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Zero-cycles on products of elliptic curves over p-adic fields
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1. Introduction. Let X be a smooth projective variety over a finite
extension field K of Qp. We will consider the structure of the Chow group
CH0(X) of 0-cycles on X. The degree map CH0(X)→ Z and the Albanese
map Ker [CH0(X) → Z] → AlbX(K) have finite cokernels, and the struc-
ture of AlbX(K) is well understood by Mattuck [Mat55, Theorem 7] since
the Albanese variety of X is an abelian variety. We denote by T (X) the
kernel of the Albanese map on X; then the structure of the quotient group
CH0(X)/T (X) is well understood.

However, few results are known on T (X) when X has dimension greater
than 1. Colliot-Thélène [CT95, 1.4(d), (e), (f)] conjectured that the group
T (X) is the direct sum of a finite group and the maximal divisible subgroup
of T (X). This conjecture is known to be true for certain types of varieties.
For example, Raskind and Spiess [RS00, Theorem 1.1] proved it when X is
a product of curves whose Jacobians have a mixture of ordinary good and
split multiplicative reduction.

In this paper, we will consider (not only the finiteness but also) the
structure of T (X)/pn in detail when X is a product of two elliptic curves
which have ordinary good or split multiplicative reduction. Our main result
is as follows.

Theorem 1.1. Let E1, E2 be elliptic curves defined over K. Assume that
their pn-torsion points are K-rational. Put X = E1 × E2 and let T (X) be
the kernel of the Albanese map on X. Then the structure of T (X)/pn is as
follows:

(1) If both E1 and E2 have ordinary good or split multiplicative reduction
over K, then

T (X)/pn ' Z/pn.
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(2) If one of E1, E2 has split multiplicative reduction over K and the
other has ordinary good reduction over K, then

T (X)/pn ' (Z/pn)⊕2.

Remark 1.2. The split multiplicative reduction case of (1) was proved
by Yamazaki [Yam05, Theorem 5.1].

As mentioned above, the structure of the quotient group CH0(X)/T (X)
is well understood. Taking it into consideration, we find the structure of
CH0(X)/pn:

Corollary 1.3. Let the assumption and notation be as in Theorem 1.1.
Let d be the extension degree of K/Qp. Then the structure of CH0(X)/pn is
as follows:

(1) If both E1 and E2 have ordinary good or split multiplicative reduction
over K, then

CH0(X)/pn ' (Z/pn)⊕(2d+6).

(2) If one of E1, E2 has split multiplicative reduction over K and the
other has ordinary good reduction over K, then

CH0(X)/pn ' (Z/pn)⊕(2d+7).

Let the assumption and notation be as in Theorem 1.1. To show the
main result we will consider the cycle map

cl : T (X)/pn → H4
ét(X,µ

⊗2
pn ),(1.1)

where µpn is the étale sheaf of all pnth roots of unity. In the case where E1

and E2 have the same reduction type as in Theorem 1.1(1), (2), Raskind
and Spiess [RS00, Remark 4.5.8(b)] proved the cycle map is injective under
the assumption that the pn-torsion points of E1 and E2 are K-rational.
Note that the cycle map is not injective for certain types of varieties [PS95,
Chap. 8]. Raskind and Spiess explained how to calculate the image of (1.1)
by analyzing the proof of their main result [RS00, Theorem 4.5]. (For any
integer m prime to p, they also considered the structure of T (X)/m [RS00,
Theorem 3.5].)

They also introduced another approach to calculating the image, which
can be applied in the case where E1 and E2 have any reduction type. They
showed the image is isomorphic to that of the composition of the connecting
homomorphism, the cup product and the norm map:

(1.2)
⊕
K′/K

E1(K ′)⊗ E2(K ′)→
⊕
K′/K

H1(K ′, E1[pn])⊗H1(K ′, E2[pn])

→
⊕
K′/K

H2(K ′, E1[pn]⊗ E2[pn])→ H2(K,E1[pn]⊗ E2[pn]),
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where K ′ runs through all finite extensions of K. Following this approach,
Yamazaki [Yam05, Theorem 5.1] obtained the result mentioned in Remark 1.2.

In the same way as above we will show Theorem 1.1. In Section 2, to
calculate the cup product of (1.2) we consider the Hilbert symbol K×/pn ×
K×/pn→µpn , which can be seen as the cup productH1(K,µpn)⊗H1(K,µpn)
→ H2(K,µpn). In Section 3, to calculate the first arrow in (1.2) we consider
the image of the connecting homomorphism δ : E(K) → H1(K,E[pn]) for
an elliptic curve E over K. In Section 4, we calculate the image of the
composition of (1.2) and complete the proof of our main result.

When either E1 or E2 has supersingular good reduction, the injectivity
of the cycle map cl is not known. However, in the same way as above the
image of the cycle map (1.1) can be calculated. We have the following result
when n = 1.

Theorem 1.4. Let E1, E2 be elliptic curves defined over K and assume
that their p-torsion points are K-rational. Put X = E1 × E2. Then:

(1) If one of E1, E2 has split multiplicative reduction over K and the
other has supersingular good reduction over K, then the image of
T (X)/p under the cycle map is isomorphic to (Z/p)⊕2.

(2) If one of E1, E2 has ordinary good reduction over K and the other
has supersingular good reduction over K, then the image of T (X)/p
under the cycle map is isomorphic to (Z/p)⊕2.

(3) If both E1 and E2 have supersingular good reduction over K, then
the image of T (X)/p under the cycle map is isomorphic to

(Z/p)⊕2 if t1 6= t2 and t1 + t2 6=
e

p− 1
,

Z/p if t1 = t2 6=
e

2(p− 1)
or
[
t1 6= t2 and t1 + t2 =

e

p− 1

]
,

0 if t1 = t2 =
e

2(p− 1)
,

where e is the ramification index of K/Qp, and t1 and t2 are respec-
tively the invariants of E1 and E2 defined in (3.4).

This result is obtained by using Kawachi’s result [Kaw02, Theorem 1.1(2)]
on the image of δ : E(K)→ H1(K,E[pn]) for n = 1. Theorem 1.4 generalizes
to the case of n ≥ 1 once the image of δ has been calculated for that n.

Notation. Throughout this paper, let K be a finite extension of Qp.
Let OK be the ring of integers of K, UK the unit group of OK , and MK

the maximal ideal of OK . Let U (0)
K = UK and U

(s)
K = 1 +Ms

K for s ≥ 1.
This gives a filtration K× ⊃ U

(0)
K ⊃ U

(1)
K ⊃ U

(2)
K ⊃ · · · on the unit group

of K. It also induces a filtration K×/pn ⊃ U
(0)
K,n ⊃ U

(1)
K,n ⊃ U

(2)
K,n ⊃ · · · ,
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where U (s)
K,n = U

(s)
K /((K×)p

n ∩ U (s)
K ) for s ≥ 0. Similar notation applies to

any discrete valuation field. For each positive integer k, let ζpk be a primitive
pkth root of unity and µpk the group of all pkth roots of unity. Given an
abelian group A and a nonzero integer m, let A[m] (resp. A/m) be the kernel
(resp. cokernel) of multiplication by m on A.

2. The Hilbert symbol and a filtration on the unit group. We
fix a positive integer n, and assume that µpn ⊂ K throughout this section.
Then the Hilbert symbol over the local field K is defined by

( , )pn : K×/pn ×K×/pn → µpn , (a, b) 7→ ρK(a)(pn√
b)

pn√
b

,(2.1)

where ρK : K× → Gal(Kab/K) is the reciprocity map of K.

Lemma 2.1. Let a, b ∈ K×. Then the Hilbert symbol has the following
properties:

(1) The Hilbert symbol is a nondegenerate bilinear pairing.
(2) (1− a, a)n = (a, 1− a)n = 1 for a 6= 1.
(3) (a, b)n = (b, a)−1

n .
(4) (a, b)p

k

pn = (a, b)pn−k for each 1 ≤ k ≤ n.

Proof. See [FV02, Chap. 4, (5.1)].

We shall calculate the order of the image (U (s)
K,n, U

(t)
K,n)pn of the subgroup

U
(s)
K,n×U

(t)
K,n under the Hilbert symbol. To calculate them we shall investigate

ramification for the extensions K(pn√
b)/K, where b ∈ K×. Let L = K(pn√

b)
and ρL/K : K× → Gal(L/K) be the reciprocity map of L/K. By [Iwa86,
Theorem 7.12],

ρL/K(U (s)
K ) = Gal(L/K)s(2.2)

for all s ≥ 0, where Gal(L/K)s is the sth ramification subgroup in the upper
numbering for L/K. We will calculate the Hasse–Herbrand function of L/K,
which is used to define Gal(L/K)s (cf. [FV02, Chap. 3, § 3]). This function
is the inverse function of

φL/K(s) =
s�

0

1
(Gal(L/K)0 : Gal(L/K)r)

dr,(2.3)

where Gal(L/K)s is the sth ramification subgroup in the lower numbering
for L/K. Note that the function φL/K is continuous and piecewise linear on
s ≥ 0.

Lemma 2.2. Let L = K(pn√
b) and let ψL/K be the Hasse–Herbrand func-

tion of L/K. For each 1 ≤ k ≤ n, we put ck = e/(p− 1) + ke, where e is
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the ramification index of K/Qp. Then:

(1) If b is a prime element of K, then

ψL/K(r) =


r (0 ≤ r ≤ c1),
pkr − kpke (ck ≤ r ≤ ck+1) (k = 1, . . . , n− 1),
pnr − npne (r ≥ cn).

In particular, the breaks of Gal(L/K)s occur at ck for each 1 ≤ k
≤ n.

(2) If b ∈ U (t)
K,1 \ U

(t+1)
K,1 , 1 ≤ t < c1 and p - t, then

ψL/K(r) =


r (0 ≤ r ≤ c1 − t),
pkr − kpke+ (pk − 1)t (ck − t ≤ r ≤ ck+1 − t)

(k = 1, . . . , n− 1),
pnr − npne+ (pn − 1)t (r ≥ cn − t).

In particular, the breaks of Gal(L/K)s occur at ck − t for each 1 ≤
k ≤ n.

Proof. Since the proofs of (1) and (2) are similar, we shall prove only (2).
Let vL be the normalized valuation on L. Since ζpn ∈ K and b 6∈ (K×)p,
we see L/K is a cyclic extension of degree pn. Let σ be the generator of
Gal(L/K) such that σ(pn√

b) = ζpn
pn√
b. Then

pnvL(pn√
b− 1) =

pn∑
j=1

vL(σj(pn√
b− 1)) =

pn∑
j=1

vL(ζjpn
pn√
b− 1)

= vL

( pn∏
j=1

(ζjpn
pn√
b− 1)

)
= vL(b− 1) = e(L/K)t,

where e(L/K) is the ramification index of L/K. Since p - t, the field ex-
tension L/K is totally ramified and vL(pn√

b − 1) = t. Therefore the ring of
integers of L is generated by a prime element of L. We can choose integers
g, h such that g > 0 and gt + hpn = 1. Then π′ = (pn√

b − 1)gπh is a prime
element of L, where π is a prime element of K. Therefore

σj(π′)− π′ = π′
{(

ζjpn
pn√
b− 1

pn√
b− 1

)g
− 1
}

= π′
{(

1 +
ζjpn − 1
pn√
b− 1

pn√
b

)g
− 1
}

= π′
{ g∑
l=1

(
g

l

)(
ζjpn − 1
pn√
b− 1

)l
(pn√

b)l
}
.

If pk divides j exactly, then vL((ζjpn − 1)/(pn√
b− 1)) = pk+1e/(p− 1)− t > 0.

Thus the valuation of the terms in the above sum assumes the minimum
for l = 1, and we have vL(σj(π′) − π′) = dk+1 + 1 − t, where we put dk =
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pke/(p− 1). Hence the order gr of Gal(L/K)r is

gr =


pn (0 ≤ r ≤ d1 − t),
pn−k (dk − t < r ≤ dk+1 − t) (k = 1, . . . , n− 1),
1 (r > dn − t).

By definition (2.3), we see (2) is proved.

Corollary 2.3. Let s ≥ 0. For each 1 ≤ k ≤ n, the following are
equivalent:

(1) s > ck.
(2) (U (s)

K,k,K
×/pk)pk = 1.

(3) U
(s)
K ⊂ (K×)p

k
.

Proof. Since the Hilbert symbol is a nondegenerate pairing, (2) is equiv-
alent to (3). By [FV02, Chap. 1, (5.8)], if s > ck, we have U (s)

K ⊂ (K×)p
k
.

Assume that s ≤ ck. Let L = K(pk√
π), where π is a prime element of K. By

Lemma 2.2(1), ψL/K(s) ≤ ψL/K(ck) = pke/(p − 1). Therefore Gal(L/K)s

6= 1. Hence (U (s)
K,k,K

×/pk)pk 6= 1 by (2.1) and (2.2).

Lemma 2.4 (cf. [Kat79, Lemma 2 in §2]). For all s, t ≥ 1 and 1 ≤ k ≤ n,
we have (U (s)

K,k, U
(t)
K,k)pk ⊆ (U (s+t)

K,k ,K×/pk)pk .

Proof. Let 1 + x ∈ U (s)
K and 1 + y ∈ U (t)

K . Note that (1− a, a)pk = 1 for
a 6= 1 (Lemma 2.1(3)). Then

(2.4) (1 + x, 1 + y)pk

= (1 + x, 1 + y)pk

(
1 + x+ xy

1 + x
, 1 + y

)
pk

(
1 + x+ xy

1 + x
, 1 + y

)−1

pk

= (1 + x+ xy, 1 + y)pk

(
1 + x+ xy

1 + x
, 1 + y

)−1

pk

= (1 + x+ xy, 1 + y)pk(1 + x+ xy,−x(1 + y))−1
pk

(
1 + x+ xy

1 + x
, 1 + y

)−1

pk

= (1 + x+ xy,−x)−1
pk

(
1 + x+ xy

1 + x
, 1 + y

)−1

pk

= (1 + x+ xy,−x)−1
pk (1 + x,−x)pk

(
1 + x+ xy

1 + x
, 1 + y

)−1

pk

=
(

1 + x+ xy

1 + x
,−x

)−1

pk

(
1 + x+ xy

1 + x
, 1 + y

)−1

pk

.

As (1+x+xy)/(1+x)∈U (s+t)
K , we have (U (s)

K,k, U
(t)
K,k)pk⊆(U (s+t)

K,k ,K×/pk)pk .
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Proposition 2.5. Let s, t ≥ 0 and ck = e/(p− 1) + ke for each 1 ≤
k ≤ n. Then:

(1)

#(U (s)
K,n,K

×/pn)pn =


pn (s ≤ c1),
pn−k (ck < s ≤ ck+1) (k = 1, . . . , n− 1),
1 (s > cn).

(2) If p - s or p - t, then

#(U (s)
K,n, U

(t)
K,n)pn =


pn (s+ t ≤ c1),
pn−k (ck < s+ t ≤ ck+1) (k = 1, . . . , n− 1),
1 (s+ t > cn).

(3) If p | s and p | t, then

#(U (s)
K,n, U

(t)
K,n)pn =


pn (s+ t < c1),
pn−k (ck ≤ s+ t < ck+1) (k = 1, . . . , n− 1),
1 (s+ t ≥ cn).

Proof. (1) By Lemma 2.1(4) and Corollary 2.3, for each 1 ≤ k ≤ n, we
have (U (s)

K,n,K
×/pn)pn ⊆ µpn−k if and only if s > ck. Hence (1) follows by

decreasing induction on k.
(2) By an argument similar to (1), it is sufficient to show that for each

1 ≤ k ≤ n, (U (s)
K,k, U

(t)
K,k)pk = 1 if and only if s + t > ck. If s + t > ck,

then by Lemma 2.4 and (1), (U (s)
K,k, U

(t)
K,k)pk ⊆ (U (s+t)

K,k ,K×/pk)pk = 1. We
shall prove the converse by induction on k. We may suppose that s+ t = ck
and s ≥ t. Then p - t, since p | ck. When k = 1 or 2, we have t < c1.
By Lemma 2.2(2), we see Gal(K(pk√

b)/K)s 6= 1 (b ∈ U (t)
K \ U

(t+1)
K ). Hence

(U (s)
K,k, U

(t)
K,k)pk 6= 1 by (2.1) and (2.2). When k ≥ 3, by induction on k,

there exist a ∈ U
(s−e)
K,k−1 and b ∈ U

(t)
K,k−1 such that (a, b)pk−1 = ζp. Thus

(ap, b)pk = (a, b)p
pk = (a, b)pk−1 = ζp 6= 1. Since k ≥ 3, we have s > c1. Hence

ap ∈ U (s)
K,k and (U (s)

K,k, U
(t)
K,k)pk 6= 1.

(3) By an argument similar to (1), for each 1 ≤ k ≤ n, it is sufficient to
show that (U (s)

K,k, U
(t)
K,k)pk = 1 if and only if s+ t ≥ ck. If s+ t < ck, then by

(2), (U (s)
K,k, U

(t)
K,k)pk ⊇ (U (s+1)

K,k , U
(t)
K,k)pk 6= 1. Suppose that s + t ≥ ck. Since

U
(0)
K,k = U

(1)
K,k, we may assume s, t ≥ 1. Let 1 + x ∈ U (s)

K and 1 + y ∈ U (t)
K .

Write x = uπps
′
, where π is a prime element of K, u ∈ UK and s′ = s/p. By

(2.4) in the proof of Lemma 2.4,
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(2.5) (1 + x, 1 + y)pk =
(

1 + x+ xy

1 + x
,−x

)−1

pk

(
1 + x+ xy

1 + x
, 1 + y

)−1

pk

=
(

1 + x+ xy

1 + x
, πs

′
)−p
pk

(
1 + x+ xy

1 + x
,−u

)−1

pk

(
1 + x+ xy

1 + x
, 1 + y

)−1

pk

.

We see from s + t ≥ ck that (1 + x + xy)/(1 + x) ∈ U (ck)
K . Therefore each

term in (2.5) vanishes by (1) and (2). Hence (U (s)
K,k, U

(t)
K,k)pk = 1.

3. Elliptic curves over K. Let E be an elliptic curve defined over K.
We fix a positive integer n and assume that the pn-torsion points of E are
K-rational. Then we see that µpn ⊂ K by using the Weil pairing.

The exact sequence

0→ E[pn]→ E
[pn]−−→ E → 0

induces a long exact sequence

0→ E[pn]→ E(K)
[pn]−−→ E(K)

δn
1−→ H1(K,E[pn])→ H1(K,E)→ · · · ,

(3.1)

where δn1 is the connecting homomorphism. If we choose an isomorphism

E[pn] ' µpn ⊕ µpn ,(3.2)

then we have an isomorphism

κ : H1(K,E[pn]) ∼−→ H1(K,µpn ⊕ µpn).

By Kummer theory, there exists an isomorphism

δn2 : K×/pn ⊕K×/pn ∼−→ H1(K,µpn ⊕ µpn).

Let

δn : E(K)→ K×/pn ⊕K×/pn

be the composite map (δn2 )−1 ◦ κ ◦ δn1 . To investigate the image of δn, we
choose the isomorphism (3.2) more carefully. Let E[pn]0 be the subgroup of
E[pn] consisting of the K-valued points of the maximal connected finite flat
pn-torsion subgroup scheme of the Néron model of E over SpecOK . Then
choose an isomorphism E[pn] ' µpn ⊕ µpn which maps E[pn]0 onto the first
factor µpn .

In the case where E has split multiplicative reduction over K, Yamazaki
[Yam05, Lemma 4.5] showed

Im δn = K×/pn ⊕ 1.(3.3)

We consider the case where E has ordinary good reduction over K.
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Proposition 3.1. If E has ordinary good reduction over K and we take
the isomorphism (3.2) as above, then

Im δn = U
(0)
K,n ⊕A,

where A is the annihilator of U (0)
K,n in the pairing (2.1), and is cyclic of

order pn.

Proof. Let v be the map (K×/pn)⊕2 → (Z/pn)⊕2 induced by the nor-
malized valuation on K. We will show that the composition of v and δn

is the zero map. To see this we may replace K by the completion of the
maximal unramified extension of K, which is denoted by L. Since E has
ordinary good reduction over K, we have the exact sequence

Ê(ML)/pn s−→ E(L)/pn → Ẽ(F )/pn → 0,

where Ê is the formal group attached to E, Ẽ is the reduction of E, and
F is the residue field of L. Since the field F is algebraically closed, we have
Ẽ(F )/pn = 0. Therefore it is sufficient to show that v ◦ δn ◦ s = 0. Since E
has ordinary good reduction, Ê is isomorphic to the multiplicative group Ĝm

over OL by [Maz72, Lemma 4.27] . We fix isomorphisms Ê(ML) ' Ĝm(ML)
and Ê[pn] ' Ĝm[pn] = µpn such that the following diagram is commutative:

Ĝm(ML) ←−−−− Ĝm[pn] i1−−−−→ µ⊕2
pny' y' y'

Ê(ML) ←−−−− Ê[pn] −−−−→ E[pn]

where the map i1 is defined by ζ 7→ (ζ, 1) and the rightmost vertical iso-
morphism is the one of (3.2). This is possible because of our choice of the
isomorphism (3.2). Then we have the following commutative diagram:

Ĝm(ML)/pn −−−−→ H1(L, Ĝm[pn]) ∼−−−−→ L×/pn −−−−→ Z/pny' y' ∥∥∥ ∥∥∥
Ê(ML)/pn −−−−→ H1(L, Ê[pn]) ∼−−−−→ L×/pn −−−−→ Z/pnys y yi2 yi3
E(L)/pn

δn
1−−−−→ H1(L,E[pn]) ∼−−−−→ (L×/pn)⊕2 v−−−−→ (Z/pn)⊕2

where the maps i2 and i3 are defined by a 7→ (a, 1) and N 7→ (N, 0), re-
spectively. Since Ĝm(ML)/pn = U

(1)
L,n = U

(0)
L,n, we have v ◦ δn ◦ s = 0 by the

above diagram. It follows from Ker [K×/pn → Z/pn] = U
(0)
K,n that we have
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Im δn ⊆ U (0)
K,n ⊕A, where A = Ker [K×/pn → L×/pn]. Since

A ' Ker [H1(K,µpn)→ H1(L, µpn)] ' H1(L/K, µpn) ' Z/pn,

the group A is cyclic of order pn and is the annihilator of U (0)
K,n in the pairing

(2.1). Furthermore, by Mattuck [Mat55, Theorem 7],

E(K) ' Z⊕dp ⊕ (torsion),

where d is the extension degree of K/Qp. Since all pn-torsion points of E are
K-rational, the order of E(K)/pn is (pn)d+2. On the other hand, the order
of U (0)

K,n ⊕ A equals that of K×/pn ' (Z/pn)⊕(d+2). Since δn : E(K)/pn →
(K×/pn)⊕2 is injective, we have Im δn = U

(0)
K,n ⊕A.

Remark 3.2. When n = 1, the image of δn has already been calcu-
lated by Kawachi [Kaw02, Theorem 1.1] including the case of other types of
reduction. Her results are as follows.

Let E be an elliptic curve over K. Assume that the p-torsion points are
K-rational. Then:

(1) If E has split multiplicative reduction over K, then

Im δ1 = K×/p⊕ 1.

(2) If E has ordinary good reduction over K, then

Im δ1 = U
(0)
K,1 ⊕ U

(c1)
K,1 .

(3) If E has supersingular good reduction over K, then

Im δ1 = U
(1−pt+c1)
K,1 ⊕ U (1+pt)

K,1 ,

where t is an invariant depending on E, which is defined below.

For i ≥ 1, let Ei = Ê(Mi
K) ⊂ E(MK). We define

t = max{i ≥ 1 | Q ∈ Ei for all Q ∈ Ê[p]}.(3.4)

Then 1 ≤ t < e/(p − 1) (see [Kaw02, Lemma 2.3]). Note that Proposition
3.1 is a generalization of (2) for arbitrary n ≥ 1. The group U

(c1)
K,1 is cyclic

of order p, and is the annihilator of U (0)
K,1 in the pairing (2.1) by Proposition

2.5(3).

4. The structure of CH0(E1 × E2)/pn. Let E1, E2 be elliptic curves
defined over K and assume that their pn-torsion points are K-rational. We
put X = E1 × E2 and consider the structure of CH0(X)/pn. Let A0(X) be
the subgroup of CH0(X) generated by the 0-cycles of degree 0 and T (X) the
kernel of the Albanese map A0(X)→ X(K) (since the variety X is abelian,
the Albanese variety of X is identified with X). For any abelian variety X,



Zero-cycles on products of elliptic curves over p-adic fields 211

since the degree map CH0(X)→ Z and the Albanese map A0(X)→ X(K)
are surjective, we have

CH0(X)/T (X) ' Z⊕X(K).

By Mattuck [Mat55, Theorem 7],

X(K) ' Z⊕2[K:Qp]
p ⊕ (torsion).

Since X(K) contains the pn-torsion points of both E1 and E2, we have

CH0(X)/pn ' (Z/pn)⊕(2d+5) ⊕ T (X)/pn,

where d is the degree of K/Qp. Therefore we see that Theorem 1.1 and
Corollary 1.3 are equivalent.

We will study the structure of T (X)/pn. For that, we consider the cycle
map

cl : T (X)/pn → H4
ét(X,µ

⊗2
pn ).(4.1)

When E1 and E2 have the same reduction type as in Theorem 1.1(1), (2),
Raskind and Spiess [RS00, Remark 4.5.8(b)] showed that the cycle map is
injective under the assumption that the pn-torsion points of E1 and E2 are
K-rational. Furthermore by the argument similar to the proof of [Yam05,
Theorem 4.3], the image of T (X)/pn under the cycle map is isomorphic to
the image of the composition⊕

K′/K

E1(K ′)⊗ E2(K ′)
δn
1−→
⊕
K′/K

H1(K ′, E1[pn])⊗H1(K ′, E2[pn])(4.2)

cup−−→
⊕
K′/K

H2(K ′, E1[pn]⊗ E2[pn]) N−→ H2(K,E1[pn]⊗ E2[pn]),

where K ′ runs through all finite extensions of K, δn1 is the connecting ho-
momorphism, and N is the norm map. For each finite extension K ′/K, by
[Ser79, Chap. XIV, Proposition 5] and µpn ⊂ K ′ we have the following
commutative diagram:

H1(K ′, E1[pn])⊗H1(K ′, E2[pn])
cup−−−−→ H2(K ′, E1[pn]⊗ E2[pn])y' y'

((K ′)×/pn)⊕2 ⊗ ((K ′)×/pn)⊕2
( , )⊕4

pn

−−−−→ µ⊕4
pn

where the lower horizontal map is the direct sum of four Hilbert symbols.
Thus the study of T (X)/pn boils down to the calculation of the image of
the composition

E1(K ′)⊗ E2(K ′) δn

−→ ((K ′)×/pn)⊕2 ⊗ ((K ′)×/pn)⊕2
( , )⊕4

pn

−−−−→ µ⊕4
pn(4.3)

for each finite extension K ′/K.
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Theorem 4.1. Let E1, E2 be elliptic curves defined over K. Assume that
their pn-torsion points are K-rational. Put X = E1 × E2. Then T (X)/pn

has the following structure:

(1) If both E1 and E2 have ordinary good reduction over K, then

T (X)/pn ' Z/pn.

(2) If one of E1, E2 has split multiplicative reduction over K and the
other has ordinary good reduction over K, then

T (X)/pn ' (Z/pn)⊕2.

Proof. (1) For each finite extension K ′/K, by Proposition 3.1 the im-
age of (4.3) is isomorphic to the direct sum of the following four images:
(U (0)

K′,n, U
(0)
K′,n)pn , (U (0)

K′,n, A)pn , (A,U (0)
K′,n)pn and (A,A)pn , where A is the

annihilator of U (0)
K′,n in the pairing (2.1). By Proposition 2.5(3), we have

(U (0)
K′,n, U

(0)
K′,n)pn = µpn . By the definition of A, we have

(U (0)
K′,n, A)pn = (A,U (0)

K′,n)pn = (A,A)pn = 1.

These images are independent of the finite extension K ′/K. Therefore
T (X)/pn is isomorphic to Z/pn by (4.2) and the injectivity of the cycle
map (4.1).

(2) For each finite extensionK ′/K, the image of (4.3) is isomorphic to the
direct sum of the following four images: ((K ′)×/pn, U (0)

K′,n)pn , ((K ′)×/pn, A)pn ,

(1, U (0)
K′,n)pn and (1, A)pn by (3.3) and Proposition 3.1. By Proposition

2.5(1), we have ((K ′)×/pn, U (0)
K′,n)pn = µpn . Since the group A is cyclic

of order pn and the Hilbert symbol is a nondegenerate pairing, we have
((K ′)×/pn, A)pn = µpn . Hence T (X)/pn ' (Z/pn)⊕2 by an argument similar
to (1).

When an elliptic curve E has supersingular good reduction over K, we
have not succeeded in calculating the image of δn yet. It is also not clear
whether the cycle map is injective in this case. However, when n = 1, the im-
age was calculated by Kawachi (Remark 3.2(3)). Thus we have the following
result.

Theorem 4.2. Let E1, E2 be elliptic curves defined over K and assume
that their p-torsion points are K-rational. Put X = E1 × E2. Then:

(1) If one of E1, E2 has split multiplicative reduction over K and the
other has supersingular good reduction over K, then the image of
T (X)/p under the cycle map is isomorphic to (Z/p)⊕2.
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(2) If one of E1, E2 has ordinary good reduction over K and the other
has supersingular good reduction over K, then the image of T (X)/p
under the cycle map is isomorphic to (Z/p)⊕2.

(3) If both E1 and E2 have supersingular good reduction over K, then
the image of T (X)/p under the cycle map is isomorphic to

(Z/p)⊕2 if t1 6= t2 and t1 + t2 6=
e

p− 1
,

Z/p if t1 = t2 6=
e

2(p− 1)
or
[
t1 6= t2 and t1 + t2 =

e

p− 1

]
,

0 if t1 = t2 =
e

2(p− 1)
,

where e is the ramification index of K/Qp, and t1 and t2 are the
respective invariants of E1 and E2 defined in (3.4).

Proof. Since the proofs of (1), (2) and (3) are similar, we shall prove
only (1). We argue as in the proof of Theorem 4.1. By Remark 3.2(1), (3), it is
sufficient to calculate the four images (K×/p, U (1−pt+c1)

K,1 )p, (K×/p, U (1+pt)
K,1 )p,

(1, U (1−pt+c1)
K,1 )p, and (1, U (1+pt)

K,1 )p. Since 1 ≤ t < e/(p − 1), we have

(K×/p, U (1−pt+c1)
K,1 )p = (K×/p, U (1+pt)

K,1 )p = µp by Proposition 2.5(1). Hence
the image of T (X)/p under the cycle map is isomorphic to (Z/p)⊕2.
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