Tate conjecture for twisted Siegel modular threefolds

by

CRISTIAN VIRDOL (Fukuoka)

1. Introduction. Let X be a smooth projective variety of dimension n defined over a number field F. For a prime number l, let $H^i_{\text{et}}(X, \bar{\mathbb{Q}}_l)$ be the l-adic cohomology of $\bar{X} = X \times_F \bar{\mathbb{Q}}$. For K a number field, we denote $\Gamma_K := \text{Gal}(\bar{\mathbb{Q}}/K)$. The Galois group Γ_F acts on $H^i_{\text{et}}(X, \bar{\mathbb{Q}}_l)$ by a representation $\rho_{i,l}$. For a finite extension E of F, the elements of $V^i(X, E) := (H^{2i}_{\text{et}}(X, \bar{\mathbb{Q}}_l)(i))^{\Gamma_E}$ are called *Tate classes* defined over E (here $H^{2i}_{\text{et}}(X, \bar{\mathbb{Q}}_l)(i)$ is the Tate twist, and $H^{2i}_{\text{et}}(X, \bar{\mathbb{Q}}_l) = \{0\}$ for i > 2n).

Let $U^{i}(X)$ be the \mathbb{Q} -linear space of algebraic subvarieties of X of codimension *i*. We have the *l*-adic cycle map

$$d_{i,l}: U^i(X) \otimes \overline{\mathbb{Q}}_l \to H^{2i}_{\text{et}}(X, \overline{\mathbb{Q}}_l)(i).$$

The cohomology classes in the image of this map are said to be *algebraic*.

For each finite extension E of F, we denote by $U^i(X, E)$ the subspace of $d_{i,l}(U^i(X) \otimes \overline{\mathbb{Q}}_l)$ left fixed by Γ_E . The first part of the Tate conjecture [TA] states that

$$U^i(X, E) = V^i(X, E),$$

i.e. each Tate class is algebraic.

The *L*-function $L^i(s, X_{/F})$ attached to the representation $\rho_{i,l}$ converges for $\operatorname{Re}(s) > 1 + i/2$. The second part of the Tate conjecture [TA] states that for each finite extension *E* of *F*, the *L*-function $L^{2i}(s, X_{/E})$ has a meromorphic continuation to the entire complex plane and the order of the pole at s = i + 1 is equal to

$$\dim_{\bar{\mathbb{O}}_l} U^i(X, E).$$

The first part of the Tate conjecture for Siegel modular threefold was proved by Weissauer in [W1] and [W2]. Also the second part of the Tate conjecture for Siegel modular threefolds was proved in [W1] and [W2], but only for solvable number fields.

²⁰¹⁰ Mathematics Subject Classification: 11F41, 11F80, 11R42, 11R80.

Key words and phrases: L-function, Tate conjecture, Siegel modular threefold.

Let $S_K := S_{G,K}$ be the Siegel modular threefold associated to $G = \operatorname{GSp}_4$ and to some open compact subgroup K of $G(\mathbb{A}_{\mathbb{Q},f})$, where $\mathbb{A}_{\mathbb{Q},f}$ is the finite part of the ring of adeles $\mathbb{A}_{\mathbb{Q}}$ of \mathbb{Q} . Then S_K is defined over \mathbb{Q} . We fix a rational prime p. In this paper we consider K of the form $K := K_p \times H$, where K_p is the set of elements of $G(\mathbb{Z}_p)$ that are congruent to 1 modulo p, and H is an open compact subgroup of $G(\mathbb{A}_{\mathbb{Q},p,f})$ where $\mathbb{A}_{\mathbb{Q},p,f}$ is the finite part of the ring of adeles $\mathbb{A}_{\mathbb{Q}}$ away from p. Then S_K is a quasi-projective variety defined over \mathbb{Q} .

The variety S_K has a natural action of $G(\mathbb{Z}/p\mathbb{Z})$ (see §2). For H sufficiently small this action is free. We fix such a small group H. Consider a continuous Galois representation $\phi : \Gamma_{\mathbb{Q}} \to G(\mathbb{Z}/p\mathbb{Z})$ and let S'_K be the variety defined over \mathbb{Q} obtained from S_K via twisting by ϕ composed with the natural action of $G(\mathbb{Z}/p\mathbb{Z})$ on S_K (see §2 for details).

The surfaces S_K and S'_K become isomorphic over \mathbb{Q} and by descent we deduce that the first part of the Tate conjecture for the surface S_K over a given number field k is true if and only if it is true for the surface S'_K over the field k. But as we said above, from [W1] and [W2] we know that the first part of the Tate conjecture holds for S_K , and hence it also holds for S'_K .

In this article (see Theorem 5.1) we generalize the results in [W1] and [W2] and prove that if $M := \overline{\mathbb{Q}}^{\ker(\phi)}$ is a totally real field, then the *L*-function $L^{2i}(s, (S'_K)_{/k})$, for i = 0, 1, 2, 3, has a meromorphic continuation to the entire complex plane and satisfies a functional equation, and the order of the pole at s = i + 1 is equal to

$$\dim_{\bar{\mathbb{O}}_l} U^i(S'_K,k)$$

if k is a totally real number field.

2. Twisted Siegel modular threefolds. Let $G := GSp_4$ be the symplectic similitudes group over \mathbb{Q} of rank 4. Then

$$\operatorname{GSp}_4(A) = \left\{ g \in \operatorname{GL}_4(A) \middle| {}^t g \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix} g = \mu(g) \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix} \right.$$
for some $\mu(g) \in A^{\times} \right\}$

for all \mathbb{Q} -algebras A, where I_2 is the identity matrix of rank 2. Let Sp_4 be the symplectic group over \mathbb{Q} of rank 4. Then

$$\operatorname{Sp}_4(A) = \left\{ g \in \operatorname{GL}_4(A) \middle| {}^t g \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix} g = \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix} \right\}$$

for all \mathbb{Q} -algebras A.

Consider the morphism of \mathbb{R} -groups

$$h: \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_{\mathrm{m}} \to G_{\mathbb{R}}$$

given by

$$x + iy \mapsto \begin{pmatrix} xI_2 & yI_2 \\ -yI_2 & xI_2 \end{pmatrix}.$$

The stabilizer of h in $G(\mathbb{R})$ is $K_{\infty} = Z_{\infty}K_{\mathbb{R}}$, where Z_{∞} is the center of $G(\mathbb{R})$, and $K_{\mathbb{R}}$ is a maximal compact subgroup of $\text{Sp}_4(\mathbb{R})$.

For K a sufficiently small open compact subgroup of $G(\mathbb{A}_{\mathbb{Q},f})$, let S_K be the smooth toroidal compactification of an open surface S_K^0 that satisfies

$$S_K^0(\mathbb{C}) = G(\mathbb{Q}) \backslash G(\mathbb{A}_{\mathbb{Q}}) / K_\infty K,$$

which is a disjoint union of arithmetic quotients of the Siegel upper half plane of degree 2. Hence S_K has dimension 3, and is called a *Siegel modular* threefold. From [D], we know that S_K is defined over \mathbb{Q} .

Let p be a rational prime. Consider $K := K_p \times H$, where K_p is the set of elements of $G(\mathbb{Z}_p)$ that are congruent to 1 modulo p and H is an open compact subgroup of $G(\mathbb{A}_{\mathbb{Q},p,f})$ where $\mathbb{A}_{\mathbb{Q},p,f}$ is the finite part of the ring of adeles $\mathbb{A}_{\mathbb{Q}}$ away from p. Then it is well known (see for example Corollary 1.4.1.3 of [C]) that for H sufficiently small, the group $G(\mathbb{Z}/p\mathbb{Z})$ acts freely on S_K^0 and also on its compactification S_K . We fix such a small H. Then the action of $G(\mathbb{Z}/p)$ on

$$S_K^0(\mathbb{C}) = G(\mathbb{Q}) \backslash G(\mathbb{A}_{\mathbb{Q}}) / K_\infty K$$

can be described in the following way: we have $G(\mathbb{Z}_p) \hookrightarrow G(\mathbb{A}_{\mathbb{Q}})$ by $\alpha \mapsto (1, \ldots, 1, \alpha, 1, \ldots, 1)$, α at the *p*th component. Using the isomorphism $G(\mathbb{Z}/p\mathbb{Z}) \cong G(\mathbb{Z}_p)/K_p$, the action of an element $g \in G(\mathbb{Z}_p)$ is given by right multiplication at the *p*th component.

We fix a continuous representation

$$\phi: \Gamma_{\mathbb{O}} \to G(\mathbb{Z}/p\mathbb{Z}).$$

Let M be the finite Galois extension of \mathbb{Q} defined by $M := (\overline{\mathbb{Q}})^{\ker(\phi)}$. We remark that $G(\mathbb{Z}/p\mathbb{Z})$ is not necessarily solvable, and thus M is not necessarily a solvable extension of \mathbb{Q} .

Let

$$S' = S_K \times_{\operatorname{Spec}(\mathbb{Q})} \operatorname{Spec}(M).$$

The group $G(\mathbb{Z}/p\mathbb{Z})$ acts on S_K . Since $\phi : \operatorname{Gal}(M/\mathbb{Q}) \hookrightarrow G(\mathbb{Z}/p\mathbb{Z})$, the group $\operatorname{Gal}(M/\mathbb{Q})$ acts on S_K . We denote this last action by ϕ' . The Galois group $\operatorname{Gal}(M/\mathbb{Q})$ has a natural action on $\operatorname{Spec}(M)$ and we can descend via the quotient process S' to $S'_K/\operatorname{Spec}(\mathbb{Q})$ using the diagonal action

$$\operatorname{Gal}(M/\mathbb{Q}) \ni \sigma \mapsto \phi'(\sigma) \otimes \sigma$$

on S'. Thus, we obtain a quasi-projective variety $S'_K/\operatorname{Spec}(\mathbb{Q})$. This is the twisted Siegel modular threefold mentioned in the title.

3. Zeta function of twisted Siegel modular threefolds. Let K be a sufficiently small open compact subgroup of $G(\mathbb{A}_{\mathbb{Q},f})$. Then we have a decomposition

$$H^{2i}_{\text{et}}(S_K, \bar{\mathbb{Q}}_l) = IH^{2i}_{\text{et}}(\bar{S}_K, \bar{\mathbb{Q}}_l) \oplus H^{2i}(S_K^{\infty}, \bar{\mathbb{Q}}_l)$$

where $IH_{\text{et}}^{2i}(\bar{S}_K, \bar{\mathbb{Q}}_l)$ is the intersection cohomology of the Baily–Borel compactification \bar{S}_K of S_K^0 , and S_K^∞ is the divisor at infinity (a finite set of cusps) such that $\bar{S}_K = S_K^0 \cup S_K^\infty$, and is defined by

$$H^{2i}_{\text{et}}(\bar{S}_K, \bar{\mathbb{Q}}_l) := \text{Im}(H^{2i}_{\text{et}}(S_K, \bar{\mathbb{Q}}_l) \to H^{2i}_{\text{et}}(S^0_K, \bar{\mathbb{Q}}_l)).$$

If l is a prime number, let \mathbb{H}_K be the Hecke algebra generated by the bi-K-invariant $\overline{\mathbb{Q}}_l$ -valued compactly supported functions on $G(\mathbb{A}_{\mathbb{Q},f})$ under convolution. If $\Pi = \Pi_f \otimes \Pi_\infty$ is an automorphic representation of $G(\mathbb{A}_{\mathbb{Q}})$, we denote by Π_f^K the space of K-invariants in Π_f . The Hecke algebra \mathbb{H}_K acts on Π_f^K .

We have an action of the Hecke algebra \mathbb{H}_K and an action of the Galois group $\Gamma_{\mathbb{Q}}$ on the intersection cohomology $IH^{2i}_{\text{et}}(\bar{S}_K, \bar{\mathbb{Q}}_l)$ and these two actions commute. An automorphic representation Π of $G(\mathbb{A}_{\mathbb{Q}})$ is called *cohomological* if $H^*(G(\mathbb{R}), K_{\infty}, \Pi_{\infty}) \neq 0$.

We know the following result (see [W1]):

PROPOSITION 3.1. The representation of $\Gamma_{\mathbb{Q}} \times \mathbb{H}_K$ on the intersection cohomology $IH^{2i}_{\text{et}}(\bar{S}_K, \bar{\mathbb{Q}}_l)$ is isomorphic to

$$\bigoplus_{\Pi} \phi^i(\Pi_{\mathrm{f}}) \otimes \Pi_{\mathrm{f}}^K,$$

where $\phi^i(\Pi_{\mathbf{f}})$ is a continuous representation of the Galois group $\Gamma_{\mathbb{Q}}$. The above sum is over cohomological automorphic representations $\Pi = \Pi_{\mathbf{f}} \otimes \Pi_{\infty}$ of $G(\mathbb{A}_{\mathbb{Q}})$ that occur in the discrete spectrum of $G(\mathbb{A}_{\mathbb{Q}})$ and the \mathbb{H}_K -representations $\Pi_{\mathbf{f}}^K$ are irreducible and mutually inequivalent.

The representation $\phi^i(\Pi_f)$ that appears in Proposition 3.1 is semisimple (see Theorem 1.1 and §1.7 of [W3]) and has dimension at most 2, is unramified outside some finite set of primes S which depends on K, is de Rham at l, and is crystalline at l if $l \notin S$.

We fix an isomorphism $\iota : \overline{\mathbb{Q}}_l \to \mathbb{C}$ and define the *L*-function

$$L^{2i}(s, S_K) := \prod_{\Pi} L(s, \phi^i(\Pi_f))^{\dim \Pi_f^K},$$

where

$$L(s,\phi^{i}(\Pi_{\mathbf{f}})) := \prod_{q} \det(1 - Nq^{-s}\iota(\phi^{i}(\Pi_{\mathbf{f}})(\operatorname{Frob}_{q})^{I_{q}}))^{-1},$$

where Frob_q is a geometric Frobenius element at a finite rational prime q and I_q is an inertia group at q.

We consider the injective limit

$$V^{i} := \varinjlim_{K} IH^{2i}_{\text{et}}(\bar{S}_{K}, \bar{\mathbb{Q}}_{l}) \cong \varinjlim_{K} \bigoplus_{\Pi} U^{i}(\Pi_{\text{f}}) \otimes_{\bar{\mathbb{Q}}_{l}} \Pi_{\text{f}}^{K},$$

where $U^i(\Pi_f)$ is the space corresponding to $\phi^i(\Pi_f)$ (see Proposition 3.1 for notation).

Then the Π -component $V^i(\Pi)$ of V^i is isomorphic to $\phi^i(\Pi_{\rm f}) \otimes \Pi_{\rm f}$ as $\Gamma_{\mathbb{Q}} \times \mathbb{H}$ -module. Taking the K-fixed vectors, we deduce that $V^i(\Pi)^K$ is isomorphic to $\phi^i(\Pi_{\rm f}) \otimes \Pi_{\rm f}^K$ as $\Gamma_{\mathbb{Q}} \times G(\mathbb{Z}/p\mathbb{Z})$ -module. Since the varieties S_K and S'_K become isomorphic over $\overline{\mathbb{Q}}$, we have the isomorphism $IH^{2i}_{\rm et}(\bar{S}_K, \bar{\mathbb{Q}}_l) \cong IH^{2i}_{\rm et}(\bar{S}'_K, \bar{\mathbb{Q}}_l)$. The actions of $\Gamma_{\mathbb{Q}}$ on these cohomologies that give the expression of the zeta functions of these varieties are different. If we consider the component $V^i(\Pi)'$ that corresponds to Π of $IH^{2i}_{\rm et}(\bar{S}'_K, \bar{\mathbb{Q}}_l)$ (see the decomposition of Proposition 3.1), we find that $V^i(\Pi)'$ is isomorphic to $\phi^i(\Pi_{\rm f}) \otimes (\Pi_{\rm f}^K \circ \phi)$ as $\Gamma_{\mathbb{Q}}$ -module. Hence we deduce the following result:

PROPOSITION 3.2. We have

$$L^{2i}(s, S'_K) = \prod_{\Pi} L(s, \phi^i(\Pi_{\mathbf{f}}) \otimes (\Pi_{\mathbf{f}}^K \circ \phi)),$$

where Π is as in Proposition 3.1.

4. Meromorphic continuation. In this section we fix an automorphic representation Π as in Proposition 3.1.

We show the following result:

THEOREM 4.1. With the same notation as in §3, if F is a totally real number field, then there exists a totally real finite extension F' of F, which is Galois over \mathbb{Q} , such that $\phi^i(\Pi_f)|_{\Gamma_{F'}}$ is automorphic, i.e. $\phi^i(\Pi_f)|_{\Gamma_{F'}} \cong \rho_{\Pi'}$, where Π' is an automorphic representation of $GL_m(\mathbb{A}_{F'})$ and $\rho_{\Pi'}$ is the *l*-adic representation associated to Π' .

Proof. We distinguish two cases (see [W1], [W2]):

(i) The representation $\phi^i(\Pi_f)|_{\Gamma_F}$ is trivial or a direct sum of one or two 1-dimensional Hecke characters, and thus Theorem 4.1 is obvious in this case, and the base change is actually arbitrary.

(ii) The representation $\phi^i(\Pi_{\rm f})|_{\Gamma_F}$ is irreducible of dimension 2, has τ -Hodge–Tate numbers 0 and 1 for any embedding $\tau: F \hookrightarrow \bar{\mathbb{Q}}$, and is totally odd, i.e. det $\phi^i(\Pi_{\rm f})|_{\Gamma_F}(c) = -1$ for any complex conjugation c. Hence from Theorem A of [BGGT] (see the properties of $\phi^i(\Pi_{\rm f})$ after Proposition 3.1 above), we conclude the proof of Theorem 4.1.

C. Virdol

We denote $\omega := \Pi_{\mathbf{f}}^{K} \circ \phi$. We assume throughout this paper that the field $M := \overline{\mathbb{Q}}^{\ker(\phi)}$ is totally real. Thus $N := \overline{\mathbb{Q}}^{\ker(\omega)}$ is totally real.

Let k be a totally real number field. From Theorem 4.1 we deduce that there exists a Galois totally real field F' containing k and M such that $\phi^i(\Pi_{\rm f})|_{\Gamma_{F'}} \cong \rho_{\Pi'}$, where Π' is an automorphic representation of $\operatorname{GL}_n(\mathbb{A}_{F'})$.

From Brauer's theorem (see Theorems 16 and 19 of [SE]), we know that one can find subfields $F_j \subset F'$ with $\operatorname{Gal}(F'/F_j)$ solvable, characters $\chi_j : \operatorname{Gal}(F'/F_j) \to \overline{\mathbb{Q}}^{\times}$ and integers m_j such that the representation

$$\omega|_{\Gamma_k} : \operatorname{Gal}(F'/k) \to \operatorname{Gal}(Mk/k) \to \operatorname{GL}_N(\bar{\mathbb{Q}}_l)$$

can be written as $\omega|_{\Gamma_k} = \sum_{j=1}^u m_j \operatorname{Ind}_{\Gamma_{F_j}}^{\Gamma_k} \chi_j$ (a virtual sum). Then

$$L(s, (\phi^{i}(\Pi_{\mathrm{f}}) \otimes \omega)|_{\Gamma_{k}}) = \prod_{j=1}^{u} L(s, \phi^{i}(\Pi_{\mathrm{f}})|_{\Gamma_{k}} \otimes \operatorname{Ind}_{\Gamma_{F_{j}}}^{\Gamma_{k}} \chi_{j})^{m_{j}}$$
$$= \prod_{j=1}^{u} L(s, \operatorname{Ind}_{\Gamma_{F_{j}}}^{\Gamma_{k}} (\phi^{i}(\Pi_{\mathrm{f}})|_{\Gamma_{F_{j}}} \otimes \chi_{j}))^{m_{j}} = \prod_{j=1}^{u} L(s, \phi^{i}(\Pi_{\mathrm{f}})|_{\Gamma_{F_{j}}} \otimes \chi_{j})^{m_{j}}.$$

Since $\phi^i(\Pi_{\rm f})|_{\Gamma_{F'}}$ is automorphic and $\operatorname{Gal}(F'/F_j)$ is solvable, it follows easily that $\phi^i(\Pi_{\rm f})|_{\Gamma_{F_j}}$ is automorphic. Hence the function $L(s, (\phi^i(\Pi_{\rm f}) \otimes \omega)|_{\Gamma_k})$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation because each function $L(s, \phi^i(\Pi_{\rm f})|_{\Gamma_{F_j}} \otimes \chi_j)$ has these properties.

5. Tate conjecture for twisted Siegel modular threefolds. Assume that k is a totally real field, and Π is an automorphic representation that appears in Proposition 3.1. Let $V^i(\Pi)'$ be the space considered in §3 just before Proposition 3.2.

Recall that in §4 we denoted $\omega := \Pi_{\mathbf{f}}^K \circ \phi$ and we assumed that $M := \overline{\mathbb{Q}}^{\ker(\phi)}$ is a totally real field and thus $N := \overline{\mathbb{Q}}^{\ker(\omega)}$ is also a totally real field.

Define

$$\mathbf{V}^{i}(\Pi,k) := \{ x \in V^{i}(\Pi)' \mid (\phi^{i}(\Pi_{\mathbf{f}}) \otimes \omega)(a)x = \xi_{l}^{-i}(a)x \text{ for all } a \in \Gamma_{k} \},\$$

where ξ_l is the *l*-adic cyclotomic character. The elements of $\mathbf{V}^i(\Pi, k)$ are called *Tate classes*.

We will prove the following result:

THEOREM 5.1. Assume that $N := \overline{\mathbb{Q}}^{\ker(\omega)}$ and k are totally real fields. Then the order of the pole of the L-function $L(s, (\phi^i(\Pi_f) \otimes \omega)|_{\Gamma_k})$ at s = i+1 is equal to $\dim_{\overline{\mathbb{Q}}_l} \mathbf{V}^i(\Pi, k)$. We consider

 $\mathbf{V}^{i}(\Pi, F_{j}) := \{x \in V^{i}(\Pi)' \mid (\phi^{i}(\Pi_{f}) \otimes \chi_{j})(a)x = \xi_{l}^{-i}(a)x \text{ for all } a \in \Gamma_{F_{j}}\}.$ Since $\omega|_{\Gamma_{k}} = \sum_{j=1}^{u} m_{j} \operatorname{Ind}_{\Gamma_{F_{j}}}^{\Gamma_{k}} \chi_{j}$, in order to prove Theorem 5.1, it is sufficient to show the following result:

PROPOSITION 5.2. For each *i*, the order of the pole of $L(s, \phi^i(\Pi_f)|_{\Gamma_{F_j}} \otimes \chi_j)$ at s = i + 1 is equal to $\dim_{\bar{\mathbb{Q}}_l} \mathbf{V}^i(\Pi, F_j)$.

Proof. In case (i) (see the proof of Theorem 4.1 above), $\phi^i(\Pi_f)|_{\Gamma_{F_j}}$ is a direct sum of one-dimensional representations. So it is easy to see that the pole of $L(s, \phi^i(\Pi_f)|_{\Gamma_{F_j}} \otimes \chi_j)$ at s = i + 1 is equal to the dimension of the space of Tate classes $\mathbf{V}^i(\Pi, F_j)$ (so in case (i), Theorem 5.1 is true actually for any K and k). Hence we are done in case (i).

In case (ii), $\mathbf{V}^{i}(\Pi, F_{j}) = \emptyset$. Also in this case the automorphic *l*-adic representation $\phi^{i}(\Pi_{\mathrm{f}})|_{\Gamma_{F_{j}}}$ corresponds to a cuspidal representation Π_{j} of $\mathrm{GL}(2)/F_{j}$, and thus the function $L(s, \phi^{i}(\Pi_{\mathrm{f}})|_{\Gamma_{F_{j}}} \otimes \chi_{j})$ has no pole or zero at s = i + 1. Hence we are done also in case (ii).

References

- [BGGT] T. Barnet-Lamb, T. Gee, D. Geraghty and R. Taylor, *Potential automorphy* and change of weight, preprint.
- [C] H. Carayol, Sur la mauvaise réduction des courbes de Shimura, Compos. Math. 59 (1986), 151–230.
- [D] P. Deligne, Travaux de Shimura, in: Sém. Bourbaki, exp. 389, Lecture Notes in Math. 244, Springer, Berlin, 1971, 123–165.
- [SE] J.-P. Serre, *Linear Representations of Finite Groups*, Springer, 1977.
- [TA] J. Tate, Algebraic cycles and poles of zeta functions, in: O. D. G. Schilling (ed.), Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, 93–110.
- [W1] R. Weissauer, Differentialformen zu Untergruppen der Siegelschen Modulgruppe zweiten Grades, J. Reine Angew. Math. 391 (1988), 100–156.
- [W2] —, The Picard group of Siegel modular threefolds, ibid. 430 (1992), 179–211.
- [W3] —, Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds, Lecture Notes in Math. 1968, Springer, Berlin, 2009.

Cristian Virdol Department of Mathematics Kyushu University Fukuoka, 819-0395, Japan E-mail: virdol@math.kyushu-u.ac.jp

> Received on 21.11.2010 and in revised form on 5.2.2011

(6556)