
ACTA ARITHMETICA

XCVIII.3 (2001)

Three problems for polynomials of small measure
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1. Introduction. Let f(x) =
∑D
k=0 akx

k be a nonzero polynomial with
complex coefficients. To measure the complexity (“height”) of the polyno-
mial f one may use the notions of the length of f , L(f) =

∑D
k=0 |ak|, the

“classical” height of f , H(f) = max0≤k≤D |ak|, the maximum of the modu-
lus of f in the unit circle, ‖f‖ = max|z|≤1 |f(z)|, the Mahler measure of f ,

M(f) = exp
( 2π�

0

log |f(eit)| dt
)
,

or say the value of f at unity, f(1).
Set r%(f) for the order of vanishing of f at a complex number %. Below,

we shall use this notation for only two values of %: % = 1 and % = −1.
A nonzero algebraic number α ∈ Q∗ is described by its unique normalised

minimal polynomial P = Pα, whose coefficients are relatively prime integers
and whose leading coefficient is positive. The minimal polynomial P is irre-
ducible over the field of rational numbers Q. Let N : Q∗ → Q be the norm
function. For every α ∈ Q∗, we have

|N (α− 1)| ≤ |P (1)| ≤ ‖P‖ ≤ L(P ),

where P = Pα.
We can now state three related problems for polynomials of small Mahler

measure.

Multiplicity problem. For a given set of complex numbers A, find
or estimate

r%(A,D) = max r%(f),

where the maximum is taken over all nonzero polynomials f of degree D
with coefficients in the set A.
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Really general sets A do only occur in the second statement of Theo-
rem 3. In most of the cases we deal with the set

H = {−H,−H + 1, . . . ,H − 1,H},
where H is a positive integer, and its subsets E = {−1, 0, 1}, B = {0, 1},
and F = {−1, 1}.

Height problem. Estimate the maximum of some “height” (say |P (1)|,
H(P ), or L(P )) over all irreducible integer polynomials P of degree d and
of Mahler measure at most M .

Approximation problem. Estimate the minimum of |α + 1| over all
algebraic numbers of degree d and of Mahler measure at most M .

In the subsequent sections we discuss the above problems and give some
new results. Some of these (see Sections 3 and 4) show that the problems are
indeed related, and the progress in each of the three would sharpen either
upper or lower bounds in the remaining two.

2. Multiplicity problem. The multiplicity problem for integer poly-
nomials of bounded height, that is, with coefficients in the set H is an old
one. Note that r1(H,D) = r−1(H,D), since H = −H. Various bounds for
r1(H,D) were obtained by Bloch and Pólya [7], Schur [28], Mignotte [23],
Bombieri and Vaaler [8], [9], Amoroso [2], Borwein, Erdélyi and Kós [10]. In
particular, if ε > 0 for the {−1, 0, 1} polynomials we have the bounds

(2− ε)
√
D log 2
logD

< r1(E ,D) <
21
13

√
D

for all D sufficiently large. Here the lower bound follows from the work of
Bombieri and Vaaler [8] (see also [18] for a different proof). The upper bound
(see [20]) strengthens the constant 16/7 obtained by Borwein, Erdélyi and
Kós [10].

The problem of closing the remaining sublogarithmic gap is almost cer-
tainly a difficult one. In particular, the sharpening of the lower bound would
have considerable applications in Diophantine approximation. Borwein and
Mossinghoff [11] gave some computational results for the degrees of polyno-
mials with coefficients in {−1, 0, 1} and prescribed vanishing at 1.

In some cases the magnitude of r1(A,D) is considerably smaller. For
polynomials with {−1, 1} coefficients, Boyd [13] proved the inequalities

logD � r1(F ,D) < (1 + ε)
(logD)2

log logD
,

where ε > 0, and D is a sufficiently large integer. His upper bound is true
for every set F of odd integers which is bounded by an absolute constant.
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Clearly, r1(B,D) = 0, because the polynomials with {0, 1} coefficients
do not vanish at 1. For r−1(B,D) we can give an almost complete answer.
Below [. . .] stands for the integral part.

Theorem 1. Let D ≥ 2 be a positive integer. Then either

r−1(B,D) =
[

logD
log 2

]
, or r−1(B,D) =

[
logD
log 2

]
− 1.

Furthermore, each possibility occurs infinitely often.

Proof. The upper bound

r−1(B,D) ≤ log(D + 1)
log 2

is given in [10]. We shall replace D + 1 by D.
It follows easily that r−1(B, 1) = r−1(B, 2) = 1. Suppose that 2r >

D > 2, where r = r−1(B,D). Let g be a nonzero polynomial with {0, 1}
coefficients such that r−1(g) = r. Clearly,

g(x) 6= 1 + x+ x2 + . . .+ xD,

since r > 1. At least one coefficient of g, therefore, is equal to 0. Hence

2r ≤ g(1) ≤ D,
a contradiction. Since r is an integer, we deduce the inequality

r = r−1(B,D) ≤
[

logD
log 2

]
.

Set bk = (2k+1+(−1)k)/3. Of course, {bk}k=1,2,... is a sequence of positive
odd integers. For any positive integer k one can easily verify the inequality

b1 + . . .+ bk < bk+1

(in fact, the sum on the left hand side is bk+1 − 1 or bk+1 − 2 according as
k is even or odd). Therefore,

Br(x) =
r∏

k=1

(xbk + 1)

is a polynomial with coefficients in the set B = {0, 1}. Set now

r =
[

log(3D/4)
log 2

]

and

B∗r (x) = xD−b1−b2−...−br
r∏

k=1

(xbk + 1).

Since
b1 + . . .+ br ≤ br+1 − 1 <

4
3
· 2r ≤ D,

B∗r (x) is a {0, 1} polynomial of degree D.
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Note that

r−1(B∗r ) = r =
[

log(3D/4)
log 2

]
=
[

logD
log 2

− 0.415 . . .
]
≥
[

logD
log 2

]
− 1.

This shows that there are only two possibilities for r−1(B,D). Further-
more, if {

logD
log 2

}
≥ 2− log 3

log 2
= 0.415 . . . ,

where {. . .} stands for the fractional part, then we have the first possibility,
namely,

r−1(B,D) = r =
[

log(3D/4)
log 2

]
=
[

logD
log 2

]
.

Clearly, there are an infinite number of such integers D.
Suppose now that D is a power of 2: D = 2m, D ≥ 8. We claim that

r−1(B, 2m) = m− 1.

Indeed, assume that there is a {0, 1} polynomial g of degree D = 2m for
which

r−1(g) = m.

Then there is a coefficient of g equal to zero, for otherwise g(−1) 6= 0.
Suppose that there is only one such coefficient. Since m ≥ 3, we see that
g(−1) = 0, g′(−1) = 0 and g′′(−1) = 0. From the first two of these equalities
one can easily find that

g(x) =
xD+1 − 1
x− 1

− xD/2.

But then

g′′(−1) =
D2 + 2D

4
6= 0,

a contradiction. Thus, among the coefficients of g there are at least two
zeros. Then, as above,

2m = 2r−1(g) ≤ D − 1 < 2m,

a contradiction. Consequently, for every m ≥ 3 we have the second possibil-
ity, namely, r−1(B, 2m) = m− 1.

Note that Theorem 1 is true for every set {0, b}, where b is a nonzero
complex number, by considering the {0, 1} polynomials g/b instead of the
{0, b} polynomials g.

3. Height problem. For the height and approximation problems we
assume that 1 < M < exp(d1−δ), where δ is a small positive constant. Here
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we use the letter d instead of D for the degree to show that the polynomials
involved are irreducible.

Mignotte [24] showed that the inequality

L(P ) ≤ (2d+ 1)M exp(
√

2d(4 + log d) log((2d+ 1)1/2M))

holds for irreducible integer polynomials P of degree d and of measure at
most M . For large M , say M ≥ ed/

√
d, the Liouville inequality L(P ) ≤

2dM(P ) gives a stronger bound. This is also the case for cyclotomic poly-
nomials (M = 1). Amoroso [5] and the author [21] slightly improved the
constants in Mignotte’s inequality. For instance, in the range 1 < M < dθ

the inequality

H(P ) ≤ ‖P‖ ≤ L(P ) < exp((1 + θ)
√
d/2 log d)

is true for all d sufficiently large [21].
For the height P (1), Bugeaud [14] obtained the bound

|P (1)| ≤M4 exp(2
√
d log d logM).

The proof is based on the analytical inequality
∣∣∣
K−1∏

k=1

(zk − 1)K−k
∣∣∣ ≤ max{1, |z|}K(K2−1)/6KK/2,

where z is a complex number and K ≥ 2 is an integer. The above inequality
follows from Hadamard’s inequality, by representing the polynomial on the
left hand side as

z−K(K−1)(K−2)/6Det(xij)0≤i,j≤K−1.

In some sense this proof can be compared with Zagier’s method [32] used
for a lower bound of (M(α)M(1− α))1/d.

We remark that there is more information in the above inequality than
just an upper bound for |P (1)|. Taking the product over all d conjugates of
α ∈ Q∗, α 6= 1, with leading coefficient a one easily gets the inequality

K−1∑

k=1

(
1− k

K

)
log |N (αk − 1)| ≤ K2 − 1

6
log
(
M(α)
a

)
+
d

2
logK.

This “one-line proof” sharpens the essentially Blanksby and Montgomery
inequality [6] (see Silverman [29], [30], [31]) obtained by using the Fourier
averaging techniques. Silverman [30] speculates that such an inequality can
be used to approach the Lehmer conjecture.

The author used some more subtle determinants [16], [17] which gave
the inequality

|P (1)| < exp
((

π

4
+ ε

)√
d log d logM

)



284 A. Dubickas

for any ε > 0 and for all d sufficiently large. These proved to be useful in
estimating the number of cyclotomic factors of a polynomial [19]. The latter
problem was first investigated by Schinzel [27]. See also the paper of Pinner
and Vaaler [26].

Amoroso [1] showed that these bounds are not far from being sharp. He
proved that for ε > 0 the inequality

|P (1)| > exp((1− ε)
√
d logM(P ))

has infinitely many solutions in irreducible integer polynomials P such that
d2/4 ≤M(P ) ≤ d2/2. By simplifying his example, we show that it also has
infinitely many solutions for smaller M(P ), say d < M(P ) < (1 + ε)d. It
would be of interest to reduce the upper bound for M(P ) to, for instance,
M(P ) ≤

√
d, if possible.

For every integer q ≥ 2, set

d =
∑

p≤q
(p− 1),

where the sum is taken over primes. Let p(d) be a prime number greater
than d, and let

Qd(x) = x1+d−p(d) d

dx

(
xp(d)−d∏

p≤q
(1 + x+ x2 + . . .+ xp−1)

)
.

Clearly, Qd(x) is an integer polynomial of degree d.

Theorem 2. Qd is an irreducible integer polynomial such that M(Qd) =
p(d). Furthermore, for any ε > 0 and d sufficiently large we have

Qd(1) > exp((1− ε)
√
d log d).

Note that if p(d) < exp(ε
√
d log d), then for any root α of Qd,

N (α− 1) =
Qd(1)
p(d)

> exp((1− 2ε)
√
d log d),

because the coefficients of Qd are all nonnegative. Also, if say p(d) ≤ d1+ε,
then

N (α− 1) > exp((1− 2ε)
√
d logM(α)).

Proof of Theorem 2. The polynomial

xp(d)−d∏

p≤q
(1 + x+ . . .+ xp−1)

has no multiple roots on the unit circle |z| = 1. Hence, the zeros of Qd are all
strictly inside the unit circle, since the smallest closed convex set containing
all the zeros of a polynomial also contains all the zeros of the derivative of
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the polynomial. Suppose that

Qd(x) = p(d)xd + . . .+ p(d)− d
is reducible. From the fact that p(d) is a prime number, we deduce that
there is an irreducible integer polynomial Q∗ with the leading coefficient
p(d) so that Q∗ |Qd. The remaining zeros of the ratio Qd/Q∗ must contain
a full set of conjugates of an algebraic integer. This is, however, impossible,
because they are all strictly inside the unit circle |z| < 1, and Qd(0) 6= 0.
Consequently, degQd = d and M(Qd) = p(d).

For the last inequality, note that if ε > 0 and if q is sufficiently large
then

d =
∑

p≤q
(p− 1) <

(
1 +

ε

2

)
q2

2 log q
.

Hence q > (1−ε/2)
√
d log d. Since the coefficients of Qd are all nonnegative,

it follows that

Qd(1) >
∏

p≤q
p > exp

((
1− ε

2

)
q

)
> exp((1− ε)

√
d log d)

as required.

Our next statement shows that the multiplicity problem and the height
problem are indeed related. Let

s(L,D) = max r1(f),

where the maximum is taken over all integer polynomials of degree D and
of length at most L.

Proposition 1. For a given positive integers L, d, and an integer irre-
ducible polynomial P of degree d, d ≥ D ≥ 2, we have

s(L,D) log |P (1)| ≤ D logM(P ) + d logL.

Proof. Assume that r = s(L,D) > 0, for otherwise the inequality is
trivial. Hence, none of the roots of

P (x) = a
d∏

j=1

(x− αj)

is a root of f , where r1(f) = r ≥ 1. We have f(x) = (x − 1)rg(x) with
an integer polynomial g. The degree of the latter is equal to D − r, thus
|aD−rg(α1) . . . g(αd)| ≥ 1. On multiplying both sides of this inequality by
|P (1)|r, we obtain

|P (1)|r ≤ |a|D
{ d∏

j=1

|αj − 1|r
}
|g(α1) . . . g(αd)| = |aDf(α1) . . . f(αd)|.
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The latter product is less than or equal to M(P )DLd (by the inequality
|f(z)| ≤ max{1, |z|}DL), whence the result.

The best known lower bound for s(L,D) can be used to replace the
constant π/4 by 1/

√
2 in the above upper bound for |P (1)| provided that

M(P ) is not too small.

Corollary. Let 0 < ν < 2/3. If P is an irreducible integer polynomial
of degree d, where d > d(ν), such that M(P ) ≥ d1/ν , then

|P (1)| ≤ exp
(

1 + ν√
2

√
d log d logM(P )

)
.

Proof. Fix a small positive constant ε, and let D be sufficiently large. By
considering the polynomials with coefficients in H, with H=[D1/ν/(D+1)],
and applying Theorem 3 of [2], we get

s(L,D) ≥ r1(H,D) > (1− ε)
√

8
(

1
ν
− 1
)
D.

Here L = D1/ν . Taking

d =
[
νD logM(P )

logD

]
+ 1 ≥

[
D log d
logD

]
+ 1 >

D log d
logD

we see that d > D. On applying the inequality of Proposition 1, we get

log |P (1)| < (1 + 2ε)

√
νD

2(1− ν)
logM(P ).

Since νD < (d log d)/logM(P ) and (1 − ν)−1/2 < 1 + ν, the statement
follows.

The example given in Theorem 2 via Proposition 1 implies the essentially
Schur’s bound for s(L,D):

s(L,D) ≤ (2 + ε)
√
D logL.

A better example would imply stronger bounds.
Suppose H = [Dξ] with a fixed constant ξ > 0. From [2], [8] or [23] it

follows that √
D � r1(H,D).

Let ϕ(d) be any function such that ϕ(d)→∞ as d→∞. Suppose that there
exist a positive constant γ and a sequence of irreducible integer polynomials
P of degree d (where the sequence of the degrees is sufficiently dense) so
that M(P ) ≥ dϕ(d) and

|P (1)| ≥ exp(γ
√
d log d logM(P )).
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Then, taking say d = [D logM(P )/(ξ logD)] in Proposition 1, we would get

r1(H,D)�
√
D.

4. Approximation problem. How well can a fixed algebraic number
β be approximated by algebraic numbers α of small Mahler measure? This
question was first investigated by Mignotte [22]. The worst rate of approxi-
mation seems to occur in the case when β is a root of unity (see also [12]).
On replacing α by its power, or by −α, if necessary, we see that it suffices
to investigate the case β = −1. The lower bounds for |α+ 1| were obtained
by Mignotte [22], Mignotte and Waldschmidt [25], Bugeaud, Mignotte and
Normandin [15], and by the author [16]. For a fixed ε > 0 and d sufficiently
large the inequality

|α+ 1| > exp
(
−
(
π

4
+ ε

)√
d log d logM(α)

)

is true say in the range 1 < M(α) < exp(d1−δ) (see [16]).
The existence of algebraic numbers close to 1 or −1 was first shown

by Amoroso [3], [4]. The author [17] showed that there are infinitely many
algebraic numbers α such that 0 < logM(α) � log d (here d is the degree
of α), and

|α+ 1| < exp
(
−2.8

√
d logM(α)

log d

)
.

Proposition 2. For α ∈ Q∗, α 6= 1, of degree d, we have

|α+ 1| > 3
4dL(α)

.

Proof. The proposition clearly holds for d = 1. If d ≥ 2, then L(α) ≥ 3.
Hence, there is no loss of generality to assume that |α + 1| ≤ 1/(4d). On
replacing α by 1/α, if necessary, we may assume that |α| ≥ 1. Therefore

1 ≤ |P (−1)| = |P (−1)− P (α)| ≤ |1 + α| max
1≤|z|≤|α|

|P ′(z)|

≤ |1 + α|dL(P )
(

1 +
1
4d

)d−1

<
4
3
|1 + α|dL(α),

and the statement follows.

The above statement is a version of Liouville’s inequality. The proof
of the first part in the next theorem is essentially the same. The follow-
ing bounds show the relation between the multiplicity and approximation
problems.

Theorem 3. Let H and D be two positive integers. For any root α,
α 6= −1, of a polynomial of degree D with coefficients in A, where A ⊂ H,
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we have

|α+ 1| > 1
2H(D + 1)

(
rD + 1
eD

)rD+1

.

Here rD = r−1(A,D).
Furthermore, let N and s > 1 be two positive integers, even and odd

respectively , such that (N+1)(2s+1) ≤ D+1, and let A be a set of complex
numbers. Then there is a polynomial of degree at most D with coefficients
in A and a root α, α 6= −1, so that

|α+ 1| < s2−rN ,

where rN = r−1(A, N) ≥ 1.

Proof. The first part is a simplified version of the method used in [12].
Let f(x) be a polynomial of degree D with coefficients in A so that r =
rD = r−1(A,D). The modulus of the left hand side in the identity

f(x)
(x+ 1)r

∣∣∣∣
x=1

= −(1 + α)
1
r!

(
f(x)
x− α

)(r)∣∣∣∣
x=−1

,

where α, α 6= −1, is a root of f , is bounded below by 1. There is no loss of
generality in assuming that 1 ≤ |α| ≤ 1+1/(2(D+1)). In order to establish
the lower bound note that
∣∣∣∣

1
r!

(
f(x)− f(α)

x− α

)(r)∣∣∣∣
x=−1

∣∣∣∣ ≤ max
1≤|z|≤|α|

∣∣∣∣
f (r+1)(z)
(r + 1)!

∣∣∣∣

≤ L(f)Dr+1|α|D−1

(r + 1)!
< 2H(D+1)

(
De

r + 1

)r+1

.

For the second part we use the following statement which is true for any
set of complex numbers A.

Observation. For a given positive integers N , s, and a set of complex
numbers A, let f(x) be a polynomial of degree N with coefficients in A. Then
the coefficients of the polynomial

f(x) + xN+1(xNs+s + 1)(xs−1 + xs−2 + . . .+ 1)f(xs)

are all in A.

Let now f(x) be a polynomial of degree N with coefficients in A so that
r−1(f) = rN = r−1(A, N) = r. Set

g(x) =
f(x)

(x+ 1)r
,

G(x) = g(x) + xN+1(xNs+s + 1)
xs − 1
x− 1

(
xs + 1
x+ 1

)r
g(xs)

with s so that 2Ns+ 2s+N ≤ D.
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Suppose first that g′(−1)g(−1) ≤ 0. Since N is even and s > 1 is odd, it
follows that

G(−1) = g(−1) 6= 0,

G′(−1) = g′(−1) + (−1)N+1(Ns+ s)srg(−1)

= g′(−1)− (N + 1)sr+1g(−1).

Thus, the polynomial G has a root α, α 6= −1, such that
∣∣∣∣
G′(−1)
G(−1)

∣∣∣∣ ≤
degG
|α+ 1| =

2Ns+ 2s+N − r
|α+ 1| <

3(N + 1)s
|α+ 1| .

Here the expression on the left hand side is at least (N + 1)sr+1, so

|α+ 1| < 3
sr
≤ 1
sr−1 .

Also, α is a root of the polynomial (x+1)rG(x) of degree 2Ns+2s+N ≤ D
and with coefficients in A (see Observation).

In the case g′(−1)g(−1) > 0 we take a slightly different polynomial:

G(x) = x2Ns+2sg(x) + (xNs+s + 1)
xs − 1
x− 1

(
xs + 1
x+ 1

)r
g(xs).

This time

G(−1) = g(−1),

G′(−1) = −(2Ns+ 2s)g(−1) + g′(−1) + (Ns+ s)srg(−1)

= g′(−1) + (N + 1)s(sr − 2)g(−1),

and for a root α, α 6= −1, of G we have

|α+ 1| < 3(N + 1)s
(N + 1)s(sr − 2) + g′(−1)/g(−1)

<
3

sr − 2
≤ 3
sr−1 ≤

1
sr−2 .

Again, α is a root of the polynomial

(x+ 1)rG(x) = x2Ns+2sf(x) + (xNs+s + 1)(xs−1 + . . .+ 1)f(xs)

of degree 2Ns+ 2s+N ≤ D and with coefficients in A. This completes the
proof.

Let ε be a small positive constant. Taking s = 3 and applying Theorem
3 to the {−1, 0, 1} polynomials, we obtain

exp
(
−
(

log 3√
7

+ ε

)
rD

)
< min |α+ 1| < exp

(
−
(

1
2
− ε
)
rD logD

)
,

the minimum being taken over all roots α, α 6= −1, of {−1, 0, 1} polyno-
mials of a sufficiently large degree D. Recall that here rD is in the range√
D/logD � rD < 21

13

√
D.
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Write {[
√
D/2] − 1, [

√
D/2] − 2} = {N, s}, where N is even and s is

odd. Using the bounds
logD
log 2

− 2 < rD = r−1(B,D) ≤ logD
log 2

(see Theorem 1), from Theorem 3 we now deduce that

exp
(
−(1 + ε)

(logD)2

log 2

)
< min |α+ 1| < exp

(
−(1− ε) (logD)2

4 log 2

)
.

Here the minimum is taken over all roots α, α 6= −1, of {0, 1} polynomials of
a sufficiently large degree D. Borwein and Pinner [12] obtained the constant
4 log 3 = 4.394 . . . instead of 4 log 2 = 2.772 . . .

Finally, taking N and s as above,√
D/2− 3 < N, s ≤

√
D/2− 1,

and using Boyd’s [13] result (see also [12])

logD � rD = r−1(F ,D)� (logD)2

log logD
,

we have

exp(−(1 + ε)rD logD) < min |α+ 1| < exp
(
−
(

1
8
− ε
)
rD logD

)
.

Here the minimum is taken over all roots α, α 6= −1, of {−1, 1} polynomials
of a sufficiently large degree D.
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