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1. Introduction. Let N be the set of natural numbers, N0 = N ∪ {0},
Z the ring of rational integers, Q the field of rational numbers, R the field
of real numbers and C the field of complex numbers.

The Mordell–Tornheim r-ple zeta-function

(1.1) ζMT,r(s1, . . . , sr; sr+1) =
∞∑

m1,...,mr=1

1
ms1

1 · · ·m
sr
r (m1 + · · ·+mr)sr+1

was defined by the first-named author (see [5, 8]). It can be meromorphically
continued to the whole space Cr+1, and possible singularities of (1.1) can be
explicitly determined (see [8, Theorem 1]).

In the 1950’s, Tornheim considered the double series ζMT,2(p, q; r)
(p, q, r ∈ N), and gave some fascinating formulas (see [16]). A little later,
Mordell independently studied the values ζMT,2(k, k; k) (k ∈ N), and showed
that ζMT,2(2p, 2p; 2p) can be written as Mp · π6p for some constant Mp ∈ Q
(p ∈ N) (see [11]).

About 30 years later, Subbarao and Sitaramachandrarao gave an eval-
uation formula for ζMT,2(2p, 2p; 2p) ([14]). Then Zagier [22] proved the fol-
lowing simple formula:

(1.2) ζMT,2(2p, 2p; 2p) =
4
3

p∑
j=0

(
4p− 2j − 1

2p− 1

)
ζ(2j)ζ(6p− 2j) (p ∈ N),

which is much simpler than the Subbarao–Sitaramachandrarao formula. As
an analogue of (1.2), Huard, Williams and Zhang [3] gave an evaluation
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formula for ζMT,2(2p+ 1, 2p+ 1; 2p+ 1) (p ∈ N0):

(1.3) ζMT,2(2p+ 1, 2p+ 1; 2p+ 1)

= −4
p∑
j=0

(
4p− 2j + 1

2p

)
ζ(2j)ζ(6p− 2j + 3).

Recently, as interpolations of these formulas, the fourth-named author
gave some functional relations for ζMT,2(s1, s2; s3) (see [21, Theorem 4.5]).
More recently the second-named author proved functional relations for
ζMT,2(s1, s2; s3) by a different method ([12, Theorem 1.2]). His relations
are

(1.4) ζMT,2(a, b; s) + (−1)bζMT,2(b, s; a) + (−1)aζMT,2(s, a; b)

=
2
a!b!

max([a/2],[b/2])∑
k=0

{
a

(
b

2k

)
+ b

(
a

2k

)}
× (a+ b− 2k − 1)!(2k)!ζ(2k)ζ(a+ b+ s− 2k)

for a, b ∈ N, where [x] is the integer part of x. These have simpler forms
than those in [21]. Note that (1.4) holds for all s ∈ C except the singularities
of both sides.

Furthermore, triple and more general multiple zeta values of the Mordell–
Tornheim type have been studied. Actually Mordell considered the multiple
series

∞∑
m1,...,mr=1

1
m1 · · ·mr(m1 + · · ·+mr + a)

for a > −r, which can be regarded as a prototype of (1.1). Based on his
work, Hoffman studied ζMT,r(1, 1, . . . , 1; k) for k ∈ N and gave some relations
between these values and the Euler–Zagier type of multiple zeta values (see
[2, Section 4]). Markett independently expressed ζMT,3(1, 1, 1; k) (k ∈ N) as
a polynomial in the values of ζ(s) at positive integers with Q-coefficients
(see [4]). Recently the fourth-named author proved a certain property of the
values of ζMT,r ([20, Theorem 1.1]), which is called the “parity result” (for
details, see Remark 4.8 in Section 4).

In the present paper, we mainly study the Mordell–Tornheim double
and triple zeta-functions. In Section 2, we prove a key lemma (Lemma 2.1)
for the study of double and triple series. As applications, we confirm that
the functional relations for ζMT,2 given by the fourth-named author coincide
with (1.4) (see Proposition 2.2), and consider some alternating double series.
In Section 3, we give some relation formulas for the values of ζMT,3 which
can be regarded as triple analogues of (1.2) and (1.3) (see Theorem 3.1).
In Section 4, we give some functional relations among triple zeta-functions,
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double zeta-functions and the Riemann zeta-function, which can be regarded
as triple analogues of (1.4) (see Theorem 4.5). In Sections 5 and 6, we
discuss analytic properties of triple zeta-functions appearing in Section 4.
Actually, in Section 6, we study more general ζMT,r and determine their
true singularities (see Theorem 6.1).

2. The key lemma and its applications. Let ζ(s) be the Riemann
zeta-function and

(2.1) φ(s) =
∞∑
m=1

(−1)m

ms
= (21−s − 1)ζ(s).

We recall that
∞∑
m=1

(−1)m cos(mθ)
m2k

=
k∑
ν=0

φ(2k − 2ν)
(−1)νθ2ν

(2ν)!
,(2.2)

∞∑
m=1

(−1)m sin(mθ)
m2l+1

=
l∑

ν=0

φ(2l − 2ν)
(−1)νθ2ν+1

(2ν + 1)!
,(2.3)

for k ∈ N, l ∈ N0 and θ ∈ (−π, π) ⊂ R (see, for example, [17, Lemma 2]).
Note that φ(0) = ζ(0) = −1/2. Since both sides of (2.2) and of (2.3) are
continuous for θ ∈ [−π, π] and k, l ∈ N, we can let θ → π in (2.2) and (2.3),
to obtain, cos(nπ) = (−1)n and sin(nπ) = 0 (n ∈ Z),

ζ(2k) =
k∑
ν=0

φ(2k − 2ν)
(−1)νπ2ν

(2ν)!
,(2.4)

0 =
l∑

ν=0

φ(2l − 2ν)
(−1)νπ2ν+1

(2ν + 1)!
,(2.5)

for k, l ∈ N.
Now we prove the following lemma which is a key to considering rear-

rangements of sums appearing in relation formulas for double and triple zeta
values.

Lemma 2.1. For arbitrary functions f, g : N0 → C and a ∈ N, we have
a∑
j=0

j≡a (mod 2)

φ(a− j)
[j/2]∑
µ=0

f(j − 2µ)
(−1)µπ2µ

(2µ)!
=

[a/2]∑
%=0

ζ(2%)f(a− 2%),(2.6)

a∑
j=0

j≡a (mod 2)

φ(a− j)
[(j−1)/2]∑
µ=0

g(j − 2µ)
(−1)µπ2µ

(2µ+ 1)!
= −1

2
g(a).(2.7)
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Proof. On the left-hand side of (2.6), we change the running indices j
and µ to % and ν defined by j = a+2µ−2% and µ = ν (≤ %). Since 0 ≤ j ≤ a
and 0 ≤ µ ≤ [j/2], we have % = µ + (a − j)/2 ≥ µ = ν and 0 ≤ 2% ≤ a, so
0 ≤ % ≤ [a/2]. Hence, as a− j = 2%− 2ν and j − 2µ = a− 2%, we see that
the left-hand side of (2.6) is

[a/2]∑
%=1

%∑
ν=0

φ(2%− 2ν)f(a− 2%)
(−1)νπ2ν

(2ν)!
+ φ(0)f(a).

From (2.4) and φ(0) = ζ(0) = −1/2, this is equal to the right-hand side
of (2.6). Similarly, changing the running indices j and µ to % and ν defined
by j = a + 2µ − 2% and ν = µ ≤ % on the left-hand side of (2.7), and
using (2.5), we can see that (2.7) holds.

As a direct application of this lemma, we obtain the following proposition
which implies that (1.4) essentially coincides with the result of [21].

Proposition 2.2. For a, b ∈ N,

(2.8) ζMT,2(a, b; s) + (−1)aζMT,2(a, s; b) + (−1)bζMT,2(b, s; a)

= 2
max([a/2],[b/2])∑

%=0

{(
a+ b− 2%− 1

a− 1

)
+
(
a+ b− 2%− 1

b− 1

)}
× ζ(2%)ζ(s+ a+ b− 2%)

for all s ∈ C except the singularities of both sides.

Proof. The fourth-named author gave the functional relations

(2.9) ζMT,2(a, b; s) + (−1)aζMT,2(a, s; b) + (−1)bζMT,2(b, s; a)

= 2
a∑
j=0

j≡a (mod 2)

φ(a− j)
[j/2]∑
µ=0

(iπ)2µ

(2µ)!

(
b− 1 + j − 2µ

j − 2µ

)
ζ(b+ j + s− 2µ)

− 4
a∑
j=0

j≡a (mod 2)

φ(a− j)
[(j−1)/2]∑
µ=0

(iπ)2µ

(2µ+ 1)!

b∑
ν=0

ν≡b (mod 2)

ζ(b− ν)

×
(
ν − 1 + j − 2µ
j − 2µ− 1

)
ζ(ν + j + s− 2µ)

for a, b ∈ N and s ∈ C (see [21, Theorem 4.5]). Applying (2.6) and (2.7) to
(2.9) with

f(X) =
(
b− 1 +X

X

)
ζ(b+ s+X),
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g(X) =
b∑

ν=0
ν≡b (mod 2)

ζ(b− ν)
(
ν − 1 +X

X − 1

)
ζ(ν + s+X),

we have

ζMT,2(a, b; s) + (−1)aζMT,2(a, s; b) + (−1)bζMT,2(b, s; a)

= 2
[a/2]∑
%=0

ζ(2%)
(
a+ b− 2%− 1

a− 2%

)
ζ(s+ a+ b− 2%)

+ 2
b∑

ν=0
ν≡b (mod 2)

ζ(b− ν)
(
ν − 1 + a

a− 1

)
ζ(s+ ν + a).

By putting ν = b− 2% in the second sum, we obtain (2.8).

We can easily check that

(2.10)
2

m!n!
m

(
n

2k

)
(m+ n− 2k − 1)!(2k)! = 2

(
m+ n− 2k − 1

m− 1

)
for k,m, n ∈ N0. Substituting (2.10) in the cases (m,n) = (a, b) and (b, a)
into (1.4), we obtain (2.8). Thus we showed that (1.4), (2.8) and (2.9) are
all equivalent.

Remark 2.3. Putting a = b = 2p and 2p + 1 in (2.8), we can obtain
(1.2) and (1.3). Hence (2.8) can be regarded as a continuous interpolation
of both (1.2) and (1.3).

Lemma 2.1 is also useful for the study of

φ2(s1, s2; s3) =
∞∑

m,n=1

(−1)m+n

ms1ns2(m+ n)s3
,(2.11)

ψ2(s1, s2; s3) =
∞∑

m,n=1

(−1)n

ms1ns2(m+ n)s3
,(2.12)

for s1, s2, s3 ∈ C. The fourth-named author proved that

(2.13) φ2(2p+1, 2p+1; 2p+1) = 2
p∑
%=0

(
4p+ 1− 2%

2p

)
φ(2%)φ(6p+3−2%)

− 4
p∑
j=0

φ(2j)
{ p∑
ν=0

φ(2p− 2ν)
ν∑

µ=0

(
2p+ 1− 2j + 2ν − 2µ

2ν − 2µ

)

× ζ(4p+ 3− 2j + 2ν − 2µ)
(−1)µπ2µ

(2µ+ 1)!

}
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for p ∈ N0 (see [19, Theorem 3.4]). Applying (2.7) to (2.13) with a = 2p+ 1
and

g(t) =
(

2p− 2j + t

t− 1

)
ζ(4p+ 2− 2j + t),

we have

φ2(2p+ 1, 2p+ 1; 2p+ 1) = 2
p∑
%=0

(
4p+ 1− 2%

2p

)
φ(2%)φ(6p+ 3− 2%)

+ 2
p∑
j=0

φ(2j)
(

4p+ 1− 2j
2p

)
ζ(6p+ 3− 2j).

Since φ(s) = (21−s − 1)ζ(s), we can rewrite (2.13) as follows.

Proposition 2.4. For p ∈ N0,

(2.14) φ2(2p+ 1, 2p+ 1; 2p+ 1)

= 2−6p
p∑
j=0

(
4p+ 1− 2j

2p

)
(22j−1 − 1)ζ(2j)ζ(6p+ 3− 2j).

On the other hand, from [13, Theorem 3.1] and (2.10), we have

Proposition 2.5. For p ∈ N0,

(2.15) φ2(2p+ 1, 2p+ 1; 2p+ 1)− 2ψ2(2p+ 1, 2p+ 1; 2p+ 1)

= 4
p∑
j=0

(
4p+ 1− 2j

2p

)
(22j−2−6p − 1)ζ(2j)ζ(6p+ 3− 2j).

Hence, combining (2.14) and (2.15), we have

Proposition 2.6. For p ∈ N0,

(2.16) ψ2(2p+ 1, 2p+ 1; 2p+ 1)

= 2−6p−1
p∑
j=0

(
4p+ 1− 2j

2p

)
(26p+2 − 22j−1 − 1)ζ(2j)ζ(6p+ 3− 2j).

Example 2.7. By (2.16), for example, we obtain

ψ2(5, 5; 5) = − 2064195
16384

ζ(15) +
573335
8192

ζ(2)ζ(13) +
81875
8192

ζ(4)ζ(11),

ψ2(7, 7; 7) = − 899676921
524288

ζ(21) +
242220363

262144
ζ(2)ζ(19)

+
22019907
131072

ζ(4)ζ(17) +
7339801
524288

ζ(6)ζ(15).

These formulas correct those in [18, Example 3.7].
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3. Relation formulas for triple zeta values. In this section, we
prove relation formulas for ζMT,3(k, k, k; k) for k ∈ N, which are the triple
analogues of (1.2) and (1.3). The method of proof is similar to that in [17, 20].
Combining that method with Lemma 2.1, we can obtain the following simple
expressions like (1.2) and (1.3).

Theorem 3.1. For p ∈ N,

(3.1) ζMT,3(2p, 2p, 2p; 2p) = 4
p∑

ν=1

(
2ν + 2p− 1

2p− 1

)
ζ(2p− 2ν)

× {ζMT,2(2p, 2p; 2p+ 2ν)− ζMT,2(2p+ 2ν, 2p; 2p)} − ζ(4p)2,

and for p ∈ N0,

(3.2) ζMT,3(2p+1, 2p+1, 2p+1; 2p+1) = −4
p∑

ν=0

(
2ν + 2p− 1

2p

)
ζ(2p−2ν)

× {ζMT,2(2p+ 1, 2p+ 1; 2p+ 2ν + 2)
+ ζMT,2(2p+ 2ν + 2, 2p+ 1; 2p+ 1)}+ ζ(4p+ 2)2.

Example 3.2. From Theorem 3.1, for example, we can obtain

ζMT,3(1, 1, 1; 1) =
12
5
ζ(2)2 =

1
15
π4,

ζMT,3(2, 2, 2; 2) = 6{ζMT,2(4, 2; 2)− ζMT,2(2, 2; 4)} − ζ(4)2,
ζMT,3(3, 3, 3; 3) = − 12ζ(2) {ζMT,2(3, 3; 4) + ζMT,2(4, 3; 3)}

+ 20 {ζMT,2(3, 3; 6) + ζMT,2(6, 3; 3)}+ ζ(6)2.

Using (2.8), we can rewrite

ζMT,3(2, 2, 2; 2) =
1

11340
π8 − 9ζMT,2(2, 2; 4).

Note that it has not been proven yet that ζMT,2(2, 2; 4) can be expressed by
means of the values of ζ(s).

Now we give some preparations for the proof of Theorem 3.1. Fix any
p ∈ N. By (2.2), we have

(3.3)
∞∑

l,m=1

(−1)l+m cos((l +m)θ)
l2pm2p

×
{ ∞∑
n=1

(−1)n cos(nθ)
n2p

−
p∑
j=0

φ(2p− 2j)
(−1)jθ2j

(2j)!

}

−
∞∑
l=1

(−1)l sin(lθ)
l2p

{ ∞∑
m=1

(−1)m cos(mθ)
m2p

−
p∑
j=0

φ(2p− 2j)
(−1)jθ2j

(2j)!

}
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×
∞∑
n=1

(−1)n sin(nθ)
n2p

−
{ ∞∑

l=1

(−1)l cos(lθ)
l2p

−
p∑
j=0

φ(2p− 2j)
(−1)jθ2j

(2j)!

}

×
∞∑
m=1

(−1)m sin(mθ)
m2p

∞∑
n=1

(−1)n sin(nθ)
n2p

= 0

for θ ∈ (−π, π). Using the addition formulas for sinx and cosx, we can
rewrite (3.3) as

(3.4)
∞∑

l,m,n=1

(−1)l+m+n cos((l +m+ n)θ)
l2pm2pn2p

+
p∑
j=0

φ(2p− 2j)
(−1)jθ2j

(2j)!

×
{ ∞∑
l,m=1

(−1)l+m cos((l −m)θ)
l2pm2p

− 2
∞∑

l,m=1

(−1)l+m cos((l +m)θ)
l2pm2p

}

=
∞∑

l,m,n=1

(−1)l+m+n cos((l +m+ n)θ)
l2pm2pn2p

+
p∑
j=0

φ(2p− 2j)
(−1)jθ2j

(2j)!

×
{ ∞∑

l,m=1
l 6=m

(−1)l+m cos((l −m)θ)
l2pm2p

− 2
∞∑

l,m=1

(−1)l+m cos((l +m)θ)
l2pm2p

}

+ ζ(4p)
∞∑
l=1

(−1)l cos(lθ)
l2p

= 0

for θ ∈ (−π, π), using (2.2) again. This implies, by integrating both sides by
parts repeatedly, that

(3.5)
∞∑

l,m,n=1

(−1)l+m+n sin((l +m+ n)θ)
l2pm2pn2p(l +m+ n)2d+1

+
p∑
j=0

φ(2p− 2j)
2j∑
ν=0

(
2d+ 2j − ν

2j − ν

)
(−1)νθν

ν!

×
{ ∞∑

l,m=1
l 6=m

(−1)l+m sin(ν)((l −m)θ)
l2pm2p(l −m)2d+2j+1−ν − 2

∞∑
l,m=1

(−1)l+m sin(ν)((l +m)θ)
l2pm2p(l +m)2d+2j+1−ν

}

+ ζ(4p)
∞∑
l=1

(−1)l sin(lθ)
l2p+2d+1

=
d∑
%=0

C2d−2%(2p)
(−1)%θ2%+1

(2%+ 1)!
(θ ∈ (−π, π))
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for d ∈ N0, and

(3.6)
∞∑

l,m,n=1

(−1)l+m+n cos((l +m+ n)θ)
l2pm2pn2p(l +m+ n)2e

+
p∑
j=0

φ(2p− 2j)
2j∑
ν=0

(
2e− 1 + 2j − ν

2j − ν

)
(−1)νθν

ν!

×
{ ∞∑

l,m=1
l 6=m

(−1)l+m cos(ν)((l −m)θ)
l2pm2p(l −m)2e+2j−ν − 2

∞∑
l,m=1

(−1)l+m cos(ν)((l +m)θ)
l2pm2p(l +m)2e+2j−ν

}

+ ζ(4p)
∞∑
l=1

(−1)l cos(lθ)
l2p+2e

=
e∑

%=0

C2e−2%(2p)
(−1)%θ2%

(2%)!
(θ ∈ (−π, π))

for e ∈ N0, where {C2ν(2p) | ν ∈ N0} are constants which are deter-
mined inductively, f (ν)(x) denotes the νth derivative of f(x) and f (ν)(α) :=
f (ν)(x)

∣∣
x=α

for f(x) = sinx, cosx. Note that the left-hand side of (3.5)
(resp. (3.6)) is an odd (resp. even) function, hence each coefficient of θ2%

(resp. θ2%+1) on the right-hand side of (3.5) (resp. (3.6)) is equal to 0.
Since both sides of (3.5) and of (3.6) are continuous for θ ∈ [−π, π], (3.5)

and (3.6) hold for θ = π. Note that, by putting h = l−m (resp. k = m− l)
if l > m (resp. l < m), we have, for example,

(3.7)
∞∑

l,m=1
l 6=m

1
l2pm2p(l −m)2d+2j−2µ

=
∞∑

h,m=1

1
h2d+2j−2µm2p(h+m)2p

+
∞∑

k,l=1

1
k2d+2j−2µl2p(k + l)2p

= 2ζMT,2(2d+ 2j − 2µ, 2p; 2p).

Hence, letting θ → π on both sides of (3.5) and of (3.6), we have

(3.8)
p∑
j=0

φ(2p− 2j)
j−1∑
µ=0

(
2d+ 2j − 2µ− 1

2j − 2µ− 1

)
(−1)µπ2µ+1

(2µ+ 1)!

× {ζMT,2(2d+ 2j − 2µ, 2p; 2p)− ζMT,2(2p, 2p; 2d+ 2j − 2µ)}

=
d∑

µ=0

C2d−2µ(2p)
(−1)µπ2µ+1

(2µ+ 1)!

and
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(3.9) ζMT,3(2p, 2p, 2p; 2e)

+ 2
p∑
j=0

φ(2p− 2j)
j∑

µ=0

(
2e+ 2j − 2µ− 1

2j − 2µ

)
(−1)µπ2µ

(2µ)!

× {ζMT,2(2e+ 2j − 2µ, 2p; 2p)− ζMT,2(2p, 2p; 2e+ 2j − 2µ)}

+ ζ(4p)ζ(2p+ 2e) =
e∑

µ=0

C2e−2µ(2p)
(−1)µπ2µ

(2µ)!
.

Applying Lemma 2.1 to (3.8) and (3.9) with a = 2p and

f(x) =
(

2e+ x− 1
x

)
{ζMT,2(2e+ x, 2p; 2p)− ζMT,2(2p, 2p; 2e+ x)},

g(x) =
(

2d+ x− 1
x− 1

)
{ζMT,2(2d+ x, 2p; 2p)− ζMT,2(2p, 2p; 2d+ x)},

we can rewrite (3.8) and (3.9) as

(3.10)
(

2d+ 2p− 1
2p− 1

)
{ζMT,2(2d+ 2p, 2p; 2p)− ζMT,2(2p, 2p; 2d+ 2p)}

=
d∑

µ=0

C2d−2µ(2p)
(−1)µπ2µ

(2µ+ 1)!

and

(3.11) ζMT,3(2p, 2p, 2p; 2e) + 2
p∑
ξ=0

ζ(2ξ)
(

2e+ 2p− 2ξ − 1
2p− 2ξ

)
× {ζMT,2(2e+ 2p− 2ξ, 2p; 2p)− ζMT,2(2p, 2p; 2e+ 2p− 2ξ)}

+ ζ(4p)ζ(2p+ 2e) =
e∑

µ=0

C2e−2µ(2p)
(−1)µπ2µ

(2µ)!

for d, e ∈ N0.
Now we recall the following.

Lemma 3.3 ([21, Lemma 4.4]). Let {α2d}d∈N0 , {β2d}d∈N0 , {γ2d}d∈N0 be
sequences such that

α2d =
d∑
j=0

γ2d−2j
(−1)jπ2j

(2j)!
, β2d =

d∑
j=0

γ2d−2j
(−1)jπ2j

(2j + 1)!

for any d ∈ N0. Then

α2d = −2
d∑

ν=0

β2νζ(2d− 2ν)

for any d ∈ N0.
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Proof of Theorem 3.1. Applying Lemma 3.3 to (3.10) and (3.11) with
d = e, and putting ν = p− ξ in (3.11), we have

(3.12) ζMT,3(2p, 2p, 2p; 2d)

+ 2
p∑

ν=0

ζ(2p− 2ν)
(

2d+ 2ν − 1
2ν

)
× {ζMT,2(2d+ 2ν, 2p; 2p)− ζMT,2(2p, 2p; 2ν + 2p)}+ ζ(4p)ζ(2p+ 2d)

= 4
d∑

ν=0

ζ(2d− 2ν)
(

2ν + 2p− 1
2p− 1

)
× {ζMT,2(2ν + 2p, 2p; 2p)− ζMT,2(2p, 2p; 2ν + 2p)}.

In particular when d = p, we obtain (3.1).
Recall that we deduced (3.3) from (2.2). Similarly, we now deduce the

following relation from (2.3):

(3.13)
∞∑

l,m=1

(−1)l+m cos((l +m)θ)
l2p+1m2p+1

×
{ ∞∑
n=1

(−1)n sin(nθ)
n2p+1

−
p∑
j=0

φ(2p− 2j)
(−1)jθ2j+1

(2j + 1)!

}

+
∞∑
l=1

(−1)l cos(lθ)
l2p+1

{ ∞∑
m=1

(−1)m sin(mθ)
m2p+1

−
p∑
j=0

φ(2p− 2j)
(−1)jθ2j+1

(2j + 1)!

}

×
∞∑
n=1

(−1)n cos(nθ)
n2p+1

−
{ ∞∑

l=1

(−1)l sin(lθ)
l2p+1

−
p∑
j=0

φ(2p− 2j)
(−1)jθ2j+1

(2j + 1)!

}

×
∞∑
m=1

(−1)m cos(mθ)
m2p+1

∞∑
n=1

(−1)n cos(nθ)
n2p+1

= 0

for θ ∈ (−π, π). Then, by the same argument as mentioned above, we can
prove (3.2). This completes the proof of Theorem 3.1.

4. Functional relations for triple zeta-functions. The aim of this
section is to give some functional relations for triple zeta-functions. These
can be regarded as triple analogues of (2.8). To this end, we consider analytic
properties of ζMT,3(s1, s2, s3; s4) and
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(4.1) G(s1, s2, s3, s4) :=
∞∑

k,l,m,n=1
k+l=m+n

1
ks1 ls2ms3ns4

.

First we state the following two theorems. Their proofs will be given in
the following sections. In fact, we first give the proof of Theorem 4.2 in the
next section. Next we generalize Theorem 4.1 to a result on ζMT,r for any
r ≥ 3 (see Theorem 6.1) and give the proof of this generalized result in
Section 6.

Theorem 4.1. ζMT,3(s1, s2, s3; s4) can be continued meromorphically
to C4, and the singularities lie on the subsets of C4 defined by one of the
following equations:

sj + s4 = 1− l (1 ≤ j ≤ 3; l ∈ N0),(4.2)
sj + sk + s4 = 2− l (1 ≤ j < k ≤ 3; l ∈ N0),(4.3)
s1 + s2 + s3 + s4 = 3,(4.4)

all points of which are true singularities.

Theorem 4.2. G(s1, s2, s3, s4) can be continued meromorphically to C4,
and the singularities lie on the subsets of C4 defined by one of the following
equations:

sj + sk = 1− l (j = 1, 2; k = 3, 4; l ∈ N0),(4.5)
sh + sj + sk = 2− l (1 ≤ h < j < k ≤ 4; l ∈ N0),(4.6)
s1 + s2 + s3 + s4 = 3,(4.7)

all points of which are true singularities.

Based on these results, we give some functional relations for triple zeta-
functions mentioned above. In the rest of this section, we use the same
notation as in [12] and generalize Proposition 2.2 to the case of triple zeta-
functions. The method used in this section can be regarded as a triple ana-
logue of that in [12].

We denote by Bj(x) the jth Bernoulli polynomial defined by

text

et − 1
=
∞∑
j=0

Bj(x)
tj

j!
(|t| < 2π).

It is known (see [1, p. 266, (22) and p. 267, (24)]) that

B2j := B2j(0) = (−1)j+12(2j)!(2π)−2jζ(2j) (j ∈ N),(4.8)

Bj(x− [x]) = − j!
(2πi)j

lim
K→∞

K∑
k=−K
k 6=0

e2πikx

kj
(j ∈ N).(4.9)
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Hence, for k ∈ Z, j ∈ N we have

(4.10)
1�

0

e−2πikxBj(x) dx =
{

0 (k = 0),
−(2πik)−jj! (k 6= 0).

It follows from [1, p. 276, 19.(b)] that for p+ q ≥ 2,

(4.11) Bp(x)Bq(x)

=
max([p/2],[q/2])∑

k=0

{
p

(
q

2k

)
+ q

(
p

2k

)}
B2kBp+q−2k(x)
p+ q − 2k

− (−1)p
p!q!

(p+ q)!
Bp+q.

Using these facts, we obtain the following theorems.

Theorem 4.3. For a, b ∈ N,

(4.12) (−1)bζMT,3(b, s3, s4; a) + (−1)aζMT,3(s3, s4, a; b) +G(a, b, s3, s4)

=
2
a!b!

max([a/2],[b/2])∑
k=0

{
a

(
b

2k

)
+ b

(
a

2k

)}
(a+ b− 2k − 1)!(2k)!

× ζ(2k)ζMT,2(s3, s4; a+ b− 2k)

for all s3, s4 ∈ C except the singularities of both sides.

Proof. For <(s3) > 1, <(s4) > 1, we have

lim
K→∞

1�

0

K∑
k=1

e2πikx

ka

K∑
l=1

e2πilx

lb

K∑
m=1

e2πimx

ms3

K∑
n=1

e2πinx

ns4
dx = 0,

lim
K→∞

1�

0

−1∑
k=−K

e2πikx

ka

K∑
l=1

e2πilx

lb

K∑
m=1

e2πimx

ms3

K∑
n=1

e2πinx

ns4
dx

= (−1)aζMT,3(b, s3, s4; a),

lim
K→∞

1�

0

K∑
k=1

e2πikx

ka

−1∑
l=−K

e2πilx

lb

K∑
m=1

e2πimx

ms3

K∑
n=1

e2πinx

ns4
dx

= (−1)bζMT,3(s3, s4, a; b),

lim
K→∞

1�

0

−1∑
k=−K

e2πikx

ka

−1∑
l=−K

e2πilx

lb

K∑
m=1

e2πimx

ms3

K∑
n=1

e2πinx

ns4
dx

= (−1)a+bG(a, b, s3, s4).

Therefore

(−1)aζMT,3(b, s3, s4; a) + (−1)bζMT,3(s3, s4, a; b) + (−1)a+bG(a, b, s3, s4)

=
1�

0

lim
K→∞

K∑
k=−K
k 6=0

e2πikx

ka

K∑
l=−K
l 6=0

e2πilx

lb

K∑
m=1

e2πimx

ms3

K∑
n=1

e2πinx

ns4
dx.



112 K. Matsumoto et al.

Interchanging the limit and integral is justified by bounded convergence. In
fact, we need to treat the case a = 1 or b = 1 carefully. For this case, we
know that

∑∞
m=1 sin(2πmx)/m is boundedly convergent for x > 0 (see [15,

p. 15]).
By using (4.8)–(4.11), we obtain (4.12) in this region. By Theorems 4.1

and 4.2, we see that (4.12) holds for all a, b ∈ N, and all s3, s4 ∈ C except
the singularities of both sides of (4.12).

Theorem 4.4. For a, b ∈ N,

(4.13) ζMT,3(s4, a, b; s3) + (−1)aG(a, s3, b, s4)

+ (−1)bG(s3, b, a, s4) + (−1)a+bζMT,3(a, b, s3; s4)

=
2
a!b!

max([a/2],[b/2])∑
k=0

{
a

(
b

2k

)
+ b

(
a

2k

)}
(a+ b− 2k − 1)!(2k)!

× ζ(2k)ζMT,2(a+ b− 2k, s4; s3)

+
2(−1)a+b

a!b!

max([a/2],[b/2])∑
k=0

{
a

(
b

2k

)
+ b

(
a

2k

)}
(a+ b− 2k− 1)!(2k)!

× ζ(2k)ζMT,2(a+ b− 2k, s3; s4)

+ (−1)a+1 (2πi)a+bBa+b
(a+ b)!

ζ(s3 + s4)

for all s3, s4 ∈ C except the singularities of both sides.

Proof. Assume <(s3) > 1 and <(s4) > 1. Then we have

lim
K→∞

1�

0

K∑
k=1

e2πikx

ka

K∑
l=1

e2πilx

lb

K∑
m=1

e−2πimx

ms3

K∑
n=1

e2πinx

ns4
dx = ζMT,3(s4, a, b; s3),

lim
K→∞

1�

0

−1∑
k=−K

e2πikx

ka

K∑
l=1

e2πilx

lb

K∑
m=1

e−2πimx

ms3

K∑
n=1

e2πinx

ns4
dx

= (−1)aG(a, s3, b, s4),

lim
K→∞

1�

0

K∑
k=1

e2πikx

ka

−1∑
l=−K

e2πilx

lb

K∑
m=1

e−2πimx

ms3

K∑
n=1

e2πinx

ns4
dx

= (−1)bG(s3, b, a, s4),

lim
K→∞

1�

0

−1∑
k=−K

e2πikx

ka

−1∑
l=−K

e2πilx

lb

K∑
m=1

e−2πimx

ms3

K∑
n=1

e2πinx

ns4
dx

= (−1)a+bζMT,3(a, b, s3; s4).

Therefore we can prove Theorem 4.4 in the same way as Theorem 4.3.
We define K1(a, b, s3, s4) and K2(a, b, s3, s4) by the right-hand sides of

(4.12) and (4.13) respectively. By the preceding theorems, we obtain the
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following theorem which essentially includes not only Theorem 3.1 but also
the assertion in the triple case given in [20].

Theorem 4.5. For a, b, c ∈ N,

(4.14) ζMT,3(a, b, c; s)− (−1)b+cζMT,3(b, c, s; a)

− (−1)c+aζMT,3(c, s, a; b)− (−1)a+bζMT,3(s, a, b; c)

= (−1)a+bK2(a, b, c, s)− (−1)bK1(a, c, b, s)− (−1)aK1(c, b, a, s)

for all s ∈ C except the singularities of both sides.

Proof. By (4.12), we have

G(a, b, c, s) = K1(a, b, c, s)− (−1)bζMT,3(b, c, s; a)− (−1)aζMT,3(c, s, a; b).

By changing the order of variables, we have

G(a, c, b, s) = K1(a, c, b, s)− (−1)cζMT,3(b, c, s; a)− (−1)aζMT,3(s, a, b; c),

G(c, b, a, s) = K1(c, b, a, s)− (−1)bζMT,3(s, a, b; c)− (−1)cζMT,3(c, s, a; b).

Substituting these relations into (4.13), we obtain (4.14).

We denote by M(a, b, c, s) the right-hand side of (4.14). We prove the
following explicit formulas for ζMT,3(a, b, c; d).

Theorem 4.6. For a, b, c, d ∈ N with a+ b+ c+ d ∈ 2N,

ζMT,3(a, b, c; d) =
1
4
{M(a, b, c, d)− (−1)b+cM(b, c, d, a)(4.15)

− (−1)a+cM(c, d, a, b)− (−1)a+bM(d, a, b, c)}.

Proof. By changing variables in (4.14), we have

M(b, c, d, a) = ζMT,3(b, c, d; a)− (−1)c+dζMT,3(c, d, a; b)

− (−1)d+bζMT,3(d, a, b; c)− (−1)b+cζMT,3(a, b, c; d),

M(c, d, a, b) = ζMT,3(c, d, a; b)− (−1)d+aζMT,3(d, a, b; c)

− (−1)a+cζMT,3(a, b, c; d)− (−1)c+dζMT,3(b, c, d; a),

M(d, a, b, c) = ζMT,3(d, a, b; c)− (−1)a+bζMT,3(a, b, c; d)

− (−1)b+dζMT,3(b, c, d; a)− (−1)d+aζMT,3(c, d, a; b).

Multiply the above three equations by (−1)b+c, (−1)a+c, (−1)a+b, respec-
tively, and sum them up. Then, by using (4.14) in the case s = d, we obtain
(4.15).

Example 4.7. Put (a, b, c) = (1, 1, 1) in (4.14). Then we obtain

ζMT,3(1, 1, 1; s)− 3ζMT,3(s, 1, 1; 1) + 6ζMT,2(1, 2; s)
+ 6ζMT,2(s, 2; 1)− 6ζ(2)ζ(s+ 1) + 12ζ(s+ 3) = 0,
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which was essentially given by the first-named and fourth-named authors
(see [10, Example 6.1]). Similarly, putting (a, b, c) = (2, 2, 2) in (4.14), we
obtain

ζMT,3(2, 2, 2; s)− 3ζMT,3(2, 2, s; 2)
= 6{2ζMT,2(2, s; 4)− ζMT,2(4, s; 2)− ζMT,2(2, 4; s)}

+ 4ζ(2){ζMT,2(2, 2; s)− ζMT,2(2, s; 2)}+ 2ζ(4)ζ(s+ 2).

In particular when s = 2, we obtain the formula for ζMT,3(2, 2, 2; 2) given in
Example 3.2. Put (a, b, c, d) = (1, 1, 1, 3) in (4.15). Then we obtain

ζMT,3(1, 1, 1; 3) = −6ζ(3)2 +
23

2520
π6,

which can also be obtained from Hoffman’s [2, Corollary 4.2] and Markett’s
[4, Corollary 4.3].

Remark 4.8. In [20], the fourth-named author proved, in a different
way, that for k1, . . . , kr+1 ∈ N, ζMT,r(k1, . . . , kr; kr+1) can be expressed as a
rational linear combination of products of values of ζMT,j (j < r) at positive
integers if r and

∑r+1
j=1 kj are of different parity. This fact is sometimes called

the “parity result” for the Mordell–Tornheim zeta values. From this fact, we
know that ζMT,3(a, b, c; d) (a, b, c, d ∈ N) can be expressed as a rational linear
combination of products of ζMT,2(p, q; r) and ζ(s) when a+ b+ c+ d ∈ 2N.
Therefore we can interpret the results in Theorem 4.6 as concrete formulas
which represent the parity result for ζMT,3.

The method in this section can be applied to a more general situation,
which will be discussed elsewhere.

5. Analytic properties of certain triple zeta-functions. In this
section, we prove Theorem 4.2. We mainly use the method established by
the first-named author in [5–8].

Let

(5.1) H(s1, s2, s3, s4) :=
∞∑

k,l,m=1

1
ks1ms2(k + l)s3(l +m)s4

.

By (4.1), we have

G(s1, s2, s3, s4) =
∞∑
N=1

∞∑
k,l=1
k+l=N

1
ks1 ls2

∞∑
m,n=1
m+n=N

1
ms3ns4

(5.2)

=
∞∑

k,m=1

1
ks1ms3

∑
N>max(k,m)

1
(N − k)s2(N −m)s4

.
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We decompose the right-hand side of (5.2) as
∑

k<m +
∑

k=m +
∑

k>m. Then
the first and third terms are equal to H(s1, s4, s3, s2) and H(s3, s2, s1, s4),
respectively. The second term is ζ(s1 + s3)ζ(s2 + s4). Hence

G(s1, s2, s3, s4) = ζ(s1 + s3)ζ(s2 + s4)(5.3)
+H(s1, s4, s3, s2) +H(s3, s2, s1, s4).

Therefore we need to consider H(s1, s2, s3, s4). Actually, H(s1, s2, s3, s4) is
equal to ζsl(4)(s1, 0, s2, s3, s4, 0), where ζsl(4)(s1, s2, s3, s4, s5, s6) is the Witten
zeta-function associated with sl(4) (see [9]) defined by

(5.4) ζsl(4)(s1, s2, s3, s4, s5, s6)

=
∞∑

l,m,n=1

1
ls1ms2ns3(l +m)s4(m+ n)s5(l +m+ n)s6

.

First we prove the following lemma. Though it may be regarded as a
special case of [9, Theorem 3.5], we can prove it more simply by considering
a simple integral representation of H(s1, s2, s3, s4) (see (5.15) below).

Lemma 5.1. The function H(s1, s2, s3, s4) can be continued meromor-
phically to C4, and all of its singularities lie on the subsets of C4 defined by
one of the equations:

s1 + s3 = 1− l (l ∈ N0),(5.5)

s2 + s4 = 1− l (l ∈ N0),(5.6)

s3 + s4 = 1− l (l ∈ N0),(5.7)

s1 + s3 + s4 = 2− l (l ∈ N0),(5.8)

s2 + s3 + s4 = 2− l (l ∈ N0),(5.9)

s1 + s2 + s3 + s4 = 3,(5.10)

all points of which are true singularities.

Proof. We use the same notation as in the proof of [8, Theorem 1]. We
recall the Mellin–Barnes formula

(5.11) (1 + λ)−s =
1

2πi

�

(c)

Γ (s+ z)Γ (−z)
Γ (s)

λz dz,

where <s > 0, |arg λ| < π, λ 6= 0, c ∈ R with −<s < c < 0, i =
√
−1 and

the path (c) of integration is the vertical line <z = c.
Assume sj ∈ C with <sj > 1 (j = 1, 2, 3, 4). Then H(s1, s2, s3, s4)

is absolutely convergent. Let (k + l)−s3 = l−s3(1 + k/l)−s3 in (5.1), and
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substitute (5.11) with λ = k/l into (5.1). Assume −<s3 < c < 0. Then

(5.12) H(s1, s2, s3, s4)

=
1

2πi

�

(c)

Γ (s3 + z)Γ (−z)
Γ (s3)

∞∑
k=1

1
ks1

∞∑
l,m=1

1
ls3ms2(l +m)s4

(
k

l

)z
dz

=
1

2πi

�

(c)

Γ (s3 + z)Γ (−z)
Γ (s3)

ζ(s1 − z)ζMT,2(s2, s3 + z; s4) dz.

Note that, by the assumptions <sj > 1 (1 ≤ j ≤ 4) and −<s3 < c < 0, each
series above is absolutely convergent. By [5, Theorem 1], the singularities of
ζMT,2(s1, s2; s3) lie on the subsets of C3 defined by one of the equations:

s1 + s3 = 1− l, s2 + s3 = 1− l (l ∈ N0), s1 + s2 + s3 = 2.

Hence, by considering the singularities of Γ (s), ζ(s) and ζMT,2(s1, s2; s3),
we see that the singularities of the integrand of (5.12) are determined by
z = −s3 − l, z = l, z = s1 − 1, s2 + s4 = 1− l, z = 1− s3 − s4 − l (l ∈ N0)
and z = 2− s2 − s3 − s4.

Now we shift the path <z = c to <z = M−ε for sufficiently large M ∈ N
and sufficiently small positive ε ∈ R. Then all the relevant singularities are
z = l (0 ≤ l ≤ M − 1) and z = s1 − 1. Counting their residues, and using
the relations

(5.13)
(−1)l

l!
Γ (s+ l)
Γ (s)

= (−1)l
(
s+ l − 1

l

)
=
(
−s
l

)
,

and

(5.14) Γ (−l − δ) =
Γ (1− δ)

(−δ) · · · (−l − δ)
= −(−1)l

l!

(
1
δ

+O(1)
)

(δ → 0)

for l ∈ N0, we find that

(5.15) H(s1, s2, s3, s4) =
Γ (s1 + s3 − 1)Γ (1− s1)

Γ (s3)
ζMT,2(s2, s1+s3−1; s4)

+
M−1∑
k=0

(
−s3
k

)
ζ(s1 − k)ζMT,2(s2, s3 + k; s4)

+
1

2πi

�

(M−ε)

Γ (s3 + z)Γ (−z)
Γ (s3)

ζ(s1 − z)ζMT,2(s2, s3 + z; s4) dz,

because Resz=s1−1 ζ(s1 − z) = −1 and
Γ (s3 + k)
Γ (s3)

Res
z=k

Γ (−z) = −
(
−s3
k

)
.

Since M can be taken arbitrarily large, (5.15) implies the meromorphic
continuation of H(s1, s2, s3, s4) to C4.
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Fix (s1, s2, s3, s4) ∈ C4. In the above list of singularities of the integrand
of (5.12), only the family s2 + s4 = 1 − l (l ∈ N0) is independent of z.
Therefore, by choosing M sufficiently large, we may assume that the integral
term on the right-hand side of (5.15) is holomorphic, except on s2+s4 = 1−l
(l ∈ N0), around the fixed (s1, s2, s3, s4). Also we see that the singularities
of the first term on the right-hand side of (5.15) are determined by s1 +s3 =
1−l, s1 = 1+l, s2+s4 = 1−l, s1+s3+s4 = 2−l, s1+s2+s3+s4 = 3 (l ∈ N0),
and those of the second term are determined by s1 = 1 + k, s2 + s4 = 1− l,
s3 + s4 = 1− (k + l), s2 + s3 + s4 = 2− k (0 ≤ k ≤ M − 1; l ∈ N0). Using
the symmetry

H(s2, s1, s4, s3) = H(s1, s2, s3, s4),(5.16)

we see that s1 = 1+l is not a singularity of H(s1, s2, s3, s4) because s2 = 1+l
is not. On the other hand,

(5.17) ζMT,2(s1,−l; s2) 6≡ 0 (l ∈ N0),

because

(5.18) ζMT,2(l + 2,−l; l + 2) =
∞∑

m,n=1

nl

ml+2(m+ n)l+2
> 0,

which is absolutely convergent. Hence, from (5.17), we see that s1+s3 = 1−l
is not cancelled by the factor of ζMT,2 in the first term on the right-hand
side of (5.15). Hence (5.5) and (5.8)–(5.10) determine true singularities be-
cause these equations come from only one term on the right-hand side of
(5.15). The singularities s3 + s4 = 1− l come from the terms corresponding
to 0 ≤ k ≤ l in the sum part on the right-hand side of (5.15); but these
are not cancelled, because the residues coming from different terms have
different order with respect to s3. Hence (5.7) also gives true singularities.
Furthermore, combining (5.16) with the fact that (5.5) determines true sin-
gularities as mentioned above, we conclude that (5.6) also determines true
singularities. This completes the proof of Lemma 5.1.

Remark 5.2. From [9, Theorem 3.5], the singularities of H(s1, s2, s3, s4)
= ζsl(4)(s1, 0, s2, s3, s4, 0) are given by (5.5)–(5.10) and

(5.19) s1 + s2 + s3 + s4 = 2− l (l ∈ N0),

though (5.19) does not appear in Lemma 5.1. In fact, we can check that
(5.19) does not determine singularities of H(s1, s2, s3, s4) as follows. The
possible singularity (5.19) comes from [9, (3.43)], the singularities of ζsl(4),
which come from

S1 =
Γ (s3 + s5 + s6 + n− 1)Γ (1− s3 − s5 − n)

Γ (s6)
× ζMT,2(s1, s2 − n; s3 + s4 + s5 + s6 + n− 1)
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corresponding to s1 + (s3 + s4 + s5 + s6 + n− 1) = 1− l (l ∈ N0). These are
indeed true singularities of ζsl(4)(s1, s2, s3, s4, s5, s6). However, in the above
argument, we consider the case (s2, s6) = (0, 0). Hence these singularities are
cancelled by Γ (s6) as s6 → 0. Thus (5.19) does not determine singularities
of H(s1, s2, s3, s4).

From Lemma 5.1, we now deduce Theorem 4.2, that is, determine the
true singularities of G(s1, s2, s3, s4).

Proof of Theorem 4.2. The meromorphic continuation of G comes
from that of H and of ζ(s). From Lemma 5.1, the true singularities of
H(s1, s4, s3, s2) are determined by s1+s3 = 1−l, s2+s4 = 1−l, s2+s3 = 1−l,
s1 +s2 +s3 = 2− l, s2 +s3 +s4 = 2− l and s1 +s2 +s3 +s4 = 3 (l ∈ N0), and
those of H(s3, s2, s1, s4) are determined by s1 + s3 = 1− l, s2 + s4 = 1− l,
s1+s4 = 1−l, s1+s3+s4 = 2−l, s1+s2+s4 = 2−l and s1+s2+s3+s4 = 3.
Furthermore, those of ζ(s1 +s3)ζ(s2 +s4) are determined by s1 +s3 = 1 and
s2 + s4 = 1. Hence we only have to check that s1 + s3 = 1− l, s2 + s4 = 1− l
and s1 + s2 + s3 + s4 = 3 determine true singularities.

Using the relation G(s1, s2, s3, s4) = G(s2, s1, s3, s4) = G(s1, s2, s4, s3)
and the fact that s1 + s4 = 1− l determines true singularities as mentioned
above, we conclude that s1 + s3 = 1− l and s2 + s4 = 1− l also determine
true singularities.

On the other hand, this kind of argument using symmetry is not enough
to prove that s1 + s2 + s3 + s4 = 3 determines true singularities. Hence we
have to give a more detailed justification. From [5, (5.3)], we have

(5.20) ζMT,2(s1, s2; s3)

=
Γ (s2 + s3 − 1)Γ (1− s2)

Γ (s3)
ζ(s1 + s2 + s3 − 1)

+
M−1∑
k=0

(
−s3
k

)
ζ(s1 + s3 + k)ζ(s2 − k)

+
1

2πi

�

(M−ε)

Γ (s3 + z)Γ (−z)
Γ (s3)

ζ(s1 + s3 + z)ζ(s2 − z) dz.

Therefore the singular part of ζMT,2(s2, s1 + s3 − 1; s4) corresponding to
s1 + s2 + s3 + s4 = 3 comes from ζ(s1 + s2 + s3 + s4 − 2). Hence the
corresponding singular part of H(s1, s4, s3, s2) is

(5.21)
Γ (s1 + s3 − 1)Γ (1− s1)

Γ (s3)
Γ (s1 + s2 + s3 − 2)Γ (2− s1 − s3)

Γ (s2)
× ζ(s1 + s2 + s3 + s4 − 2).
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Similarly, the corresponding singular part of H(s3, s2, s1, s4) is

(5.22)
Γ (s1 + s3 − 1)Γ (1− s3)

Γ (s1)
Γ (s1 + s3 + s4 − 2)Γ (2− s1 − s3)

Γ (s4)
× ζ(s1 + s2 + s3 + s4 − 2).

Therefore the corresponding singular part of G(s1, s2, s3, s4) is

(5.23) Γ (s1 + s3 − 1)Γ (2− s1 − s3)ζ(s1 + s2 + s3 + s4 − 2)

×
{
Γ (1− s1)Γ (s1 + s2 + s3 − 2)

Γ (s2)Γ (s3)
+
Γ (1− s3)Γ (s1 + s3 + s4 − 2)

Γ (s1)Γ (s4)

}
.

If we substitute s4 = 3− s1 − s2 − s3 into the part in the curly parentheses
in (5.23), we find that it is equal to

Γ (1− s1)Γ (s1 + s2 + s3 − 2)
Γ (s2)Γ (s3)

+
Γ (1− s3)Γ (1− s2)

Γ (s1)Γ (3− s1 − s2 − s3)
.

We can check that this quantity is 6≡ 0, by letting =s1 → ∞, or by ob-
serving the value at (s1, s2, s3) with s2 = s3 = 1/2 and s1 → 1. Thus
s1 + s2 + s3 + s4 = 3 determines true singularities. This completes the proof
of Theorem 4.2. (We will give another expression for (5.23) in Remark 6.3.)

Remark 5.3. In the proof of Theorem 4.2, we concluded that s1 + s3 =
1 − l (l ∈ N0) gives true singularities by the argument using symmetry of
indices and the fact that s1 + s4 = 1 − l determines a true singularity. On
the other hand, we can prove this fact directly as follows.

Singularities determined by s1 + s3 = 1 − l (l ∈ N0) come from Γ (s1 +
s3 − 1) in the second term on the right-hand side of (5.12). Suppose l ∈ N.
Then the corresponding singular part of G(s1, s2, s3, s4) is

(5.24) Γ (s1 + s3 − 1)
{
Γ (1− s1)
Γ (s3)

ζMT,2(s4, s1 + s3 − 1; s2)

+
Γ (1− s3)
Γ (s1)

ζMT,2(s2, s1 + s3 − 1; s4)
}
.

If we substitute s3 = 1 − s1 − l into the part in the curly parentheses, we
obtain

(5.25)
Γ (1− s1)

Γ (1− s1 − l)
ζMT,2(s4,−l; s2) +

Γ (s1 + l)
Γ (s1)

ζMT,2(s2,−l; s4)

= s1(s1 + 1) · · · (s1 + l − 1)

× {ζMT,2(s4,−l; s2) + (−1)lζMT,2(s2,−l; s4)} 6≡ 0.

In fact, if l is even, then by putting s2 = s4 = l+ 2 and using (5.18), we see
that (5.25) holds. If l is odd, then by putting s2 = l + 2 and s4 = l + 3 we
have

ζMT,2(l+3,−l; l+2)− ζMT,2(l+2,−l; l+3) = ζMT,2(l+3,−l−1; l+3) > 0,
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hence (5.25) holds. This implies that s1 + s3 = 1− l (l ∈ N) determine true
singularities.

Suppose l = 0. Then the corresponding singular part of G(s1, s2, s3, s4)
is (5.20) plus ζ(s1 + s3)ζ(s2 + s4), which can be written as

(5.26)
1

s1 + s3 − 1

{
ζ(s2 + s4) +

Γ (1− s1)
Γ (s3)

ζMT,2(s4, s1 + s3 − 1; s2)

+
Γ (1− s3)
Γ (s1)

ζMT,2(s2, s1 + s3 − 1; s4)
}

+O(1).

If we substitute s3 = 1−s1 into the part in the curly parentheses, we obtain

ζ(s2 + s4) + ζMT,2(s2, 0; s4) + ζMT,2(s4, 0; s2) = ζ(s2)ζ(s4) 6≡ 0.

This implies that s1 + s3 = 1 determines true singularities.

6. True singularities of ζMT,r and some remarks. In this section,
we consider further applications of the method used in Section 5.

First we determine the true singularities of ζMT,r(s1, . . . , sr; sr+1). Ac-
tually, in [8, Theorem 1], the first-named author showed that ζMT,r(s1, . . . ,
sr; sr+1) can be continued meromorphically to Cr+1 and gave the list ((6.1)
below) of the possible singularities. By combining this method with our
present method, we can determine the true singularities of ζMT,r as follows.
Note that the case r = 3 of this theorem coincides with Theorem 4.1.

Theorem 6.1. The function ζMT,r(s1, . . . , sr; sr+1) can be continued
meromorphically to Cr+1 and its singularities lie on the subsets of Cr+1

given by one of the following equations:

(6.1)



(sj − 1) + sr+1 = −l (1 ≤ j ≤ r, l ∈ N0),
(sj1 − 1) + (sj2 − 1) + sr+1 = −l (1 ≤ j1 < j2 ≤ r, l ∈ N0),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r−1∑
ν=1

(sjν − 1) + sr+1 = −l (1 ≤ j1 < · · · < jr−1 ≤ r, l ∈ N0),

s1 + · · ·+ sr+1 = r,

all points of which are true singularities.

Proof. We will prove this theorem by induction on r ≥ 1.
In the case r = 1, we see that ζMT,1(s1; s2) = ζ(s1 + s2). Hence only

s1 + s2 = 1 determines singularities of ζMT,1(s1; s2). Thus we have the
assertion. Actually the case r = 2 has also been proved in [5, Theorem 1].

Assume that the assertion holds for r− 1 (r > 1), and consider the case
of r. From [8, (3.2)], we have
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(6.2) ζMT,r(s1, . . . , sr; sr+1)

=
Γ (sr + sr+1 − 1)Γ (1− sr)

Γ (sr+1)
ζMT,r−1(s1, . . . , sr−1; sr + sr+1 − 1)

+
M−1∑
k=0

(
−sr+1

k

)
ζMT,r−1(s1, . . . , sr−1; sr+1 + k)ζ(sr − k)

+
1

2πi

�

(M−ε)

Γ (sr+1 + z)Γ (−z)
Γ (sr+1)

ζMT,r−1(s1, . . . , sr−1; sr+1 + z)ζ(sr − z) dz,

where M (∈ N) is sufficiently large and ε (∈ R+) is sufficiently small. Since
M can be taken arbitrarily large, (6.2) implies the meromorphic continuation
of ζMT,r(s1, . . . , sr; sr+1) to Cr+1, by the assumption of induction.

Now, by induction, we take M so large that the right-hand side of (6.2)
is holomorphic on a certain neighbourhood of (s1, . . . , sr+1). Then, by the
assumption again, the singularities of the first term on the right-hand side
of (6.2) are determined by∑

j∈J
(sj − 1) + (sr + sr+1 − 1) = −l (l ∈ N0),(6.3)

r−1∑
j=1

(sj − 1) + (sr + sr+1 − 1) = 0,(6.4)

sr + sr+1 = 1− l (l ∈ N0),(6.5)
sr = 1 + l (l ∈ N0),(6.6)

where J (6= ∅) runs over all proper subsets of {1, . . . , r−1}. Similarly, the sin-
gularities of the second term on the right-hand side of (6.2) are determined
by ∑

j∈J
(sj − 1) + (sr+1 + k) = −l (k, l ∈ N0),(6.7)

r−1∑
j=1

(sj − 1) + (sr+1 + k) = 0 (k ∈ N0),(6.8)

sr − k = 1 (k ∈ N0)(6.9)

for J as above.
First we claim that (6.6), that is, (6.9), is not a singularity of ζMT,r. In

fact, since s1 = 1 + l (l ∈ N0) is not singular because r > 1, we see from the
symmetry of indices

ζMT,r(s1, . . . , sr; sr+1) = ζMT,r(sr, s1, . . . , sr−1; sr+1)

that sr = 1+ l (l ∈ N0) is not singular either. Note that this fact has already
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been obtained from [8, (3.3)], by checking the cancellation directly. However,
the above argument is much simpler than that in [8].

Next we claim that (6.3)–(6.5) determine true singularities of ζMT,r. In
fact, these come from only the first term on the right-hand side of (6.2).
Furthermore, (6.3) and (6.4) are not cancelled by the Gamma factors, hence
determine true singularities. On the other hand, we need to check whether
(6.5) is cancelled by the factor of ζMT,r−1 or not. For this, we claim that

(6.10) ζMT,r(s1, . . . , sr;−l) 6≡ 0

for l ∈ N0. Actually, this comes from

ζMT,r(l + 2, . . . , l + 2;−l) =
∞∑

m1,...,mr=1

(m1 + · · ·+mr)l

ml+2
1 · · ·ml+2

r

=
∑

k1,...,kr∈N0

k1+···+kr=l

l!
k1! · · · kr!

ζ(l + 2− k1) · · · ζ(l + 2− kr) > 0

by an argument similar to the deduction of (5.17) from (5.18). From these
facts, we see that (6.5) is not cancelled with the factor of ζMT,r−1, hence
(6.5) determines true singularities.

Lastly we consider (6.7) and (6.8). In fact, from the symmetry of indices
and by the fact that (6.3) determines true singularities, we see that (6.7) and
(6.8) also determine true singularities. Thus, from the above considerations,
the assertion holds for r, completing the proof of Theorem 6.1.

Remark 6.2. Here we give an alternative proof of (6.10) by induction
on r ∈ N. In the case r = 1, it is obvious. Hence we assume that (6.10) holds
for r− 1 (r > 1), and prove it for r. Put sr = −l in (6.2). Then the first and
third terms on the right-hand side of (6.2) vanish because of the Gamma
factor. Therefore

(6.11) ζMT,r(s1, . . . , sr;−l)

=
M−1∑
k=0

(
l

k

)
ζMT,r−1(s1, . . . , sr−1; k − l)ζ(sr − k).

We see that as a set of meromorphic functions, {ζ(s−k) | k ∈ N0} is linearly
independent over C. In fact, we only have to consider each pole of ζ(s− k)
(k ∈ N0). From the assumption of induction, we have

(6.12) ζMT,r−1(s1, . . . , sr−1;−l) 6= 0

for some (s1, . . . , sr−1) ∈ Cr−1. If we regard (6.11) as a linear relation for
functions of sr, then (6.12) implies that the coefficient of ζ(sr) does not
vanish. Hence ζMT,r(s1, . . . , sr;−l) 6≡ 0, proving the assertion.
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Remark 6.3. Since (6.4) is not cancelled by the Gamma factor, we can
prove that the singular part of ζMT,r(s1, . . . , sr; sr+1) corresponding to (6.4)
can be written as

(6.13)
Γ (1− s1) · · ·Γ (1− sr)

(s1 + · · ·+ sr+1 − r)Γ (sr+1)
+O(1)

as s1 + · · ·+ sr+1 → r, by induction on r. In fact, for r = 1, (6.13) is

(6.14)
Γ (1− s1)

(s1 + s2 − 1)Γ (s2)
+O(1) =

1
s1 + s2 − 1

+O(1),

which coincides with the singular part of ζMT,1(s1; s2) (= ζ(s1 + s2)) cor-
responding to s1 + s2 − 1. Hence we have the assertion for r = 1. Assume
that the case of r− 1 holds. Then the singular part of ζMT,r−1(s1, . . . , sr−1;
sr + sr+1 − 1) corresponding to (6.4) is

(6.15)
Γ (1− s1) · · ·Γ (1− sr−1)

(s1 + · · ·+ sr+1 − r)Γ (sr + sr+1 − 1)
+O(1).

By substituting (6.15) into (6.2), we immediately obtain the assertion in the
case of r.

Applying (6.13) with r = 2 to (5.15) shows that (5.21) can be written as

(6.16)
Γ (s1 + s3 − 1)Γ (1− s1)

Γ (s3)
Γ (1− s4)Γ (2− s1 − s3)

(s1 + s2 + s3 + s4 − 3)Γ (s2)
+O(1)

= −Γ (1− s1)Γ (1− s2)Γ (1− s3)Γ (1− s4)
s1 + s2 + s3 + s4 − 3

sin(πs2) sin(πs3)
π sin(π(s1 + s3))

+O(1),

because Γ (z)Γ (1− z) = π/sin(πz). Similarly, (5.22) can be written as

(6.17) −Γ (1− s1)Γ (1− s2)Γ (1− s3)Γ (1− s4)
s1 + s2 + s3 + s4 − 3

sin(πs4) sin(πs1)
π sin(π(s1 + s3))

+O(1).

Since it can be elementarily shown that

sin(πs1) sin(πs4) + sin(πs2) sin(πs3)− sin(π(s1 + s2)) sin(π(s1 + s3))

= {sin(πs4)− sin(π(s1 + s2 + s3))} sin(πs1),

we have

(6.18) sin(πs1) sin(πs4) + sin(πs2) sin(πs3)

= sin(π(s1 + s2)) sin(π(s1 + s3)) +O(s1 + s2 + s3 + s4 − 3).

Using (6.18), we see that (5.23), that is, the singular part of G(s1, s2, s3, s4)
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corresponding to (5.10), can be obtained as (6.16) plus (6.17), i.e.

(6.19) − Γ (1− s1)Γ (1− s2)Γ (1− s3)Γ (1− s4)
s1 + s2 + s3 + s4 − 3

× sin(πs2) sin(πs3) + sin(πs4) sin(πs1)
π sin(π(s1 + s3))

= −Γ (1− s1)Γ (1− s2)Γ (1− s3)Γ (1− s4)
s1 + s2 + s3 + s4 − 3

sin(π(s1 + s2))
π

+O(1).

From this expression it is obvious that (6.19), that is, (5.23), is indeed sin-
gular at s1 + s2 + s3 + s4 = 3.

We conclude this paper with a comment on the Witten multiple zeta-
function (5.4) associated with sl(4). From (5.4), we see that

(6.20) ζsl(4)(s1, s2, s3, s4, s5, s6) = ζsl(4)(s3, s2, s1, s5, s4, s6).

In [9, Section 4], it was shown that true singularities of ζsl(4)(s1, s2, s3, s4,
s5, s6) satisfy one of the equations

s1 + s4 + s6 = 1− l (l ∈ N0),(6.21)
s2 + s4 + s5 + s6 = 1− l (l ∈ N0),(6.22)
s3 + s5 + s6 = 1− l (l ∈ N0),(6.23)
s1 + s2 + s4 + s5 + s6 = 2− l (l ∈ N0),(6.24)
s1 + s3 + s4 + s5 + s6 = 2− l (l ∈ N0),(6.25)
s2 + s3 + s4 + s5 + s6 = 2− l (l ∈ N0),(6.26)
s1 + s2 + s3 + s4 + s5 + s6 = 3.(6.27)

Using (6.20), we see that (6.23) and (6.26) determine true singularities,
because (6.21) and (6.24) do. This argument for (6.23) and (6.26) is much
simpler than the original method in [9]. Hence we can see that this kind of
argument using symmetry is convenient for checking whether singularities
are true or not. On the other hand, the method used in the latter part of the
proof of Theorem 4.2 and in Remarks 5.3 and 6.3 is convenient for getting
explicit information about singularities. Therefore it seems that we should
use these two methods, depending on the case by case.
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