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Tate conjecture for twisted Siegel modular threefolds
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Cristian Virdol (Fukuoka)

1. Introduction. Let X be a smooth projective variety of dimension n
defined over a number field F . For a prime number l, let H i

et(X, Q̄l) be the
l-adic cohomology of X̄ = X ×F Q̄. For K a number field, we denote ΓK :=
Gal(Q̄/K). The Galois group ΓF acts on H i

et(X, Q̄l) by a representation ρi,l.
For a finite extension E of F , the elements of V i(X,E) := (H2i

et (X, Q̄l)(i))ΓE

are called Tate classes defined over E (here H2i
et (X, Q̄l)(i) is the Tate twist,

and H2i
et (X, Q̄l) = {0} for i > 2n).

Let U i(X) be the Q-linear space of algebraic subvarieties of X of codi-
mension i. We have the l-adic cycle map

di,l : U i(X)⊗ Q̄l → H2i
et (X, Q̄l)(i).

The cohomology classes in the image of this map are said to be algebraic.
For each finite extension E of F , we denote by U i(X,E) the subspace of

di,l(U i(X)⊗ Q̄l) left fixed by ΓE . The first part of the Tate conjecture [TA]
states that

U i(X,E) = V i(X,E),

i.e. each Tate class is algebraic.
The L-function Li(s,X/F ) attached to the representation ρi,l converges

for Re(s) > 1 + i/2. The second part of the Tate conjecture [TA] states that
for each finite extension E of F , the L-function L2i(s,X/E) has a meromor-
phic continuation to the entire complex plane and the order of the pole at
s = i+ 1 is equal to

dimQ̄l
U i(X,E).

The first part of the Tate conjecture for Siegel modular threefold was
proved by Weissauer in [W1] and [W2]. Also the second part of the Tate
conjecture for Siegel modular threefolds was proved in [W1] and [W2], but
only for solvable number fields.
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Let SK := SG,K be the Siegel modular threefold associated to G = GSp4

and to some open compact subgroup K of G(AQ,f), where AQ,f is the finite
part of the ring of adeles AQ of Q. Then SK is defined over Q. We fix a
rational prime p. In this paper we consider K of the form K := Kp × H,
where Kp is the set of elements of G(Zp) that are congruent to 1 modulo p,
and H is an open compact subgroup of G(AQ,p,f) where AQ,p,f is the finite
part of the ring of adeles AQ away from p. Then SK is a quasi-projective
variety defined over Q.

The variety SK has a natural action of G(Z/pZ) (see §2). For H suf-
ficiently small this action is free. We fix such a small group H. Consider
a continuous Galois representation φ : ΓQ → G(Z/pZ) and let S′K be the
variety defined over Q obtained from SK via twisting by φ composed with
the natural action of G(Z/pZ) on SK (see §2 for details).

The surfaces SK and S′K become isomorphic over Q̄ and by descent we
deduce that the first part of the Tate conjecture for the surface SK over a
given number field k is true if and only if it is true for the surface S′K over
the field k. But as we said above, from [W1] and [W2] we know that the first
part of the Tate conjecture holds for SK , and hence it also holds for S′K .

In this article (see Theorem 5.1) we generalize the results in [W1]
and [W2] and prove that if M := Q̄ker(φ) is a totally real field, then the
L-function L2i(s, (S′K)/k), for i = 0, 1, 2, 3, has a meromorphic continuation
to the entire complex plane and satisfies a functional equation, and the order
of the pole at s = i+ 1 is equal to

dimQ̄l
U i(S′K , k)

if k is a totally real number field.

2. Twisted Siegel modular threefolds. Let G := GSp4 be the sym-
plectic similitudes group over Q of rank 4. Then

GSp4(A) =
{
g ∈ GL4(A)

∣∣∣∣ tg( 0 I2

−I2 0

)
g = µ(g)

(
0 I2

−I2 0

)
for some µ(g) ∈ A×

}
for all Q-algebras A, where I2 is the identity matrix of rank 2. Let Sp4 be
the symplectic group over Q of rank 4. Then

Sp4(A) =
{
g ∈ GL4(A)

∣∣∣∣ tg( 0 I2

−I2 0

)
g =

(
0 I2

−I2 0

)}
for all Q-algebras A.



Tate conjecture for twisted threefolds 299

Consider the morphism of R-groups

h : ResC/R Gm → GR

given by

x+ iy 7→
(
xI2 yI2

−yI2 xI2

)
.

The stabilizer of h in G(R) is K∞ = Z∞KR, where Z∞ is the center of G(R),
and KR is a maximal compact subgroup of Sp4(R).

For K a sufficiently small open compact subgroup of G(AQ,f), let SK be
the smooth toroidal compactification of an open surface S0

K that satisfies

S0
K(C) = G(Q)\G(AQ)/K∞K,

which is a disjoint union of arithmetic quotients of the Siegel upper half
plane of degree 2. Hence SK has dimension 3, and is called a Siegel modular
threefold . From [D], we know that SK is defined over Q.

Let p be a rational prime. Consider K := Kp × H, where Kp is the
set of elements of G(Zp) that are congruent to 1 modulo p and H is an
open compact subgroup of G(AQ,p,f) where AQ,p,f is the finite part of the
ring of adeles AQ away from p. Then it is well known (see for example
Corollary 1.4.1.3 of [C]) that for H sufficiently small, the group G(Z/pZ)
acts freely on S0

K and also on its compactification SK . We fix such a small H.
Then the action of G(Z/p) on

S0
K(C) = G(Q)\G(AQ)/K∞K

can be described in the following way: we have G(Zp) ↪→ G(AQ) by
α 7→ (1, . . . , 1, α, 1, . . . , 1), α at the pth component. Using the isomorphism
G(Z/pZ) ∼= G(Zp)/Kp, the action of an element g ∈ G(Zp) is given by right
multiplication at the pth component.

We fix a continuous representation

φ : ΓQ → G(Z/pZ).

Let M be the finite Galois extension of Q defined by M := (Q̄)ker(φ). We re-
mark that G(Z/pZ) is not necessarily solvable, and thus M is not necessarily
a solvable extension of Q.

Let
S′ = SK ×Spec(Q) Spec(M).

The group G(Z/pZ) acts on SK . Since φ : Gal(M/Q) ↪→ G(Z/pZ), the group
Gal(M/Q) acts on SK . We denote this last action by φ′. The Galois group
Gal(M/Q) has a natural action on Spec(M) and we can descend via the
quotient process S′ to S′K/Spec(Q) using the diagonal action

Gal(M/Q) 3 σ 7→ φ′(σ)⊗ σ
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on S′. Thus, we obtain a quasi-projective variety S′K/Spec(Q). This is the
twisted Siegel modular threefold mentioned in the title.

3. Zeta function of twisted Siegel modular threefolds. Let K
be a sufficiently small open compact subgroup of G(AQ,f). Then we have a
decomposition

H2i
et (SK , Q̄l) = IH2i

et (S̄K , Q̄l)⊕H2i(S∞K , Q̄l)

where IH2i
et (S̄K , Q̄l) is the intersection cohomology of the Baily–Borel com-

pactification S̄K of S0
K , and S∞K is the divisor at infinity (a finite set of

cusps) such that S̄K = S0
K ∪ S∞K , and is defined by

IH2i
et (S̄K , Q̄l) := Im(H2i

et (SK , Q̄l)→ H2i
et (S0

K , Q̄l)).

If l is a prime number, let HK be the Hecke algebra generated by the
bi-K-invariant Q̄l-valued compactly supported functions on G(AQ,f) under
convolution. If Π = Πf ⊗Π∞ is an automorphic representation of G(AQ),
we denote by ΠK

f the space of K-invariants in Πf . The Hecke algebra HK

acts on ΠK
f .

We have an action of the Hecke algebra HK and an action of the Ga-
lois group ΓQ on the intersection cohomology IH2i

et (S̄K , Q̄l) and these two
actions commute. An automorphic representation Π of G(AQ) is called
cohomological if H∗(G(R),K∞, Π∞) 6= 0.

We know the following result (see [W1]):

Proposition 3.1. The representation of ΓQ × HK on the intersection
cohomology IH2i

et (S̄K , Q̄l) is isomorphic to⊕
Π

φi(Πf)⊗ΠK
f ,

where φi(Πf) is a continuous representation of the Galois group ΓQ. The
above sum is over cohomological automorphic representations Π = Πf⊗Π∞
of G(AQ) that occur in the discrete spectrum of G(AQ) and the HK-repre-
sentations ΠK

f are irreducible and mutually inequivalent.

The representation φi(Πf) that appears in Proposition 3.1 is semisimple
(see Theorem 1.1 and §1.7 of [W3]) and has dimension at most 2, is unram-
ified outside some finite set of primes S which depends on K, is de Rham
at l, and is crystalline at l if l 6∈ S.

We fix an isomorphism ι : Q̄l → C and define the L-function

L2i(s, SK) :=
∏
Π

L(s, φi(Πf))dimΠK
f ,

where

L(s, φi(Πf)) :=
∏
q

det(1−Nq−sι(φi(Πf)(Frobq)Iq))−1,
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where Frobq is a geometric Frobenius element at a finite rational prime q
and Iq is an inertia group at q.

We consider the injective limit

V i := lim−→
K

IH2i
et (S̄K , Q̄l) ∼= lim−→

K

⊕
Π

U i(Πf)⊗Q̄l
ΠK

f ,

where U i(Πf) is the space corresponding to φi(Πf) (see Proposition 3.1 for
notation).

Then the Π-component V i(Π) of V i is isomorphic to φi(Πf) ⊗ Πf as
ΓQ×H-module. Taking the K-fixed vectors, we deduce that V i(Π)K is iso-
morphic to φi(Πf)⊗ΠK

f as ΓQ×G(Z/pZ)-module. Since the varieties SK and
S′K become isomorphic over Q̄, we have the isomorphism IH2i

et (S̄K , Q̄l) ∼=
IH2i

et (S̄′K , Q̄l). The actions of ΓQ on these cohomologies that give the ex-
pression of the zeta functions of these varieties are different. If we con-
sider the component V i(Π)′ that corresponds to Π of IH2i

et (S̄′K , Q̄l) (see
the decomposition of Proposition 3.1), we find that V i(Π)′ is isomorphic
to φi(Πf) ⊗ (ΠK

f ◦ φ) as ΓQ-module. Hence we deduce the following re-
sult:

Proposition 3.2. We have

L2i(s, S′K) =
∏
Π

L(s, φi(Πf)⊗ (ΠK
f ◦ φ)),

where Π is as in Proposition 3.1.

4. Meromorphic continuation. In this section we fix an automorphic
representation Π as in Proposition 3.1.

We show the following result:

Theorem 4.1. With the same notation as in §3, if F is a totally real
number field, then there exists a totally real finite extension F ′ of F , which is
Galois over Q, such that φi(Πf)|ΓF ′ is automorphic, i.e. φi(Πf)|ΓF ′

∼= ρΠ′,
where Π ′ is an automorphic representation of GLm(AF ′) and ρΠ′ is the
l-adic representation associated to Π ′.

Proof. We distinguish two cases (see [W1], [W2]):
(i) The representation φi(Πf)|ΓF

is trivial or a direct sum of one or two
1-dimensional Hecke characters, and thus Theorem 4.1 is obvious in this
case, and the base change is actually arbitrary.

(ii) The representation φi(Πf)|ΓF
is irreducible of dimension 2, has τ -

Hodge–Tate numbers 0 and 1 for any embedding τ : F ↪→ Q̄, and is totally
odd, i.e. detφi(Πf)|ΓF

(c) = −1 for any complex conjugation c. Hence from
Theorem A of [BGGT] (see the properties of φi(Πf) after Proposition 3.1
above), we conclude the proof of Theorem 4.1.
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We denote ω := ΠK
f ◦φ. We assume throughout this paper that the field

M := Q̄ker(φ) is totally real. Thus N := Q̄ker(ω) is totally real.
Let k be a totally real number field. From Theorem 4.1 we deduce

that there exists a Galois totally real field F ′ containing k and M such
that φi(Πf)|ΓF ′

∼= ρΠ′ , where Π ′ is an automorphic representation of
GLn(AF ′).

From Brauer’s theorem (see Theorems 16 and 19 of [SE]), we know
that one can find subfields Fj ⊂ F ′ with Gal(F ′/Fj) solvable, charac-
ters χj : Gal(F ′/Fj) → Q̄× and integers mj such that the representa-
tion

ω|Γk
: Gal(F ′/k)→ Gal(Mk/k)→ GLN (Q̄l)

can be written as ω|Γk
=
∑u

j=1mj IndΓk
ΓFj

χj (a virtual sum). Then

L(s, (φi(Πf)⊗ ω)|Γk
) =

u∏
j=1

L(s, φi(Πf)|Γk
⊗ IndΓk

ΓFj
χj)mj

=
u∏
j=1

L(s, IndΓk
ΓFj

(φi(Πf)|ΓFj
⊗ χj))mj =

u∏
j=1

L(s, φi(Πf)|ΓFj
⊗ χj)mj .

Since φi(Πf)|ΓF ′ is automorphic and Gal(F ′/Fj) is solvable, it follows easily
that φi(Πf)|ΓFj

is automorphic. Hence the function L(s, (φi(Πf) ⊗ ω)|Γk
)

has a meromorphic continuation to the entire complex plane and satisfies
a functional equation because each function L(s, φi(Πf)|ΓFj

⊗ χj) has these
properties.

5. Tate conjecture for twisted Siegel modular threefolds. As-
sume that k is a totally real field, and Π is an automorphic representation
that appears in Proposition 3.1. Let V i(Π)′ be the space considered in §3
just before Proposition 3.2.

Recall that in §4 we denoted ω := ΠK
f ◦ φ and we assumed that M :=

Q̄ker(φ) is a totally real field and thus N := Q̄ker(ω) is also a totally real
field.

Define

Vi(Π, k) := {x ∈ V i(Π)′ | (φi(Πf)⊗ ω)(a)x = ξ−il (a)x for all a ∈ Γk},
where ξl is the l-adic cyclotomic character. The elements of Vi(Π, k) are
called Tate classes.

We will prove the following result:

Theorem 5.1. Assume that N := Q̄ker(ω) and k are totally real fields.
Then the order of the pole of the L-function L(s, (φi(Πf)⊗ω)|Γk

) at s = i+1
is equal to dimQ̄l

Vi(Π, k).
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We consider

Vi(Π,Fj) := {x ∈ V i(Π)′ | (φi(Πf)⊗ χj)(a)x = ξ−il (a)x for all a ∈ ΓFj}.

Since ω|Γk
=
∑u

j=1mj IndΓk
ΓFj

χj , in order to prove Theorem 5.1, it is suffi-
cient to show the following result:

Proposition 5.2. For each i, the order of the pole of L(s, φi(Πf)|ΓFj
⊗χj)

at s = i+ 1 is equal to dimQ̄l
Vi(Π,Fj).

Proof. In case (i) (see the proof of Theorem 4.1 above), φi(Πf)|ΓFj
is a

direct sum of one-dimensional representations. So it is easy to see that the
pole of L(s, φi(Πf)|ΓFj

⊗ χj) at s = i + 1 is equal to the dimension of the
space of Tate classes Vi(Π,Fj) (so in case (i), Theorem 5.1 is true actually
for any K and k). Hence we are done in case (i).

In case (ii), Vi(Π,Fj) = ∅. Also in this case the automorphic l-adic
representation φi(Πf)|ΓFj

corresponds to a cuspidal representation Πj of
GL(2)/Fj , and thus the function L(s, φi(Πf)|ΓFj

⊗ χj) has no pole or zero
at s = i+ 1. Hence we are done also in case (ii).
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