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BINGYONG XIE (Shanghai)

1. Introduction. Let R be a complete discrete valuation ring with
mixed characteristic, 7 a uniformizer of R, S the m-adic formal scheme
Spf(R), k the residue field of R, and K the field of fractions of R. Let X
be an algebraic scheme proper and strictly semi-stable over Spec(R) so that
the generic fiber X of X is smooth. Let X be the special fiber of X, X the
m-adic formal scheme associated to X, and Xk the Raynaud generic fiber
of X, which is a rigid space.

It is well known that the algebraic de Rham cohomology of Xk is natu-
rally isomorphic to the analytic de Rham cohomology of Xx. The purpose
of this paper is to compare the (analytic) de Rham cohomology of Xk and
the rigid cohomology of Xj.

Let Y; (1 < i < n) be all irreducible components of X. For any nonempty
subset I of {1,...,n}, put Y7 = (,c;Y; and Ur = YI\UI,QIY]/. For an
integer i > 0, put Y = Ujrj=i Yr- Let Hjj, and H ;. denote the rigid co-

homology and the rigid cohomology with proper support respectively. Then
Hr o (YO\Y i+ = @ H* . (Ur)

c,rig c,rig
\I|=i
and we have the long exact sequence
RN Hcrn,rig(y(i)\y(i+1)) N Hrf?g(y(i)) N Hg}g(Y(i“)) I

Let 77 (resp. 7;) denote the inclusion map
YI\Urly = [Yi[x (resp. ]Y(Hl)[x - ]Y(i) [x):

where |-[,’s denote the tubes in Xx. Let §2; ;. , and {2, , be the total
complexes of the bicomplexes

Oyl = v x 2 Dy, x = Yy e, k
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respectively. Then we have
H (YO, Qix) = @ H (Wilxs 2 )-
=
(See Lemma(l]) The triangle

. . . +1
Qc,i;x - *Q]y(i) " - 7i*Q]y(i+1)[X —

in DT (JY®[,) induces the long exact sequence
(1) = HM(Y Oy, 2 0) = HER (Y V) = HRQY D [p) — -
The main result of this paper is the following theorem.

THEOREM 1. If I is a subset of {1,...,n} such that |I| > 2, then there
is a spectral sequence converging to H*(|Y7[y, Qc I.X) with

B3 = HE i, (Ur/K) @ N'(Vp),
where V] is a K-vector space of dimension |I| — 1 defined in §3
If |[I| = 1, then it is well known that

(12) crlg(UI/K) H*(]YI[)OQ(':J;X)‘
Put
Xar(Xk) = Y (=)™ dimg Hif (X /K),
m>0
Xeig(Xs) i= Y (=1)" dimg H (X, /K).
m>0

As an application of Theorem [l we obtain a description of xrig(Xs) —
Xdr(Xx) by the geometry of X.

PRrRoOPOSITION 1. We have

(13) Xrig(X ) XdR XK Z Xc UI
|1]>2

= > (=M1 = 1)(AYL.AYY),

[11=2

where x.(Ur) is the rigid Euler—Poincaré characteristic with proper support

of Ur and (AY7.AY7) is the self-intersection number of Y.

This paper is organized as follows. In §2] we recall the theory of rigid
cohomology and provide some basic facts on de Rham cohomology. In
we present a result on relative de Rham complexes. Then in we prove
Theorem [1] by using the result of §3| and a generalization of Grothendieck’s
spectral sequence given in Finally we prove Proposition
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NoOTATION. Throughout this paper, a triangle of the form
N

A—>B—>C+—1>.

A

B
is always denoted by

2. Rigid cohomology and de Rham cohomology

2.1. Rigid cohomology. We recall some basic facts about rigid coho-
mology developed by Berthelot.

Let X be a proper k-variety, U an open subset of X, and Z = X\U.
Assume that X admits a closed immersion into a smooth m-adic formal
scheme P over R. As in [4, [5], we define tubes | X[, |U[p and ]Z[, in
P, which are also denoted by |X|[, |U[ and |Z][ respectively if there is no
confusion. We call an admissible open subset V' C | X[ a strict neighborhood
of |JU[ in | X[ if the covering of | X[ by V and |Z[ is admissible. For any sheaf
& on | X[, put

]]U[@“’ = hm_jv*jv &

where V' runs through all strict neighborhoods of |U[ in | X[ and jy is the

immersion V' — |X[. Then H} (U/K) is defined by

" 4 e
rlg U/K) H (]XLJ]U[“Q}X[/K)

E. Grosse-Klonne [6] showed that Hy,(U/K) is a finite-dimensional K-
vector space.

There also exists rigid cohomology with proper support defined in [3] as
follows. Let o denote the inclusion map |Z[ < ] X[ and let 2. vy i denote
the total complex of the bicomplex

Oxyr = Q75

The rigid cohomology H U/K) with proper support is defined by

c rlg(

HZig(U/K) := H* (X[, 02, /) = H" (X, Rsp 821 5/)

where sp denotes the specialization map | X[ — X. If U is proper, then the
canonical map

Heig(U/K) — Hye (U/K)

rig
is an isomorphism. One has a long exact sequence
(2.1) v = He i (U/K) — Hiyy(X/K) — Hjy (Z/K) —
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In general, X cannot always be embedded into a smooth formal scheme.
In this case one can define the above cohomologies via the technique of
“diagrams of topos”. We recall the definition of the rigid cohomology with
proper support.

We can always find an open covering {7, } of X and for each v a closed
imbedding 7}, — P, in a smooth 7-adic formal scheme. For a set of indices
vg, ..., Vy, there is a closed imbedding

Togev =Ty N N1y, = Pugeoy, = Puy X5+ X5 Py,

From now on, we will always denote xg by x for simplicity.

The T),...,,,’s form a diagram of topos T. endowed with Zariski topology.
There is a natural map € : T. — Xyza,. Let sp denote specialization maps,
and ¢ denote the closed immersions

ZNTyoer,, = Togen, -

The bicomplexes of sheaves

SPA ST, K 7 SP g, /K

S —

form a bicomplex of sheaves on T.. The total complex of this bicomplex is
denoted by Rsp, Qé]U[P /K The rigid cohomology with proper support of U

is defined by

c,rig
2.2. De Rham cohomology. We keep using the notation of

LeMMA 1. We have

(2.2) H (Y [y, 2520) = @ B (Vilx, 2 2)-
\I|=i

Proof. Note that all of |Y7[, with |I| = ¢ form an admissible covering
of JY ([ ,.. Since the restriction of the complex $2, ;.2 to Y@+, is quasi-
isomorphic to zero, for any distinct Iy, ..., I;, j > 2, with |[1| =--- =|[;| =1,
and any k > 0, we have

H (Y, [p 00 Y1l $205.2) = 0.

From this and the theory of Cech cohomology we obtain

H* (Y9, 2 ix) = @ H* Y[y, £2050) = @ H*(IY1[xs 20 1.20)

I|=i \I|=i

as desired. =

Assume that Y7 can be embedded into a smooth m-adic formal scheme P.
Put @ = X xP. The composition of Ay, : Y7 — Yy x ¥ and Yy xY; — X xP
is a closed immersion Y7 «— O.
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THEOREM 2 ([B, Theorem 1.4]). Let Y be a k-scheme of finite type,
i:Y — X and i Y — Q two closed immersions into m-adic formal
schemes, and u : @ — X a morphism smooth in a neighborhood of Y such
that © = i’ o w. If the Raynaud generic fibers of X and Q are smooth, then
the canonical homomorphism

(2:3) Oyt = RSy, i
is an tsomorphism.

Note that the assumption of this theorem is a little different from that
of [5], but their proofs are the same.
Theorem [l tells us that

Hig([Yi[x/K) = Hir([Y1lo/K).
Let ay denote the inclusion map
YI\Urlg = [Y¥ilo,
and §2; ;.o the total complex of the bicomplex

Oyilg/x = OB 8ypuig /K

ProrosiTioN 2. We have
(2-4) H*(]YI[){’ Qé,];x) = H*(]YI[Q’ 'Qc':,I;Q)'

Proof. Let Z =Y;\U;. By Theorem [2]

Ovilpsie = Ry, e and - gy = Rura g1 e
are isomorphisms. As v and aj are quasi-Stein, we have
= RynRusc 21 i = RV 41, 110 = 101, ¢

Hence we get an isomorphism Q('; rx — Ruk. _Qé’ I, as desired. =

We generalize the above proposition to the case that Y7 need not have
an embedding in a smooth m-adic formal scheme.

Let {7, } be an open covering of Y7 such that for each v there exists a
closed imbedding 7T, — P, in a smooth m-adic formal scheme. For a set of
indices vy, ..., vy, put

Tyorn, =Ty -+~ NT,.

The T,,...,,,’s form a diagram of Zariski topos 7. and there is a natural map
e:T. — Y]. Put

Pooovy :=Puy X - X Py, Qupern, i =X X Pygony,
Embed T,,...,,, into Py,...,, and Q,...,,, naturally.
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Let a denote the inclusion maps
JYI\UD) N Ty |

The bicomplexes of sheaves

= T

Quomun Ql/oml/n :

vy inlong.mn /K O 0NN Ty nlo, o 1

form a bicomplex of sheaves on the diagram of rigid spaces ]TVO“'Vn[QVO...u .

The total complex of this bicomplex is denoted by Qé} .o
LEMMA 2. The natural map
Rsp, Qé,I;X — Re,Rsp, Qé,I,Q
s an isomorphism.

Proof. From the proof of Proposition 2| we see that Rsp, (2. ;o is iso-
morphic to €*Rsp, (2] T On the other hand, cohomological descent holds
for € ([2]), so

Re.Rsp, (2 1.0 = Re.€'Rsp, €2 1.x = Rsp, 2 1.,
as expected. m
COROLLARY 1. We have
H*(IYily, 92 1.0) = H* (Y1, Re.Rsp, 82 1.0)-

3. Relative differentials. Let X, X, X', Y; and Y7 be as in Here,
we do not assume that X is proper but assume that X, can be embedded
into a smooth m-adic formal scheme P. Put Q@ = X x P. Let p; and py be
the projections from Qg to Xk and Pg respectively.

For every irreducible component Y; of X, we associate with Y} a section
sy, of H! (QQ /P ) in For any nonempty subset I of {1,...,n}, let
Vi be the K-vector space of dimension |I| generated by {sy, : j € I}, and
V] the quotient space of Vi modulo the subspace K ) je1 8Y;-

Let ay and B; be the inclusion maps

ar JY\Urlg = [Yilg and  Br: [YI\Urlp < [Yi[p.
PROPOSITION 3. If |I| > 2, then for any integer i > 0 we have
31 (O, ®x N(V) = BB Oy, @k N'(VP))
= (R'p2u Wy, i, — Bp2e(0raar Dy, pyi,)
in the deriwed category DT (|Y1[p).
The proof will be given in §3.3]
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3.1. Definition of sy,. Let Y =Y be an irreducible component of Xj.
If f is a local equation defining Y in X', then f divides 7. Thus f is invertible
in the structure sheaf of Xk and 4 is a local section of Q}YK JK We use d;
to denote the differential of Qg relative to Pg. Then
o _ doif)
Yfopif
which is denoted as % for simplicity. In general, % depends on the choice
of f.
PROPOSITION 4. Let Xy and X3 be open subsets of X. Let f € I'(X1, Ox)

and g € I'(Xa, Ox) be regqular elements defining Y N Xy and Y N Xy respec-
tively. Then on the tube of X1s N Xog in Qi , we have

d d
(3.2) af =29 hodulo d1Og,.

f g

This proposition says that the image of 7 in H (QQK IPx

) does not
depend on the choice of f, which is denoted by sy p.

Let i1 : X5 — P71 and iy : X — Po be closed immersions into smooth
m-adic formal schemes, and u a morphism Py — P; such that i; = u o 9.
Then u*syp, = sy,p,. In other words, {syp}p’s form a compatible system.
We will use sy to denote sy p.

Let Q' be the completion of @ = X x P along X,. In general, Q' is
not a m-adic formal scheme, but it can also be associated with a rigid space

"¢ as its generic fiber. Locally we can write Q" = Spf(A) with the ideal of
definition generated by fi,..., fr € A. Put

(3.3) B, = ATy,....T,.)/(f{" —nTy,..., [/ —«T,).
If m’ > m, then there is an inclusion map
Spm(B;, ®r K) — Spm(B,y ®r K)

defined by the canonical homomorphism B, — B,,. Berthelot [4] defined
"< to be the union of Spm(B,, ®r K)’s and showed that Q% is just the
tube of X in X X Pgk.

Proof of Proposition [ We may assume that X; = X, = X. Since the
question is local, it suffices to consider the case of X and P being affine, say
X = Spf(A;) and P = Spf(Aa2).

Let ¢ : Ay — Ay be the homomorphism defining the embedding X < P.
Let Z be the kernel of the homomorphism

Ay ®Rr Ag — A
Let fi1,..., fr be generators of Z. If A is the Z-adic completion of A1 ®r Ao

and By,’s are the R-algebras defined by (3.3), then Q" = Spf(A4) and Q) is
the union of Spm(B,, ®r K)’s.
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It remains to find some h,, € B, ®r K for every m such that

af dg_ gy
g

f

As ¢ is surjective, there is some u € Ay such that ¢(u) is equal to the
reduction of f~1¢g. Let v := ¢~ ' fu € A. Then

df _dif  die _dig v
! f u g v
As v € 14T, the series
“+oo

o = log(v) = 3 (1)1 =

X 1
=1

belongs to B,, ®r K. Thus % = d1h,, as expected. =

3.2. A lemma. Let m < r be positive integers. Let D(0,1)" be the
affinoid rigid space Spm(K (T1,...,T;)), D(0,17)" the subdomain of D(0, 1)"
defined by

Ty <1, ..., |Ty]| <1,
and D the subdomain defined by
T <1, ..., |T;| <1, 7w<|Ty---Tyl

For a rigid space Z, let (2}, , 17 denote the relative de Rham complex
of D x Z over Z, and V the subspace of I'(D x Z, Q}DXz/Z) defined as

dTy dT,,
Vv=kTle. orZm
A O T

LEMMA 3. In the above notation, let po denote the projection D X Z — Z.
Then

(3.4) Ripo$2 772 = Oz ®x N'(V).

Proof. Tt suffices to show that for any affinoid open subset W = Spm(B)
of Z,

H'(D x W, Cpyww) =B ®Kk A'(V).
As D x W is quasi-Stein, H'(D x W, beW/W) is the ith cohomology of the
complex I'(D x W, beW/W)' For any 0 < ¢ < r put
I = T(D x W, 2 w)-
Then I = I @ \"(V), where
V=Kdl\ & - ® KdT,.
Let Z° C I'* be the space of closed i-forms.
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A formal series
t1 t
E bt17'~~7t'rTl T Trr

t1,..,tm
tm+120,...,6r >0

with coefficients in B belongs to I'° if and only if for any given € > 0 and
0 < p < 1 almost all of the following relations hold:

frtetie - o0 if min(ty, ..., %) >0,

if min(¢y,...,t,) =N <0,

|bt1,...,tr\B s p

(35) 1E1+---thr7(m+1)N|7_‘_|N<6

|bt1,...7tT|B P

where | - |p is a norm on B.
Every element w in I can be written as a formal sum of monomials
by T7dTy = by [T} -+ T dTy, A --- A dTy,,
where by, € B, v = (t1,...,t,) and I = {l1,...,;} C {1,...,r} with
l1 <--- <l;. We associate with any monomial b, ;T7d1; a number
ns(by 1 T7dTy) :=#{lel:t #-1}U{l¢1:1<1<r t;#0}),
which satisfies
0 S n(;(b%]TVdTI) S r.

We call this number the §-number of b, ;T7dTy. Let sz be the subspace of I'*
consisting of i- forms which are formal sums of monomials with é-number j.
Then I = @', Put Z; = Z' N T}. Note that It =27, =Beg N'(V).

Jj=0 ]
i+1 _
If(.uefj?,thendwEFJZ .ThusZ’ @J —0Zj-
Put
1

S(TVdTy) = —1)rt T, -T7
( T) Z'( ) 1

1<u<i "

tlu;ﬁ—l

x dTy, A--- AdTy, ATy, A---AdTj,.

By (3.5) we can extend & to a continuous B-linear map 6 : I'* — I'"~1. Tt is
easy to check that, if w € I'}, then

(dd + dd)w = jw.
In other words, we have }_, Z? C dI'=1. Since Z NdI'"*~1 = 0, we have
ZHdri ' = zi = Bog N'(V). =

3.3. Proof of Proposition Let I be a nonempty subset of {1,...,n},

and I; a subset of I such that |I;| = |I| —1. As Ripa, “Q}.YI[Q/]YI 0> is the sheaf

associated to the presheaf

Wi Hi(pz_l(w)’ Q]‘YI[Q/]YI[P%
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where W’s are admissible open subsets of |Y7[p, there is a canonical map

(3.6) Ovil, ©x N (Vi) = R'p2y, vy,
PrROPOSITION 5. Under the above map, we have
(3.7) Ouilp @k N (Vi) = B'p2e iy, -

PROPOSITION 6. If |I| > 2, then the homomorphism of complexes

(3'8) <ﬁ]YI[7D QK /\i(Vh) - /Bl*ﬂl_lﬁ]YI['p QK /\l(vh))
= (B'p2: iy v, — Bip2elenal iy, pvip)
18 a quasi-isomorphism.

Proposition [3] follows immediately from Proposition [6]
For the proofs of Propositions [5| and |§|, we assume that [ = {1,...,m},
where 1 < m < n. The questions are local, so we may assume that

e X and P are affine, say X = Spf(A;) and P = Spf(A2),

e there is an étale morphism 6 : X — Ay = Spf(A4p) of m-adic formal
schemes over R, where Ay = R(T1,...,Tg)/(T1--- T4 — w) with m <
¢ < min(d, n),

e V; (1 <1i<q)isdefined by ¢(T;), where ¢ : Ay — A; is the R-algebra
homomorphism defining 6.

Here a morphism 6 of 7-adic formal schemes is called étale if @ R/7'R
(1 > 1) are all étale (cf. [1]).

Proof of Proposition [ The composition of Y7 — X x P and 6 x idp
is an inclusion map Y; — Xy x P. As 0 x idp is étale, the tube of Y7 in
Qi = Xk X Pk is isomorphic to the tube of Y7 in Xyx x Pk, i.e.,

Yilg = Vilx,up-

Let Xys be the special fiber of Ay and put Z = Xy x Y7. Consider the
diagram

Z*>X()><'P
v, 4y, P

where the square is cartesian. Let ¢; (m + 1 < i < d) be elements of A
such that ¢(t;) is equal to ¢(T;) mod 7, where ¢ : Ay — Ajj is the algebra
homomorphism associated to the embedding X; < P. Then the morphism
Y7 — Z in the above diagram is a closed immersion defined by the images
of Th,..., Tiny Tn1 — tmt1s -+, Ty — ta in I'(Z,0). Thus |Yi[y, . p is the
intersection of ]Z[XoxP = Aok x |Y7[p and the subdomain of Xpx x Pk
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defined by
Th| <1,...,|Tn| <1, |Tmg1 —tmsa| <1,..., Ty —ta] < 1.
Consider the homomorphism
R(T{,....,T})) — I'(Xy x P, 0),
Ty, ..., T — T, ..., T, Tons1 — tmss - - Ty — ta,

which defines a morphism Xy x P — A% where A? is the 7m-adic formal
scheme Spf(R(T7,...,T})). Combining this morphism with the projection
Xy X P — P we obtain a closed immersion

(3.9) Xo x P — A% x P,
which is defined by
T1 T Ty + tmsr) - (T +tg) —
Let D be the subdomain of D(0,1)™ ! = Spm(K(TY,..., T/ _;)) defined by
71 <1, ..., [T, <1 and |m|<|T}---T) 4]
Then induces an inclusion map
L Y[ 0p <= D x D(0,17)7™ x Y7 [
and an isomorphism
(3.10) Ui xyp — D x D(0,17)™ x Uy [p.
Now the validity of Proposition [f|is ensured by Lemma [3] =
The proof of Proposition [6] needs the following lemma.
LEMMA 4. The map 18 an injection.

Proof. Let W be an affinoid open subset of |Y;[5. By Proposition [5| we
see that, if I C I' C {1,...,n}, then the map

LW N Uplp, Gy, @x N' (Vi) — LW 0 Urlp, R'p2 Dy, v )
is injective. On the other hand, the map
(W, 0y,,) — [[ TV 10U 1p, Oy,
21
is also injective. Hence (3.6)) is an injection. m

Proof of Proposition [0 We keep the notation of the proof of Proposi-
tion [Bl

We identify |Y7[y, .p With a subset of D x D(0, 17)4=m x Y [p via t. Let
g2 be the projection

g2 D xD(0,17)"" x |Yi[p — |¥7[p,



256 B. Y. Xie

and o the inclusion map

Let Qéy]YI[Q Yl and “Q;,q;l W) Vil denote the total complexes of the
bicomplexes
. —1 -
DvilgMile = 11 Dyilg vty

and

. I =1

vty — 0T L gy il

respectively.

LEMMA 5. |Y7[y, «p and @ ()Y \Uilp) form an admissible covering of
D x D(0,17)T™ x |Y;[p.

The following proof is due to the referee.

Proof. The isomorphism ensures that |Y7[y, . p and gy YY\Uilp)
indeed form a covering of D x D(0,1)%~™ x]Y; [p- To prove that the covering
is admissible, we may assume that Xy and P are affine, since the question
is local.

Write Z; = Y;\U; and M = D x D(0,17)4"™ x ]Y;[5. By the definition
of an admissible covering, it suffices to prove that, for any affinoid rigid
analytic space W and any morphism of rigid spaces v : W — M, the
covering {u~!(]Y; [x,xP)s u~ (g5 (1Z1[p))} can be refined by a finite covering
by affinoid open subspaces. Denote by the same letters the pullbacks by u
of functions on M. Note that, as a closed subscheme of Y7, Z; is defined by
the restriction of ¢, 41 - - - t4 to Y7. Hence | Z[, is the open subspace of |Y;[5
defined by the condition |t,, 41 ---t4| < 1. For any XA < 1, let V) C M be the
open subset defined by [tp41 -+ t4] < A. For any n < 1, let [Y]] 4, «p, be the
closed tube of radius n for Y7 in Xy x P, viewed via ¢ as a subspace of M;
[Y7] x,xp, 18 the open subset of D x D(0, 17)dmx [Y1]p,, described by the
inequalities:

(3.11) IT/|<n fori<m-—1landm+1<i<d,

(3.12) 77 Ty (Tpgy + tng1) -+ (T + 1) > |7l /.

If some integral powers of A and n belong to the multiplicative group of
absolute values of K>, then u_l([Yf]XoxP,n) and u~1(V)) are affinoid open
subsets of W. So it suffices to check that their union is equal to W for A, n
close enough to 1.

Since W is affinoid, the maximum modulus principle implies that there
exists p < 1 such that the inequalities

IT/|<p fori<m-landm+1<i<d
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and
7L Thual = Iml/p
are satisfied on W. Let A be such that p < A < 1. Let x € W be a point
which is not in w=1(Vy). Then |(tms1---ty)(z)| > A. As [t;(z)| < 1 for all 4,
it follows that |t;(z)] > A for m + 1 < i < ¢. Therefore |(T] + t;)(z)| =
|ti(z)| > X for m+ 1 <i < g. We obtain
T ... T, (T T 7] ya=m
[Ty T (Tpa + tmgn) -+ (T + 1)) ()] > p :

We can choose A close enough to 1 such that p < A9 and take n =

p/AT"™ > p. Then inequalities (3.11) and (3.12) are satisfied at x, and it
follows that W = u_l([YﬂXoxpm) Uu (V). =

LEMMA 6. We have

R'p2: 82 jvi o il = B @2, vy vl

Proof. Let W be an admissible open subset of |Y7[,. By Lemma
Pyt (W) =g *(W)N Y[y, xp and g5 "(W N ]Y7\Uq[p) form an admissible

covering of ¢, ' (W). Since the restriction of 2" _ to gy L(W N

gy ' (V1lp)/1VTlp
1Y1\Ur[p) is quasi-isomorphic to zero, we have

i —1 . _ i/, —1 .
gz W), 2 s avipymaty) = 702 (W) 920 gy v,

= H'(p3 (W), 2y i)
as expected. m

Since o} and f§; are quasi-Stein, we have
_ pi / .
) = Biaze © L) v v ) Ui
=R (ﬂ]* o qz*)Ql;gl(]YI\UI[p)/]YI\UI[p
= B Olyp\v;1, ®x N'(Vi,)  (by Lemma )
= BrBr Oy, @k N (V).

Here, the projection g, *(]Y7\Us[p) — ]Y7\Us[p is also denoted by g2. Again
by Lemma [3] we have

i / =1 -
qu*(Oq*Oéf Qq,;l(]yl[,,)/]Yz[p

Rl v ity = Oile @5 N (V).

Thus from the distinguished triangles

. . -1 +1
Cevilo/Vily — il il — OB Dy vil, —

and

— . +1
— afaf o, —

L vilp)vile — e Vil vilp 45 (Yilp)/1Yilp
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we get a commutative diagram of exact sequences

R, o iviimmvite = Omile ©x N'(Vir) — Br-B7 " Oy, @K N'(Vin)

: |

12 . 12 . 1 -1
B2 vy ity ——> B2y, 10 vatyy —— Bip2e(anar Dy pivity,)

The map (3.8)) is just given by the right square of this diagram.
Let ker; and cok; be the kernel and cokernel of

@YI[p Or /\Z(Vh) - /81’>kﬁ1_1ﬁ]y[[73 K /\i(le),

and ker; and cok) the kernel and cokernel of
Ry, (vt = BP2(@nar By i)

The map induces two maps ker; — ker, and cok; — cok}. From the
above commutative diagram we see that ker; — ker} is surjective. By Lem-
ma [l u is injective, and so is ker; — ker}. Thus ker; — ker} is an isomor-
phism. From the commutative diagram

i+1 .

o

i+1 .
0 COk; R pos QC,]YI[Q/}YI [ ker;+1 —0
we see that cok; — cok] is also an isomorphism. Hence (3.8)) is a quasi-
isomorphism. =

4. The proof of Theorem

4.1. A generalization of Grothendieck’s spectral sequence. For
the proof of Theorem [1} we need the following lemma.

LEMMA 7. Let Cy, Cy and Cs be abelian categories with enough injective
objects, F : C1 — Cy and G : Co — Cs additive functors, M a first
quadrant bicomplex in Cq, and K the total complex of M. Suppose that F
sends injective objects of C1 to G-acyclic objects. Then we have two spectral
sequences

(4.1) 'qu = RpG(R?IF(M")) = Rp+q(G o K"
and
(4.2) ”qu = RpG(R?F(M")) = Rp+q(G o FK".

If M = 0 unless j = 0, then (4.2)) is just Grothendieck’s spectral se-
quence.

Proof. We shall only show (4.1]). The proof of (4.2)) is similar.
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Let N be a Cartan—FEilenberg resolution of first type of M. (We mean
that N is a triple complex of injective objects in Cy such that if ¢ < 0,
j <0orl<0then N9 =0, and for every i the bicomplexes N***, Bi(N""),
Zi{(N") and Hi(N™") are injective resolutions of M, BY(M™), Z{(M")
and Hj(M ) respectively. Cartan-Eilenberg resolutions of second type are
defined similarly.) Put

My = FN",
r—l@j
and let K| be the total complex of M;". It is clear that
R F(M”) = Hj; (M.
Let N; be a Cartan-Eilenberg resolution of second type of M;", and My
the bicomplex defined by

My = @ Ny
r4+s=1
Then H},(My) is a complex of injective objects, quasi-isomorphic to
HY,(M;). Thus
RPG(R} F(M™)) = RPG(H[ F(My)) = HP(GH][(M5)).
As MY is a complex such that Z9(ML"), BY(MY") and HY(MY") are all
injective, we see that
GH?I(Mé.) = H}II(GMQ')-
Hence
RPG(R}F(M")) = HP(Hf (GM5)).
As F sends injective objects of C1 to G-acyclic objects, we have
RPI(G o F)K' = HPYIG(K;) = HPMG(KS),

where K is the total complex of M. (Notice that K; and K are complexes
of injective objects, quasi-isomorphic to each other.) As a consequence, the
spectral sequence comes from the first spectral sequence for the bicom-
plex G(My'). m

4.2. Proofs of Theorem [1| and Proposition Choose an open
covering {U, } of X, such that U, admits a closed immersion into a smooth
m-adic formal scheme P,. Put T, = Y; N U,. In the following, the notation
{v} means a finite set of indices vy, ..., ,. Put

T{u} :Tyoﬁ-“ﬂTl,n.

As before, we use T. to denote the diagram of Zariski topos formed by
Too-v,’S.

Put Pry = Py X -+ X Py, and Qpy = X X Py,y. Then there are
closed immersions 7,y — Py,y and T,y — Q). We use [T, [p (resp.
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|T1y1g) to denote the tube [Ty, [P{ " (resp. |Ty,y [Q{ }) Then [T,y [y’s (vesp.
1Tinlp's, [Ty g's) form a diagram of rigid spaces, which is denoted as |T.[
(resp. |T.[p, ]T[ ). Let p1 and py denote the projections |T.[ — |T.[y and
T.[g — T, [P respectlvely

Put

ijo._ —1 yi —1j

2807= Oryq ®(pflﬁ]T{u}[X®pglﬁ]T{y}[P) (P17, /K OK Pa “Q]T{,,}[P/K)

— 1 J

=P Lr 10 /K Oort ey P lo/1T0

_ i —1J

- “Q]T{u}[g/]T{u}[p (X)p{lﬁ]T{u}[7> Py Q}T{u}[p/K'
Then _Qf{'} is a bicomplex with the horizontal differentials given by the
differentials of (2;

1Ty /1Ty e
ferentials of Q]T{,,}[Q/]T{ e

and the vertical differentials given by the dif-

up to sign. For any fixed j the complex 27 is
just

) 1y
Q]T{u}[g/]T{u}[p ®p51ﬁ]T{u}[p Py Q}T{V}[p/K'

Let (QC 580 })wl be the tricomplex

24y = anar 2,
where aj is the inclusion map [Ty, N (Y7\Ur)lg — |T7ylo- Note that

Qijll,{y} =0 unless [ =0, 1. Let M{V} be the bicomplex defined by

MY

{u} - @ “QCI{V}

r4+s=j
Thus we get a bicomplex M™ on |T.[5. The total complex of M™ is just
Qé,I;Q‘
From Lemma [7], Theorem [I] can be deduced as follows.

Proof of Theorem [1l Let Cy, C2 and C3 be respectively the category of
abelian sheaves on |T.[y, the category of abelian sheaves on |T.[, and the
category of abelian groups. Put F' = pa, and G = I' o €, o spp,, where spp
is the specialization map |T.[, — T., € is the natural map 7. — Y7 and
I' =1'(Y7, - ). Then Go F = I 0 €, 0spg,, where spg is the specialization
map |T.[g — T.. Let M be as above. By Proposition [3| we have

RIF(M”) = Rip2.(M7) = 2, 1.0 ®x N'(V]).
Hence
RPGRIF(M™) = HY(Y, Re.Rspp, 2, 1:p) @xc N(V])
= H} ., (Ur/K) @x N (V).

c,rig
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On the other hand, Corollary [I] implies that
RPH(G o F)2. 0= = HPT(Y], Re.Rspo. {2 1.0) = HPTU()Y] [, Qr.x)-
Now Theorem [I] follows immediately from Lemma[7} =

Proof of Proposition[]l By Theorem [1] if || > 2, then

Z(—l)i dimpg Hi(]YI[Xv Qé,I;X)

i>0

= Y (=)PHdimg(HL, (Ur/K) @x N'(V]))
p>0,9>0

= Y (=)PHdimg HY,,, (Ur/K) dimg A7(V))
p>0,9>0

= (1) dimg HY . (Ur/K) > (=1)7dimg AY(V7).
p=>0 q>0

When |I] > 2,

> (=) dimg A(V7) =0,
q>0

> (~1) dimg H (| Yi[y, 25 1) = 0.

i>0

Combining this equality, (1.2]) and the equality
Xar(Xk) = Y (=1)! dimg Hip (X /K)

i>0
= Z Z ) dimg H* (]YI[X7Q(},1;X) (by (L.1) and Lemmal[1),
1]>1 >0
we get
Xar(Xx) = > > (=1) dimg H (Y7 [y, 2 1.2)
[I|=1i>0
_ZZ dlmKHrlg UI/K ZXC UI

17|=1i>0 17]=1

On the other hand, we have
Xrig(Xs) = Z XC(UI)'
PAIC{1,...,n}
Thus

(43) Xrig(X ) XdR XK Z Xc UI
[1]>2
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From the equality

Xrlg YI ZXC UJ
Jol

we get

Xe(Un) = Y (=) i (7).

J2I
By this equality and we see that

Xrig(Xs) = xar(Xi) = Y > (=) (v))

|1|>2 J2I

— Z |J|Xr1g (Y7) Z (=
|J]>2 1CJ,|1|>2

= Z |J| (IJ] - 1)Xr1g(YJ>
[J]>2

As the rigid cohomology is a Weil cohomology in the sense of Kleiman [7],
we have

Xrig(YJ) = (AYJAYJ)
So,
Xrig (Xs) — Xar(Xk) = Z DT = 1)(AY;.AY),
J|>2

as expected. =
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