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On the limiting distribution of a generalized
divisor problem for the case −1 ≤ a < −1/2

by

Yuk-Kam Lau (Nancy)

1. Introduction. Let σa(n) =
∑

d|n d
a and define

∆a(t) =
∑

n≤t
σa(n)− ζ(1− a)t− ζ(1 + a)

1 + a
t1+a +

1
2
ζ(−a).

We are concerned with the case −1 ≤ a < −1/2. The case a = −1 is
defined by taking limit. It should be noted that the definition in this case
(−1 ≤ a < −1/2) is slightly different from the case −1/2 < a < 0 in [6].
The difference is that the last term is not halved even if x is an integer. It
will not have any influence on our results.

Unlike the case−1/2 < a < 0, our discussion is not based on the Voronoi-
type formula. Such a formula also exists in the case −1 ≤ a < −1/2. A trun-
cated form with an explicit error term was obtained by Meurman [7] with a
delicate method. However, by means of the Voronoi-type formula, one can
only prove

T�

1

∆a(t)2 dt = O(T ) (−1 < a < −1/2),

which is superseded by an old result of Chowla [2] who proved that
T�

1

∆a(t)2 dt =
1
12
· ζ(−2a)ζ2(1− a)

ζ(2− 2a)
T +O(T 3/2+a log T ).(1.1)

This gives us evidence that an initial section of the Voronoi-type formula
cannot provide a good approximation to ∆a(t) when −1 ≤ a < −1/2.
Moreover, it seems that [4, Theorem 5] and [1, Theorem 4.1] cannot yield
results on its limiting distribution.

As was shown in [5], if we define

Da,T (u) = T−1µ{t ∈ [1, T ] : ∆a(t) ≤ u},
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then the limiting distribution Da(u) = limT→∞Da,T (u) exists for −1 ≤ a <
−1/2. However we do not have any further information about its properties.
In the following, we shall show that Da(u) is continuous and symmetric (i.e.
1−Da(u) = Da(−u)). In addition, we shall discuss its rate of convergence.
To study the rate of convergence, we adopt the argument in [5] (i.e. based
on the Berry–Esseen Theorem), and so we have to know the modulus of
continuity of Da(u).

When −1/2 < a < 0, Meurman [7] proved the following mean square
formula with a “sharp” remainder term:

T�

2

∆a(t)2 dt = c2T
3/2+a +O(T )

where c2 = (6 + 4a)−1π−2ζ(3/2 − a)ζ(3/2 + a)ζ(3/2)2ζ(3)−1. In view of
(1.1), one expects that the behaviour of ∆a(t) is very different in these two
regions. The property of Da(u) being symmetric (when −1 ≤ a < −1/2)
supports the change in behaviour of ∆a(t) because it is known that D0(u)
is not symmetric (see Heath-Brown [4]). In fact, we expect that Da(u) is
also non-symmetric for −1/2 < a < 0 and we already know it is partly true.
Let us state our results. Bear in mind that the value of a in the following
theorems lies in [−1,−1/2).

Theorem 1. For any 0 < ε < 1/4 and any y ∈ R, we have Da(y + ε)−
Da(y)�a

√
ε uniformly in y. In particular , Da(u) is a continuous function.

Theorem 2. We have

Da,T (u)−Da(u)�a

(
log T

log log T

)(1+2a)/6

where the implied constant depends only on a.

Theorem 3. Da is symmetric (i.e. 1−Da(u) = Da(−u)).

2. Proof of Theorem 1. Let y ∈ R be fixed and define

p(α) =
{

2− |y + ε− α|/ε, y − ε < α < y + 3ε,
0, otherwise.

Denoting the characteristic function of the interval (y, y+ ε] by χ(y,y+ε](u),
we see that

Da(y + ε)−Da(y) =
∞�

−∞
χ(y,y+ε](u) dDa(u)(2.1)

≤
∞�

−∞
p(u) dDa(u) = lim

T→∞

∞�

−∞
p(u) dDa,T (u),
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since Da,T converges weakly to Da and p is continuous; moreover, we have

T�

1

p(∆a(u)) du =
T�

1

∞�

−∞
p̂(α)e(−α∆a(u)) dαdu(2.2)

=
T�

1

∞�

−∞

sin2(2πα)
π2α2 e

(
α

ε
(−∆a(u) + y + ε)

)
dαdu.

Define ST = {u ∈ [1, T ] : |y+ ε−∆a(u)| ≤ √ε}. Since ∆a(u)−∆a(v) =
−ζ(1− a)(u− v) + O(ma) for m ≤ v ≤ u < m+ 1, we have µ(ST )� √ε T
where the implied constant is independent of y but depends on a. If we set
Sc
T = [1, T ] \ ST , integration by parts yields that

T�

1

p(∆a(u)) du

= ε
�

Sc
T

{
e
(
α
ε (−∆a(u) + y + ε)

)

−∆a(u) + y + ε
· sin2(2πα)

π2α2

∣∣∣∣
∞

−∞

−
∞�

−∞

e
(
α
ε (−∆a(u) + y + ε)

)

−∆a(u) + y + ε
· d
dα

(
sin2(2πα)
π2α2

)
dα

}
du+

�

ST

O(1) du

�√ε T.

Since � ∞−∞ p(u) dDa,T (u) = T−1 � T1 p(∆a(u)) du, our assertion follows from
(2.1) and (2.2).

3. Proof of Theorem 2. Let ψ(u) = u − [u] − 1/2 where [u] is the
integral part of u. From Chowla [2, Lemma 15], we have

∆a(t) = −
∑

n≤
√
t

naψ

(
t

n

)
− ta

∑

n≤
√
t

n|a|ψ
(
t

n

)
+O(ta/2).

(Chowla proved the case −1 < a < −1/2 only but the case a = −1 can be
proved in a similar way.) Following Chowla’s argument in [2], we obtain the
following result.

Lemma 3.1. Let −1 ≤ a < −1/2 and 1 ≤ N ≤
√
T . We have

2T�

T

∣∣∣∣∆a(t) +
∑

n≤N
naψ

(
t

n

)∣∣∣∣
2

dt�a TN
1+2a + T 3/2+a log T

where the implied constant depends on a.

Proof. We firstly note that
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(a) the Fourier series −π−1∑ l−1 sin(2πlu) is square integrable on any
bounded interval and converges to ψ(u) in L2-norm;

(b) from [2, Lemma 7],

∑

a≤b≤x

∞∑

m,n=1
mb 6=na

1
mn|mb− na| � x log x;(3.1)

(c) from [2, Lemma 8],

∑

a≤b≤x

∞∑

m,n=1

1
mn(mb+ na)

� x.(3.2)

Then we split the integral into three parts:

(3.3)
2T�

T

∣∣∣∣∆a(t) +
∑

n≤N
naψ

(
t

n

)∣∣∣∣
2

dt

�
2T�

T

∣∣∣∣
∑

N<n≤
√
t

naψ

(
t

n

)∣∣∣∣
2

dt+
2T�

T

t2a
∣∣∣∣
∑

n≤
√
t

n|a|ψ
(
t

n

)∣∣∣∣
2

dt+ T 1+a.

The second integral on the right hand side of (3.3) is

� T 2a
2T�

T

∣∣∣∣
∑

n≤
√
t

n|a|ψ
(
t

n

)∣∣∣∣
2

dt(3.4)

= T 2a
∑

m,n≤
√

2T

(mn)|a|
2T�

max(m2,n2,T )

ψ

(
t

m

)
ψ

(
t

n

)
dt

= π−2T 2a lim
M→∞

∑

m,n≤
√

2T

(mn)|a|
M∑

k,l=1

1
kl

×
2T�

max(m2,n2,T )

sin
(

2πk
m

t

)
sin
(

2πl
n
t

)
dt

� T 1+2a
∑

m,n≤
√

2T

(mn)|a|
∑

kn=lm

1
kl

+O

(
T 2a

∑

m,n≤
√

2T

(mn)|a|
∑

kn6=lm

(
kl

∣∣∣∣
k

m
− l

n

∣∣∣∣
)−1)

+O

(
T 2a

∑

m,n≤
√

2T

(mn)|a|
∑

k,l

(
kl

(
k

m
+
l

n

))−1)
.



A generalized divisor problem 241

The O-terms in (3.4) are � T 3/2+a log T by (3.1) and (3.2), while the first
sum in (3.4) is

� T 1+2a
∑

m,n≤
√

2T

(mn)|a|
∑

kn=lm

1
kl

� T 1+2a
∑

m,n≤
√

2T

(mn)|a|−1(m,n)2

� T 1+2a
∑

d≤
√

2T

d2|a| ∑

u,v≤
√

2T/d
(u,v)=1

(uv)|a|−1

� T 3/2+a

where (m,n) denotes the greatest common divisor of m and n. Hence, the
last integral in (3.3) is absorbed by O(T 3/2+a log T ). With the same argu-
ment, the first integral on the right hand side of (3.3) is equal to

(2π)−2
∑

N<n,m≤
√

2T

(mn)a
∑

kn=lm

1
kl

2T�

max(n2,m2,T )

dt+O(T 3/2+a log T ).

The sum here is

� T
∑

N<n,m≤
√

2T

(m,n)2

(mn)1−a

� T
∑

d≤N
d2a

∑

N/d<u,v≤
√

2T/d

1
(uv)1−a + T

∑

N<d≤
√

2T

d2a
∑

u,v≤
√

2T/d

1
(uv)1−a

� TN1+2a.

Lemma 3.1 then follows, with (3.3).

Now we prove Theorem 2. Let χa,T (α) be the characteristic function of
Da,T (u). Then χa,T (α) = T−1 � T1 e(α∆a(t)) dt. Choose

R = N−(1+2a)/3 and N = [logT/(4 log log T )].(3.5)

By the Berry–Esseen Theorem and Theorem 1, we have

(3.6) |Da,T (u)−Da(u)|

� R

1/R�

0

(Da(u+ α)−Da(u− α)) dα+
R�

−R

∣∣∣∣
χa,T (α)− χa(α)

α

∣∣∣∣ dα

� 1√
R

+
R�

−R

∣∣∣∣
χa,T (α)− χa(α)

α

∣∣∣∣ dα
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where χa(α) is the characteristic function of Da(u). Define

χN,T (α) =
1
T

T�

1

e

(
−α

∑

n≤N
naψ

(
t

n

))
dt,

χN (α) = lim
T→∞

1
T

T�

1

e

(
−α

∑

n≤N
naψ

(
t

n

))
dt.

(3.7)

Note that the limit exists. Then the last integral in (3.6) is

≤
R�

−R
|χa,T (α)− χN,T (α)| dα|α| +

R�

−R
|χN,T (α)− χN (α)| dα|α|(3.8)

+
R�

−R
|χN (α)− χa(α)| dα|α|

= I1 + I2 + I3, say.

From (3.7), Lemma 3.1 and the fact that e(u)−1� min(1, |u|), we have
(recall that χa,T (α) = T−1 � T1 e(α∆a(t)) dt)

I1 �
R

T

T�

1

∣∣∣∣∆a(t) +
∑

n≤N
naψ

(
t

n

)∣∣∣∣ dt(3.9)

� R(N1/2+a + T (1+2a)/4
√

log T )� RN1/2+a

by (3.5), and so

I3 � RN1/2+a.(3.10)

To evaluate I2, we first note that from the periodicity of ψ(u),

χN (α) =
1
N !

N !+1�

1

e

(
−α

∑

n≤N
naψ

(
t

n

))
dt.

Write A = log2 T and T = N !q + r (0 ≤ r < N !), and split the integral I2
into two parts,

I2 =
�

|α|≤1/A

+
�

1/A<|α|≤R
.(3.11)

Using e(u)− 1� |u| shows that the first part � |α|≤1/A is

�
�

|α|≤1/A

(
1
T

T�

1

∣∣∣∣
∑

n≤N
naψ

(
t

n

)∣∣∣∣ dt+
1
N !

N !+1�

1

∣∣∣∣
∑

n≤N
naψ

(
t

n

)∣∣∣∣ dt
)
dα(3.12)

� A−1
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since T−1 � T1 |
∑

n≤N n
aψ(t/n)|2 dt � 1 (see the proof of Lemma 3.1). The

integrand in the second part � 1/A<|α|≤R can be expressed as

q

T

N !+1�

1

e

(
−α

∑

n≤N
naψ

(
t

n

))
dt− 1

N !

N !+1�

1

e

(
−α

∑

n≤N
naψ

(
t

n

))
dt

+
1
T

r�

1

e

(
−α

∑

n≤N
naψ

(
t

n

))
dt� N !T−1.

Again, we have used the fact that
∑

n≤N n
aψ(t/n) is periodic and its period

divides N !. Hence � 1/A<|α|≤R � (log log T + logR)N !T−1. Together with

(3.12) and (3.11), we get I2 � (logT )−2 +(log log T +logR)N !T−1. Putting
this estimate, (3.10) and (3.9) into (3.8) and then (3.6), we get

Da,T (u)−Da(u)� R−1/2 +RN1/2+a+(log T )−2 +(log log T +logR)N !T−1.

Theorem 2 follows with the choice (3.5) and Stirling’s formula.

4. Proof of Theorem 3. It is known that a distribution function is
symmetric if and only if its characteristic function is a real-valued function.
(One direction follows from the definition and the other can be seen by the
inversion formula, see [3, Lemma 1.10].)

Let χN (α) be defined as in (3.7). Then

χa(α) = lim
N→∞

χN (α).

It suffices to show χN (α) is real-valued. Since ψ(u) is periodic and ψ(−u) =
−ψ(u) for u ∈ (0, 1), we have

χN (α) =
1
N !

N !�

0

e

(
−α

∑

n≤N
naψ

(
t

n

))
dt

=
1
N !

N !/2�

−N !/2

e

(
−α

∑

n≤N
naψ

(
t

n

))
dt

=
2
N !

N !/2�

0

cos
(

2πα
∑

n≤N
naψ

(
t

n

))
dt.

This completes the proof.
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