> )
mn<v2T kn#lm m "

+0<T2a > (mn)“|;<kl<%+%)>l>.

mn<v2T
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The O-terms in (3.4) are < T%/>*%log T by (3.1) and (3.2), while the first
sum in (3.4) is

< Tl+2 Z (mn)l Z %

mn<v2T kn=Im
< T1+2a Z (mn>|a\—l(m’ n)2
m,n<v2T

<<T1+2a Z d2|a\ Z (’LL’U)M_I

d<+/2T w,v<V2T/d
(u,w)=1

< T3/2+a
where (m,n) denotes the greatest common divisor of m and n. Hence, the

last integral in (3.3) is absorbed by O(T%/2*%logT). With the same argu-
ment, the first integral on the right hand side of (3.3) is equal to

2T

1
o) 2 a - T3/24a 56 T,
(2m) > (mm)t o | dt + O( ogT)
N<n,m<+2T kn=Im max(n2,m2,T)
The sum here is
(m, n)?
T A
< Z (mn)l—a
N<n,m<V2T
1 1
T d2a T d2a
cryan Y dosr oy ey o
d<N N/d<uw<2T/d N<d<+\2T u,w<V2T/d
<<TN1+2CL.

Lemma 3.1 then follows, with (3.3).

Now we prove Theorem 2. Let XaT( ) be the characteristic function of
Dgr(u). Then xq (o -1 Sl a(t)) dt. Choose

(3.5) R= N‘(1+2“)/3 and N = [logT/(4loglogT)].
By the Berry—Esseen Theorem and Theorem 1, we have

(3.6)  [Dar(u) = Da(u)|

1/R n
<R | (Da(u+ @)= Da(u—a))da+ | XG:T(@(X— Xal@)]
0 -R
1 (@ = xala)
< \/—E + —SR o do
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where y, (o) is the characteristic function of D, (u). Define

= L (a5 () )

(3.7) ooy
1 a [t
xn(a) = Th—rgof S e(—a Z n ¢<E>> dt.
1 n<N
Note that the limit exists. Then the last integral in (3.6) is
R R
da da
38) < | Ixar(a) = xnr(e)] o | xvr(@) = xn(@) Tal
—-R -R
R
da
+ | Ixw(@) = xa(@)] al
—R

=11 4+ Ir + I3, say.

From (3.7), Lemma 3.1 and the fact that e(u) — 1 < min(1, |u|), we have
(recall that y,r(a) =711 S? e(ad,(t)) dt)

Aa(t)+ > n“@b(%) ‘ dt

n<N

< R(N1/2+Q+T(1+2a)/4\/@) < RN1/2+0,
by (3.5), and so
(3.10) I3 < RNY/?te,

RT

(39) L < f

1

To evaluate I3, we first note that from the periodicity of ¢ (u),
| N y
XN(oz):m S e<—a2n w<ﬁ>>dt.
1 n<N

Write A = log?T and T = Nlg+ 7 (0 < r < N!), and split the integral I
into two parts,

(3.11) L= | +
la<1/4 1/A<|a|<R

Using e(u) — 1 < |u| shows that the first part S‘a|<1/A is

1 T . " 1 N!+1 . .
(312) < | <?S an<ﬁ>'dt+m | an<ﬁ>‘dt>da
lo|<1/A 11 n<N 1 'n<N

< A1
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since 71 S? DI n%)(t/n)|?dt < 1 (see the proof of Lemma 3.1). The

integrand in the second part § can be expressed as

1/A<|a|<R
¢ Nl+1 ; | Nt ;
= X e(—aZn“Qp(—))dt—— S e(—aZn“d;(—))dt
T 1 n<N n N 1 n<N n
1¢ t
— — apl = 171
—I—T§e< oznzg:vn w<n>>dt<<N.T .

Again, we have used the fact that >, -y n®)(t/n) is periodic and its period
divides N!. Hence Sl/A<|a\§R < (loglog T + log R)N!T~!. Together with
(3.12) and (3.11), we get Is < (logT) "2+ (loglog T +1log R)N!T~!. Putting
this estimate, (3.10) and (3.9) into (3.8) and then (3.6), we get
Dar(u)— Dy(u) < R7Y2 4 RNY* 04 (log T) =2 + (log log T+ log R)N!T .
Theorem 2 follows with the choice (3.5) and Stirling’s formula.

4. Proof of Theorem 3. It is known that a distribution function is
symmetric if and only if its characteristic function is a real-valued function.
(One direction follows from the definition and the other can be seen by the
inversion formula, see [3, Lemma 1.10].)

Let xn(c) be defined as in (3.7). Then

Xa(a) = lm xy(a).
It suffices to show xn(«) is real-valued. Since 1(u) is periodic and (—u) =
—1(u) for u € (0,1), we have
1 t
xn () = NI S e<—a Z nad)<g>> dt
0 n<N
L N2 7
=N S el —a Z n% - dt
—~N1/2 n<N
o N2 ;
= — S cos (27ra Z n“¢<—>> dt.
N! 5 ot n
This completes the proof.
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