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1. Motivation. The modular curves X0(N) have been studied inten-
sively since they provide a link between modular and elliptic functions.
Among other things, they parameterise pairs of elliptic curves with a cyclic
isogeny of degree N between them. Topics of interest include the search for
models with few or no singularities or with small coefficients. For instance,
the question which curves X0(N) are hyperelliptic has been answered in [11]
and complemented by concrete models in [12, 9, 16]. The factorisation pat-
tern of these modular equations provides information on the rationality of
isogenies and can thus be used to determine the L-function of elliptic curves
over finite fields. In general, plane equations with nice properties are ob-
tained by looking for two functions on X0(N) with suitable pole orders and
determining a polynomial relationship between them. To link the modular
equations to the pairs of isogenous elliptic curves they parameterise, one
needs to exhibit a relationship with the modular invariant j, which requires
considerable work in each case (see [5, 2]).

It is thus convenient to fix one of the functions as j and to considerX0(N)
as a cover of X0(1), albeit this introduces further singularities. Equations
for X0(N)/X0(1) with small coefficients have been exhibited in [7] and [8,
Chapter 5]; some ideas presented there go back to Atkin (see [2]). In the
context of point counting on elliptic curves, it is most efficient to use curves
of prime level N .

In this article we deal with an infinite family of modular curves X0(N)
where N is composite of the simplest form, i.e. a product of two primes p1
and p2, which need not be distinct. Besides j, we also fix the second function
generating the function field of X0(N) as a certain product of η-functions.
This is motivated by the observation that the singular values of these func-
tions at ideals of suitable orders in imaginary-quadratic number fields lie in
the corresponding Hilbert and ring class fields [13]. The modular polynomi-
als relating these functions and j can thus be used to explicitly determine
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elliptic curves with complex multiplication [4]. Moreover, the functions are
computationally attractive because the corresponding class polynomials usu-
ally have small coefficients (see [3]). This is in accordance with the fact that
the η products appear in Kronecker’s limit formula for L-series of imagi-
nary quadratic fields with ring class characters. In fact, the class number
formulae derived by Meyer [6] show that these η quotients are in close corre-
spondence to systems of fundamental units in ring class fields, so that they
can be expected to provide in some sense “simple” algebraic numbers.

We show that the equations between j and the η products do indeed
provide a model for the modular curve X0(N), and exhibit properties of
the modular polynomials such as their degree in j and the values of certain
coefficients.

2. The η products. Let Γ = Sl2(Z) denote the full modular group, and
for some positive integer N , let Γ 0(N) be the congruence subgroup consist-
ing of all matrices

(
a b
c d

)
of determinant 1 such that N | b. Thus, Γ = Γ 0(1).

Denote by CΓ resp. CΓ 0(N) the fields of all modular functions invariant
under Γ resp. Γ 0(N), so that CΓ 0(N) is the function field of X0(N) and
CΓ = C(j) the function field of X0(1).

Throughout this article we denote by z a complex variable, by q its
Fourier transform q = q(z) = e2πiz and by q1/n the nth root of q given by
e2πiz/n. In a similar vain, ζn stands for the canonical primitive nth root of
unity e2πi/n. Recall Dedekind’s η-function, which is given by

η(z) = q1/24
∞∏

n=1

(1− qn) = q1/24
(

1 +
∞∑

n=1

(−1)n(qn(3n−1)/2 + qn(3n+1)/2)
)
,

and which is a modular form of weight 1/2.
Assume from now on, unless otherwise stated, that N = p1p2 with p1

and p2 primes; here, p1 = p2 or p1 ∈ {2, 3} are possible choices. Let s =
24/gcd(24, (p1−1)(p2−1)) be the integer measuring how far (p1−1)(p2−1)
is from being divisible by 24. We examine the function ws

p1,p2
with

wp1,p2(z) =
η(z/p1)η(z/p2)
η(z)η(z/p1p2)

.

It is well known that wp1,p2 is invariant under Γ 0(N) (see [10, Theorem 1]).
One may easily check this assertion once the transformation behaviour of η
under Γ is known. The following result is taken from [14, Proposition 2]; a
similar formula can be found in [1, p. 13].

Theorem 1. Let M =
(
a b
c d

)
∈ Γ be normalised such that c ≥ 0, and

d > 0 if c = 0. Write c = γ2λ with γ odd ; by convention, γ = λ = 1 if c = 0.



Modular curves of composite level 131

Then
η(Mz) = ε(M)

√
cz + d η(z)

with <(
√
cz + d) > 0 and

ε(M) =
(
a

γ

)
ζ
ab+c(d(1−a2)−a)+3γ(a−1)+ 3

2λ(a2−1)
24 .

Theorem 2. wp1,p2 is invariant under the Fricke–Atkin–Lehner involu-
tion wN associated to the matrix

( 0 −N
1 0

)
∈ Gl2(Z), i.e.,

wp1,p2

(
−N
z

)
= wp1,p2(z).

Proof. We have

wp1,p2

(
−N
z

)
=

η(−p2/z)η(−p1/z)
η(−p1p2/z)η(−1/z)

=

√
z/p2

√
z/p1√

z/p1p2
√
z

η(z/p2)η(z/p1)
η(z/p1p2)η(z)

by Theorem 1. The choice of the complex square roots implies that this
quantity indeed equals wp1,p2(z).

To examine the modular polynomials relating ws
p1,p2

and j, we need
to know the conjugates of ws

p1,p2
under the isomorphisms of CΓ 0(N)/CΓ ;

in other words, we need to know how unimodular transformations act on
ws
p1,p2

, and an obvious approach is to study how they act on the compo-
nents of ws

p1,p2
given by η(z/K) for K |N . In particular, the q-expansions

of η(z/K) |M for M =
(
a b
c d

)
∈ Γ play an important role. It is impossi-

ble, however, to derive them directly from the q-expansion of η(z/K) since
there is no general way of expressing q(Mz) = e2πi(az+b)/(cz+d) in terms of
q(z) = e2πiz whenever c 6= 0. But using the transformation formula for η,
we may obtain expressions from which the q-expansions are easily derived.

Theorem 3. Let K ∈ N and T =
(
a b
c d

)
∈ Γ such that c ≥ 0, and d > 0

if c = 0. Write

ua+ vKc = δ = gcd(a,Kc) = gcd(a,K), U =
(

a/δ −v
Kc/δ u

)
.

Then

η

(
Tz

K

)
= ε(U)

√
δ(cz + d) η

(
δz + (ub+ vKd)

K/δ

)

with ε(U) as in Theorem 1.

Proof. Letting

R0 =
(

1 0
0 K

)
, R =

(
δ ub+ vKd
0 K/δ

)
,
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one easily checks that R0T = UR so that

η

(
Tz

K

)
= η(R0Tz) = η(URz).

An application of Theorem 1 yields the result.

3. The modular polynomials. The modular polynomial associated to
the function ws

p1,p2
∈ CΓ 0(N) is given by its characteristic polynomial (called

“Hauptpolynom” in [1]) with respect to the field extension CΓ 0(N)/CΓ , i.e.
by

Φp1,p2(X) =
∏

σ∈Iso(CΓ0(N)/CΓ )

(X − σ(ws
p1,p2

)).

Notice that CΓ 0(N)/CΓ is not a Galois extension, so that Iso(CΓ 0(N)/CΓ )
is the set of embeddings of CΓ 0(N) into the algebraic closure of CΓ . We
call the σ(ws

p1,p2
) the conjugates of ws

p1,p2
. Furthermore, it is a priori not

clear whether ws
p1,p2

generates CΓ 0(N)/CΓ . We show in Theorem 8 that in-
deed it does, so that Φp1,p2 is in fact the minimal polynomial of ws

p1,p2
. In

principle, Φp1,p2 is an element of CΓ [X] = C(j)[X]. Since ws
p1,p2

is holo-
morphic in the upper complex half plane (where η has neither zeroes nor
poles) and its q-expansion is rational, Hasse’s q-expansion principle implies
that Φp1,p2 ∈ Q[j,X]. In Theorem 7 we show that ws

p1,p2
is entire, that is,

the q-expansions of all of its conjugates have integral algebraic coefficients.
Hence, the coefficients of the polynomial lie even in Z[j].

To study the modular polynomial Φp1,p2 , we need an explicit description
of the isomorphisms of CΓ 0(N)/C(j). For this purpose, according to [1], we
introduce the set MN of primitive integral 2× 2 matrices of determinant N
together with the equivalence relation ∼Γ given by R ∼Γ R′ if ΓR = ΓR′

for R,R′ ∈ MN . For the time being, we may lift the restrictions imposed
on N .

Let R0 ∈MN be fixed and let

Ri =
(
ai bi
0 di

)
, i = 1, . . . , ψ(N) = N

∏

p|N, pprime

(
1 +

1
p

)
,

be the matrices in MN with ai > 0, aidi = N , gcd(ai, bi, di) = 1 and
0 ≤ bi < di. Then the Ri, i ≥ 1, form a set of representatives of MN

modulo ∼Γ . Since Γ acts transitively from the right on the classes of MN ,
there are unimodular matrices Ti and Ui such that UiRi = R0Ti, and the
R0Ti form an alternative set of representatives of MN modulo ∼Γ . If g(z) is a
modular function invariant under R−1

0 ΓR0∩Γ , then its conjugates under the
isomorphisms of CR−1

0 ΓR0∩Γ /C(j) are given by the g(Tiz), i = 1, . . . , ψ(N).
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The matrices Ti and Ui may be computed as follows: Determine ki and
δi = −bi + kiai such that gcd(δi, di) = 1. This is possible since the arith-
metic progression (−bi + kai)k≥0 contains infinitely many primes multiplied
by gcd(ai, bi), and gcd(ai, bi) is coprime to di. Use the extended Euclidean
algorithm to obtain αi, βi ∈ Z such that αiδi − βidi = 1. Then

Ui =
(
αi βi
di δi

)
, Ti =

(
αiai αiaiki − 1

1 ki

)
.

So far, the description is completely generic and depends neither on
N nor on the particular choice of R0. Notice that R0 =

( 1 0
0 N

)
leads to

R−1
0 ΓR0 ∩ Γ = Γ 0(N), the case we are interested in. The factorisation of

N is now needed to determine the possible values of the ai and di, so from
now on we assume again that N is the product of two primes p1 and p2. As
a first step towards an explicit description of the conjugates of ws

p1,p2
, we

provide a closed description for the matrices Ti introduced above.

Theorem 4. Let N = p1p2 with p1 and p2 prime and R0 =
( 1 0

0 N

)
. Then

a set of representatives of MN modulo ∼Γ is given by the R0T with T ∈ T,
where T is defined as follows:

• for p1 6= p2 and u, v ∈ Z such that up1 + vp2 = 1:

T =
{(

1 ν
0 1

)
: 0 ≤ ν < N

}
∪
{(

0 −1
1 0

)}

∪
{(

νp1 −1
1 0

)
: 1 ≤ ν < p2

}
∪
{(

νp2 −1
1 0

)
: 1 ≤ ν < p1

}

∪
{(

up1 −vp2
1 1

)
,

(
vp2 −up1
1 1

)}
;

• for p1 = p2 = p:

T =
{(

1 ν
0 1

)
: 0 ≤ ν < N

}
∪
{(

0 −1
1 0

)}

∪
{(

νp −1
1 0

)
: 1 ≤ ν < p

}
.

Proof. We use the notation and consider the system of representatives
introduced above, omitting the subscripts i for convenience. For R =

( 1 ν
0 N

)
,

0 ≤ ν < N , put U =
( 1 0

0 1

)
and obtain UR = R0T with T =

( 1 ν
0 1

)
. For

R =
(N 0

0 1

)
, put U =

( 0 −1
1 0

)
and obtain T =

( 0 −1
1 0

)
.

The further matrices depend on the factorisation of N . For R =
( p1 b

0 p2

)
,

1 ≤ b < p2, choose k = 0, δ = −b, α = ν = −b−1 mod p2 ∈ {1, . . . , p2 − 1}.
Then T =

( νp1 −1
1 0

)
, and as b varies over {1, . . . , p2−1}, so does ν. If p1 = p2,

there are no more matrices to consider.
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For p1 6= p2, the T corresponding to R =
( p2 b

0 p1

)
, 1 ≤ b < p1, are

obtained by symmetry. If R =
( p1 0

0 p2

)
, let k = 1, δ = p1, α = u, which yields

T =
( up1 −vp2

1 1

)
. Similarly, T =

( vp2 −up1

1 1

)
is obtained from R =

( p2 0
0 p1

)
.

To state the main result on the conjugates of ws
p1,p2

, we need some ad-
ditional notation.

Definition 5. If g(z) =
∑∞

k=k0
akq

k/N with q = e2πiz, ak ∈ C and
ak0 6= 0, is a modular function, we denote by

ord(g) =
k0

N

its order at infinity and by
l(g) = ak0

its leading coefficient.

Notice that the order of j at infinity is −1, so that the order of a poly-
nomial in j is nothing but its negative degree, and the notions of leading
coefficients coincide.

Combining the results of Theorems 4 and 3, we obtain the conjugates of
wp1,p2 together with their explicit q-expansions, of which we retain only the
orders and the leading coefficients.

Theorem 6. Let N = p1p2 with p1 and p2 prime. Then the conjugates
of ws

p1,p2
under the isomorphisms of CΓ 0(N)/C(j), their orders and their

leading coefficients are given as follows:

• For p1 6= p2:

Conjugate ord l

wsp1,p2(z + ν), 0 ≤ ν < N − s(p1−1)(p2−1)
24p1p2

ζ
−νs(p1−1)(p2−1)/24
N

wsp1,p2(Nz) − s(p1−1)(p2−1)
24 1

((
p2
p1

)η( z+νp1 )η(p2(z+ν))

η(z+ν)η( p2(z+ν)
p1

)

)s
, 0 ≤ ν < p1

s(p1−1)(p2−1)
24p1

(
p2
p1

)s
ζ
−νs(p1−1)(p2−1)/24
p1

((
p1
p2

)η(p1(z+ν))η( z+νp2 )

η(z+ν)η( p1(z+ν)
p2

)

)s
, 0 ≤ ν < p2

s(p1−1)(p2−1)
24p2

(
p1
p2

)s
ζ
−νs(p1−1)(p2−1)/24
p2

• For p1 = p2 = p:

Conjugate ord l

wsp1,p2(z + ν), 0 ≤ ν < N − s(p−1)2

24p2 ζ
−νs(p−1)2/24
N

wsp1,p2(Nz) − s(p−1)2

24 1

√
psε(ν)

(
η(pz)2

η(z)η(z+kν/p)

)s
, 1 ≤ ν < p

s(p−1)
12

√
psε(ν)ζ−s

′ν
p
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with ε(ν) =
(3ν
p

)
if p ≡ 1 (mod 4), ε(ν) = 1 if p = 2, ε(ν) = −1 otherwise;

k = 1 for p = 2, k = 4 for p = 3, k = 24 otherwise; s′ = 1 for p ∈ {2, 3},
s′ = s otherwise.

Proof. Let us first derive the explicit formulae for the conjugates. We
have to consider the functions

ws
p1,p2

(Tz) =
(
η
(
Tz
K1

)
η
(
Tz
K2

)

η
(
Tz
K3

)
η
(
Tz
K4

)
)s

with K1 = p1, K2 = p2, K3 = 1, K4 = p1p2 and T being one of the matrices
of Theorem 4. We adopt the notations of Theorem 3 and its proof and
designate by the subscript i ∈ {1, . . . , 4} the values corresponding to the
term η

(
Tz
Ki

)
. Then

ws
p1,p2

(Tz) = ε

(√
δ1δ2

δ3δ4

)s(η(R1z)η(R2z)
η(R3z)η(R4z)

)s

with

ε =
(
ε(U1)ε(U2)
ε(U3)ε(U4)

)s
.

Notice that the factors
√
cz + d cancel since there are as many factors in

the numerator as in the denominator. Furthermore,
√
δ1δ2

δ3δ4
=

√
gcd(a, p1) gcd(a, p2)

gcd(a, p1p2)

=
{√

p for p1 = p2 = p and gcd(a, p2) = p,

1 otherwise.

For T =
( 1 ν

0 1

)
, the conjugates ws

p1,p2
(Tz) already have the desired form. If

T =
( 0 −1

1 0

)
, then Ui = T independently of i and Ri =

(Ki 0
0 1

)
, which yields

ws
p1,p2

(Nz). The further conjugates require several case distinctions.

Case 1: p1 6= p2. Let

T =
(
νp1 −1
1 0

)
with 1 ≤ ν < p2.

Then δ1 = δ4 = p1, δ2 = δ3 = 1. Let µ = −(νp1)−1 mod p2 ∈ {1, . . . , p2−1},
u2 = u3 = −µ, u1 = u4 = −p1µ, v2 = v4 = (1 + p1µν)/p2, v1 = v3 = p2v2.
We then have

R1 =
(
p1 p1µ
0 1

)
, R2 =

(
1 µ
0 p2

)
, R3 =

(
1 µ
0 1

)
, R4 =

(
p1 p1µ
0 p2

)
,
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U1 =
(
ν −p2v2
1 −p1µ

)
, U2 =

(
νp1 −v2
p2 −µ

)
,

U3 =
(
νp1 −p2v2

1 −µ

)
, U4 =

(
ν −v2

p2 −p1µ

)
.

(a) Let p2 6= 2. Then the product of the Legendre symbols contributing
to ε is ( (ν

1

)(νp1
p2

)
(νp1

1

)(
ν
p2

)
)s

=
(
p1

p2

)s
.

Considering only the first term in the exponent of the 24th root of unity, we
obtain

ζ
νs(−p2v2−p1v2+p1p2v2+v2)
24 = ζ

νv2s(p1−1)(p2−1)
24 = 1

since 24 | s(p1 − 1)(p2 − 1). Similar considerations for the further terms in
the exponent show that the 24th root of unity vanishes completely.

(b) If p2 = 2, then the γi and λi corresponding to the matrices Ui (cf.
Theorem 1) are given by γ1 = γ2 = γ3 = γ4 = 1, λ1 = λ3 = 0 and
λ2 = λ4 = 1. The product of Legendre symbols is now trivially 1 and equals(p1
p2

)s
since either 2 | s or 8 | p1 − 1 = (p1 − 1)(p2 − 1). The terms in the

exponent of the 24th root of unity having to do with γ or λ, which did not
occur in the previous case, lead to

ζ
3s((ν−1)+(νp1−1)−(νp1−1)−(ν−1))
24 = 1

and

ζ
3
2 s((ν

2p2
1−1)−(ν2−1))

24 = ζ
ν2s(p1−1)(p1+1)/2
8 = 1

since 8 | s(p1 − 1).

Thus whether p1 equals 2 or not, ε =
(p1
p2

)s
.

When ν varies over {1, . . . , p2 − 1}, so does µ, and we obtain indeed the
conjugates of the fourth line for ν 6= 0. The further conjugates in this case
are derived similarly.

Case 2: p1 = p2 = p. Let

T =
(
νp −1
1 0

)
with 1 ≤ ν < p.

Then δ1 = δ2 = δ4 = p, δ3 = 1,

U1 = U2 =
(
ν −1
1 0

)
, U3 =

(
νp −1
1 0

)
, U4 =

(
ν −v4
p u4

)
,

R1 = R2 =
(
p 0
0 1

)
, R3 =

(
1 0
0 1

)
, R4 =

(
p −u4
0 p

)
.
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Here, u4 is an inverse of ν modulo p and v4 = (1− u4ν)/p. A complication
is introduced by the fact that for an arbitrary choice of u4, the root of unity
may not cancel. We thus have to take into account an additional constraint
modulo 24, which will be dealt with later.

(a) Let p 6∈ {2, 3}. Then the Legendre symbols in ε multiply to yield(
ν
p

)s
. The exponent of the root of unity is computed as

s(3(p− 1)− 3pν + 2ν + v4ν − pu4 + pν(u4ν)).

After replacing u4ν by 1− v4p, it becomes

(3− 2ν)s(p− 1)− v4νs(p2 − 1)− psu4 ≡ 3s(p− 1)− psu4 (mod 24)

since 12 | s(p − 1) and 24 | s(p2 − 1). We may choose u4 = −24µ with µ ∈
{1, . . . , p − 1} and u4 ≡ ν−1 (modp). Then the term −psu4 vanishes, and
we obtain

ε =
(
ν

p

)s
(−1)s(p−1)/4.

If p ≡ 3 (mod 4), then 2 ‖ s and ε = −1. If p ≡ 1 (mod 4), then 2 - s,
(−1)(p−1)/4 =

(2
p

)
and

ε =
(

2ν
p

)s
=
(−2ν−1

p

)
=
(

48µ
p

)
=
(

3µ
p

)
.

The result on the conjugates follows since together with ν, also µ varies over
{1, . . . , p− 1}.

(b) For p = 3, we have s = 6 and may choose u4 = −4µ with µ ∈
{1, . . . , p− 1} and µ ≡ ν−1 (modp). Then the term −psu4 in the exponent
vanishes again, and we obtain ε = −1.

(c) For p = 2, we have s = 24 and trivially ε = 1.

The assertions on the orders and leading coefficients are now readily de-
rived from the facts that ord(η) = 1

24 , l(η) = 1 and q
(
az+b
d

)
= e2πi(az+b)/d =

ζbdq(z)a/d.

Following [15], we denote by FN the set of modular functions of level N
all conjugates of which have q-expansions with coordinates in Q(ζN ).

Theorem 7. Under the assumptions of Theorem 6, the function ws
p1,p2

lies in FN . Furthermore, Φp1,p2 ∈ Z[j,X].

Proof. Concerning membership in FN , by Theorem 6, all conjugates sat-
isfy the required condition on their q-expansions except for possibly the last
set of conjugates in the case p1 = p2 = p. Noticing that q(z + kν/p)s/24 =
ζ
skν/24
p q1/24 and 24 | sk, the only possible obstacle comes from

√
ps for s odd.

But then p ≡ 1 (mod 4), and
√
p ∈ Z[ζp].

A closer examination shows that the q-expansion coefficients of the con-
jugates even lie in Z[ζN ] since l(η) = 1. In particular, ws

p1,p2
is entire. As it is
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furthermore holomorphic and has a rational q-expansion, Hasse’s principle
proves that Φp1,p2 ∈ Z[j,X].

Theorem 8. Under the assumptions of Theorem 6, the polynomial Φp1,p2

is an affine model for the modular curve X0(N).

Proof. It suffices to show that ws
p1,p2

generates CΓ 0(N)/C(j), i.e. that
Φp1,p2 is the minimal polynomial of ws

p1,p2
. In any case, Φp1,p2 is a power of

the minimal polynomial. By Theorem 6, ws
p1,p2

(Nz) is a simple root of Φp1,p2

since it is the only root of order −s(p1 − 1)(p2 − 1)/24. This observation
finishes the proof.

Theorem 6 also allows us to determine certain terms of Φp1,p2 .

Theorem 9. Under the assumptions of Theorem 6, Φp1,p2 , seen as a
polynomial in j with coefficients in Z[X], has degree s(p1 − 1)(p2 − 1)/12.
Its leading term is Xp1+p2 for p1 6= p2 and Xp−1 for p1 = p2 = p. Seen as a
polynomial in X with coefficients in Z[j], it has constant term 1 for p1 6= p2
and ps(p−1)/2 for p1 = p2 = p.

Proof. The coefficient eψ(N)−i of Xψ(N)−i in Φp1,p2 is (up to sign) the
elementary symmetric function of degree i in the conjugates of ws

p1,p2
. By

Theorem 6, there are N conjugates of order −s(p1 − 1)(p2 − 1)/24N and
one conjugate of order −s(p1 − 1)(p2 − 1)/24, while all others have positive
orders. Thus,

ord(eψ(N)−i) ≥ −N
s(p1 − 1)(p2 − 1)

24N
− s(p1 − 1)(p2 − 1)

24

= −s(p1 − 1)(p2 − 1)
12

by the triangle inequality. If i < N +1, then no term contains all conjugates
of negative order; if i > N+1, then each term contains a conjugate of positive
order. Hence, in these cases the above inequality is strict. If i = N + 1, how-
ever, then the term in eψ(N)−i corresponding to the product of the conjugates
of negative orders has the exact order −s(p1 − 1)(p2 − 1)/12, and all others
have larger orders. This shows that ord(eψ(N)−1) = −s(p1 − 1)(p2 − 1)/12
and

l(eψ(N)−1) = (−1)N+1
(N−1∏

ν=0

ζνN

)−s(p1−1)(p2−1)/24
= 1.

Now the remark after Definition 5 implies the assertion on the degree in j.
Concerning the constant coefficient e0, it equals the product of all conju-

gates since ψ(N) is even, and Theorem 6 shows that it is of order 0 and its
leading coefficient is

((p1
p2

)p1
(p2
p1

)p2
)s = 1 if p1 6= p2 and (

√
p)s(p−1)∏p

ν=1 ε(ν)

= ps(p−1)/2 if p1 = p2 = p.
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4. Examples and conclusion. Using the explicit description of the
conjugates of the modular functions given in Theorem 6, one can compute
the modular polynomials following the standard approach, described for
instance in [7] and [8, Chapter 5], for modular curves of prime level. The
basic idea is to replace the conjugates by their q-expansions, to compute
the coefficients of the modular polynomials as Laurent series in q and to
rewrite them as polynomials in j. We developed a different approach, based
on evaluating the conjugates in several complex arguments and polynomial
interpolation, which will be described in detail in a forthcoming article.

As a first example, consider the smallest polynomial obtained with p1, p2
6∈ {2, 3}:

Φ5,7 = X48 + (−j + 708)X47 + (35j + 171402)X46

+ (−525j + 15185504)X45 + (4340j + 248865015)X44

+ (−20825j + 1763984952)X43 + (52507j + 6992359702)X42

+ (−22260j + 19325688804)X41 + (−243035j + 42055238451)X40

+ (596085j + 70108209360)X39 + (−272090j + 108345969504)X38

+ (−671132j + 121198179480)X37 + (969290j + 155029457048)X36

+ (−1612065j + 97918126080)X35 + (2493785j + 141722714700)X34

+ (647290j − 1509796288)X33 + (−3217739j + 108236157813)X32

+ (3033590j − 93954247716)X31 + (−5781615j + 91135898154)X30

+ (1744085j − 108382009680)X29 + (1645840j + 66862445601)X28

+ (−2260650j − 66642524048)X27 + (6807810j + 38019611082)X26

+ (−2737140j − 28638526644)X25 + (2182740j + 17438539150)X24

+ (−125335j − 8820058716)X23 + (−1729889j + 5404139562)X22

+ (1024275j − 1967888032)X21 + (−1121960j + 1183191681)X20

+ (395675j − 370697040)X19 + (−54915j + 103145994)X18

+ (15582j − 42145404)X17 + (34755j − 15703947)X16

+ (−6475j − 3186512)X15 + (1120j − 4585140)X14

+ (−176j + 1313040)X13 + (j2 − 1486j − 38632)X12

+ (−7j + 399000)X11 + (−19j + 211104)X10 + (−9j + 6771)X8

+ (8j − 6084)X7 + (7j − 5258)X6 + (j − 792)X5 − 105X4 + 16X3

+ 42X2 + 12X + 1.

The degree of the polynomial in j is indeed 2 and the unique appearance
of j2 is in front of X12 = Xp1+p2 as predicted by Theorem 9.

Notice that from a geometric point of view, this equation is certainly
not optimal: It is known from [11] that the modular curve of level 35 is
hyperelliptic of genus 3. While our equation confirms the hyperellipticity,
it has (affine) singularities, which is reflected by the fact that its degree
in X exceeds 8. Furthermore, its coefficients are considerably larger than
those of the model in [12, 16]. This kind of behaviour appears to be un-
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avoidable as long as we choose j as separating variable, which is important
for applications in which one wishes to relate the modular polynomial to
concrete equations of elliptic curves (e.g., the determination of the num-
ber of rational isogenies or the construction of elliptic curves with complex
multiplication [4]).

As another example, we provide the curve of level 9:

Φ3,3 = X12 + (−j + 684)X11 + (54j + 158058)X10

+ (−1053j + 12812940)X9 + (8712j + 111071655)X8

+ (−24948j + 350544024)X7 + (−13608j + 428079276)X6

+ (74088j + 137660472)X5 + (31104j + 29200095)X4

+ (−7291j + 3832380)X3 + (j2 − 1494j + 361098)X2

+ (−27j + 20412)X + 729.

This curve is of genus 0, but its degree in j is not 1. So unlike the ratio-
nal curves of level 2 obtained by Weber’s functions, this equation does not
yield a rational expression for j in terms of the second function on X0(N).
Notice that by Theorem 9, the degree of our modular polynomials in j is
always even. This is correlated with the fact that the ws

p1,p2
are invariant

under the Fricke–Atkin–Lehner involution as shown in Theorem 7, whence
they are functions on X+

0 (N). This could be used to factor the extension
C(ws

p1,p2
, j)/C(ws

p1,p2
) through X+

0 (N), an approach that deserves further
studying.
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