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1. Introduction. In [7], it was asked whether for every fixed positive
integer k there exists a positive integer n so that, in the prime power factor-
ization of n!, the first & primes appear with even exponents. This question
was answered in the affirmative by D. Berend in [3]. In fact, Berend proved
more in two aspects. First, he proved that, for arbitrary fixed k,d € N, there
exist infinitely many numbers n so that, in the prime factorization of n!, the
first k primes appear with exponents divisible by d. In particular, all these
exponents may be divisible by 2™ for an arbitrary m. Secondly, he proved
that, for fixed & > 1 and d > 2, there exists a computable constant C(k, d),
depending only on k, d, such that every interval of length C(k, d) of positive
numbers contains a positive integer n with the above property. Some natural
extensions of Berend’s results were obtained in [5], [6], [9], [13].

In this paper we consider factorials whose factorization

n! = 2¢2(n)ges(n) 'pipk(”)

is special from the point of view of one or more primes. It is easy to show
that eo(n) is a power of 2 infinitely often. This raises the following questions.

QUESTION 1. Let p be any odd prime. Is ep(n) a power of 2 infinitely
often?

It is plausible that the answer is affirmative. However, we have not been
able to prove this. Most of this paper is devoted to the following question
and related issues.

QUESTION 2. Let p be any odd prime. Do there exist infinitely many
positive integers n for which both ex(n) and ey(n) are powers of 27
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One of the main results of this paper is that the answer here is negative.
We mention that this result is almost trivial for non-Fermat primes, but is
trickier for Fermat primes.

Our results may be reformulated using Fermi-Dirac arithmetic ([14]). In
this arithmetic, the role of primes in classical arithmetic is played by the
multiplicative basis of so-called FD-primes,

Q=1{p* " ipeP keN}=1{234,57911,13,16,17,...},

where P denotes the set of all primes. Every positive integer n > 2 may
be written uniquely in the form n = ¢; - - - qx, where q1, ..., qr are distinct
FD-primes, and we shall write Q,, = {q1, ..., g} in this case. We put Q1 = 0.

DEFINITION 1. A positive integer n is compact if all elements of Q,, are
relatively prime.

Denote the set of all compact numbers by C. It is convenient to suppose
that 1 € C. In Theorem 1 we find the density of the set C, along with an
error term for its counting function.

It is easy to see that the set

C'={neN:nleC}

is finite. In fact, if n is sufficiently large, then the interval (n/4,n/3) contains
a prime p, and it is easy to verify that p3 || n!, i.e. e,(n) = 3. Below we obtain
the following result: C* = {1,2,3,6,7,10,11}.

DEFINITION 2. Let p be a fixed prime. A positive integer n divisible by
p is p-compact if the set (), contains a single power of p.

Denote the set of p-compact numbers by (), and put
Cé,:{nEN:n!ECp}.

Our answer to Question 2 may be rephrased as the statement that, for each
prime p > 3 the set C’é ﬂC;) is finite. Moreover, we obtain an explicit formula
for \Cé N C’ZI,|. In our approach, we are led to consider various exponential
diophantine equations. Our formula for the size of C’é N C’é) also allows us
to compute the lower and upper densities of those sets of primes for which
this size assumes any specific value. Moreover, we obtain an estimate for the
least prime for which this set is of some given size. Our estimates depend
on the up-to-date results regarding the number of primes in short inter-
vals.

In Section 2 we present the main results. Sections 3-8 are devoted to the
proofs. In Section 9 we provide some numerical results. Finally, in Section 10
we pose several questions for further research.
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2. The main results. Let

c(z) = Z L, ¢p(z)= Z 1.

i<z,i€C i<z,i1€C)p
THEOREM 1.

(i) For every x > 1,
c(x) = Az + R(z),

where
P 11 <1 + L ip_@i_l)) = 0.872497. ..
w2 p+ 14 ’
peP i=1
ki(logx + ko)y/x if v < 4-1019,
[B(@)] < k1 <log$ + ko + ek‘?’% log %019> Va o ifr>4-10",

with k1 = 28.841303..., ko = 0.152970..., k3 = 5.263054. . ..
(i1) For any fized prime p,

() = By + Olloglog )
with the constant in O(...) equal to 1/log?2, where

p_]_ > _2'L
Bp="—> p .
p =0
THEOREM 2.
(77 q:3a q:55
67 q:7,
5 q= (2%+t1 1 3)/5 k> 2,
— o2k-1
cincl =44 q=22"41, k>3,
3, g=2F+3, k>3,
-5
2<1+ {logQ—qu_qD, k-l 43 <g<2k—1, k>4,
k q # (282 + 3)/5.
THEOREM 3. For a fized t € N,
2t
P g<2m:1C5NC| =2t} ~ 2m);
faePa=2m GGl =2~ e e T
moreover,
i {ee P g<n:|ConCyl=2t}] 1
lisolip m(n) Toot-141°7
. MHaeP g<n:|CiNCY =2t} 1
lim inf =

n—00 7T(7’L) o ot +1 ’
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THEOREM 4. For sufficiently large k, as q varies over (2871 43, 2F —1):

(i) |Cy N Cé] assumes all even values in the interval [2,0.95k — 2J;
(ii) the number of primes q € (28=1 4 3,2F — 1) for which |C4N C’é| =2t
with t € [1,0.475k — 1] is not less than
0.09 20.525(k—1)
log 2 k
REMARK 1. The proof depends on the estimates regarding the number
of primes in short intervals [2]. Improvements in these estimates will imply

corresponding improvements in Theorem 4, namely that |Cé N C¢11| assumes
all even values in a larger interval.

For a given t € N consider the function
q(t) =min{g e P:|CyN C’C!]| = 2t}.
THEOREM 5. For sufficiently large t,

REMARK 2. Similarly to Remark 1 improvements in the above mentioned
estimates will imply corresponding improvements of the upper bound for

q(t).

3. Proof of Theorem 1. Let r be a fixed square-free number. Consider
the auxiliary function (3,(z), defined as the number of positive integers not
exceeding x, not divisible by the square of any prime, except perhaps the
prime divisors of 7.

LEMMA 1. For every x > 1,

5o = ST (1 %)E + o(a),

plr
where |o(x)] < 3.5\/x.

Proof. By inclusion-exclusion

(1) b = Lol - | 5|+ X || -

p<w p p<q<z pq
pir p,qfr
=33 wd = Y @Y
i<z 2| d<\/z i<z
(d,r)=1 (d,r)=1 d?|i
T w(d
= Y w| 5| =0 ¥ A re),
A<z d<\/z

(d,r)=1 (d,r)=1
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where
2 Dl 5 S uld)]+o(vE) = 5 Bi(VE) + o).
d<\/z

The coefficient 1/2 in (2) follows from the well known estimate | >, . p(n)]
= o(x) (see [17]). Now

SN0 I 3)
dr pir

o)

plr

and therefore

u - p(d)

(3) . m = SH(-5) - o
d<\x plr d>\/x
(dr)=1 (dr)=1

We estimate the second term on the right-hand side trivially:
p(d)
) 2. "B

d>+\/z
(d,r)=1

It is easy to see that sup,~; v/z/|vz] = v/3.99.../1 = 2. So, by (4),

@ > Ml <ovm

d>+\/z
(d,r)=1

Taking into account that in (2) o(y/x) < \/x for z > 1, by (1)—(5), for every

x we have .
Br( ) H( —> x+ o(x)

plr

o0

1 a1
< Y Lo E_ L
= 2= )P

d>|v/z)+1 N Lve)

where |o(2)] < Vx(1/2+1+2) =3.5\/z. =
REMARK 3. It follows from the proof of Lemma 1 that for x large enough
we have o(x) < (14 3/7% + ¢)\/z.

For a fixed square-free number r, denote by B, the set of square-free
numbers n for which (n,r) =1, and put

be(z) = |B, N {1,2,...,2}|.

In particular, B = Bj is the set of all square-free numbers.
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LEMMA 2.

b(e) = LT[+ 1) "o + Re(a),

p\?"

where for every x > 1 and every r € B,

57.682607 . ..\/z if r < N,
R (2)] < 7.443083... 08T .
57.682607 ... ¢ Tglosr /T if r > N + 1,

where N = 6469693229.
Proof. Consider the function A : P — {1,2} defined by
L plr,
A ={

2, ptr.
By inclusion-exclusion

(6) br(m):{xJ—ZL%J-F 3 {WJ_

p<z p<q<z

where all sums are over primes only. It follows from (6) that

) = (Lal = S| 5]+ 2 LWJ )

p<z p<g<z
pir p,qir
T T z
S-S+ ] )
pilr ! p<az P1 p<q<az Pl
pir patr

o 2 (el Zler] s 2 -

p1<p2:p1p2|r p<q<z
Ph" patr
x
=S (s (5)
d|r
Therefore, by Lemma 1,
6 1\ ! p(d)
(7) br(:c):PH(l—P> xZTH%
plr d|r
6 1\ 1
= — 1 - 1 _ R’f‘
7721_[( p2> H< p>33+ (z)

plr

6r _
S Ao+ Rula) = 5 [T+ 1) + Rota),

plr plr
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where

(8) IR, (x |<35\FZ[—35H<1+I>[
plr

Let w(r) denote the number of prime divisors of r. If w(r) <9, then

1 1
H 1+—> < H <1+—> = 16.480745 . . ..
plr ( \/Z_) 2<p<23 \/Z_)

If w(r) > 10, then r > [y 09 p = 6469693230. Put m = p, > 29.

For m > 29, as is well known (cf. [16]), []o<,<,,, p > 2™. Therefore, if
w(r) > 10, then 2™ < [, p =1, ie. m < log, r. Taking into account that

the nth prime satisfies p,, > nlogn, and w(m) < 1.6m/logm for every m > 2
(cf. [16]), we have

9) logH<1+—> logH(1+7>

p‘T p<23
<logH(1+—> logH(1+—>§ Z
p<m p<23 \/_ 29<p<m
w(m)
n:29<pn,<m \/7 n=1 nlogn
1.6m/logm 1.6m/logm t1/4 dt

<

dt
§) Vilogt é Vdogt 3/4°

Notice that for ¢ > e? the function t'/%/\/Iogt increases. Therefore, since
for m > 9 we have loglogm < %log(l.ﬁm),

log ]| (1 + —) — log 16.480745 . . .

plr
1.6m/logm dt
) e

1/4
§<1.6 mn ) (logl.6+logm—loglogm)_l/2
logm

1/2 —-1/2
§4<1.6 m > <glogm>
logm 3
1/2

Vdiogr
log2 loglogr’

9
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Thus, for N = 6469693229 and every r € B,

H(” 1)<{16.480745... ifr < N,
i >~ Tog 1
o N 16.480745 . . . ¢ 3083 hiogr  if > N+ 1.

By (7) and (8) we obtain the conclusion of the lemma. w

Now we can complete the proof of Theorem 1(i). Let @ > 1 be a compact
number. Denote by r(a) the product of all prime divisors of a; set (1) = 1.
Consider, further, the subset C'(@ of the compact numbers of the form a2s,
where a € C and s € B, (). It is evident that, if a1 # ag, then Ca) 0 Cla2)
= (), and therefore C' = |, C®, where the union is disjoint. Consequently,

by Lemma 2,

(100 elz)=bi(x)+ Y. br(a)<£)

2<a</z,aeC

<1+ > H<1—m>%)x+3*($)’

2<a<y/x plr(a)

acC
where
* X
|R (33)’ < 35\/E+ Z ‘Rr(a) (E) ‘
2<a<yx
acC

<35vE+ Y ‘Rr(a) <%> ’ + >

2<a<y/z:r(a)=N a<yz:r(a)>N+1
acC acC

with N = 6469693229. Therefore, if 2 < N2, then
|R*(z)| < (3.5 + k1 log z)\/x,
where k1 = 28.841303.... If x > N2, then
|R*(z)| < (3.5 + k1 log z)V/x
+kivzx Z

a<y/z:r(a)>N+1

1 7.443083... Y l0er()
— €

““*loglog r(a)
Y

aeC
where the last sum does not exceed
JToga Nt
l 67'443083 loglogga < ekS loglog vz |o ﬁ
&N

N+1<a<y/z:r(a)>N+1

with k3 = 7.443083/v/2 = 5.263054 . . ..
Moreover, if we replace in (10) the sum }_ .- - .cc by > ¢ then the
error does not exceed (see (4))
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1 V/8.999 ..
o L0 (G VB a8 VB9 o 011800, 7
2 n? = w2\ >4 [ V7] 72 2

n>\/t -
Thus,
1

11
(11) ST (1 )

acC p|r(a)

where R(x) = R*(x) 4+ 0.911890.../x. Hence
ki(logx + ko)\/x if 2 < N2,
gz
(12)  |R@)| <1, <logx o eyt TRV log %)ﬁ o> N2

with N = 6469693229, k; = 28.841303..., ky = (3.5 + 0.911890...)/k; =
0.152970..., k3 = 5.263054.. . ..

It remains to evaluate the sum (11). For a fixed [ € B, denote by C(I)
the set of all compact numbers a with r(a) = [. By (11),

(13) =+ R(x).
Sl 2

Consider the function A : N — R given by

Z 1/a* 1€ B,
A(l) = wecn
0, 1 ¢ B.
It is evident that, if I1,lo € B and (ll,lg) =1, then
A(llz) = Z Z Z JA(l2).

aGC(hlz) aEC’(h) aEC lz)

It follows that A(l) is a multiplicative function. Hence the function f defined
by

ro=TI(1- 5 )aw

|l

is also multiplicative. Consequently ([4, p. 103]),

(14) Zf = [+ @) +r@*) +--)

peP
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Since f(p*) = 0 for k > 2, by (13) we have

ca) = 25 S50+ R() = 55 [0+ F0) + R(2)
=1

peP
6 1 1,1 1
=— <1+(1——)(—2+—4+—8+--->)+R(:¢)
ol p+1/\p* »p* p
6 1 /1.1 1 1
:—2 <1+—<—+—3+—7+T5+"'>>$+R($).
T ep p+1\p p° p' p

Employing the estimate of R(x) given by (12) (with 4-10'° < N?), we obtain
assertion (i) of the theorem.
To prove (ii), note that it is evident that

o (3] [31)+ (31831 -
(- G312 -

T <n<p?, deN

Let

If d > 2 we have exactly d — 1 nonzero terms in brackets. Since

< loglogn — loglog p

d—1
- log 2 ’
we have
n n n n n n
epn)=———=+———+-+ ——— ——+O(loglogn),
p() » p2 p2 p3 p2d1 p2d+1 ( )

where the constant in O(...) equals 1/log2. Hence

-1/1 1 1 1
cp(n):np—(——l———l——4—|—~--+w>—}—O(loglogn)
P

p \p p* p
p—1 s . p—1 © )
=n Y Zp_w -n . Zp_w + O(loglogn),
i=0 i=d

and it suffices to notice that

S ; -1 1 1
n? Zp_2<pT<1+—+P+“')=

p i=d

This completes the proof. m

REMARK 4. In Theorem 1(i), we can reduce k3 to v/2+¢ (at the expense
of enlarging k1). In fact, for small § > 0 and large enough m = m(§) =
2.25/62 : (1-462/3)m
e , according to B. Rosser [12], [[o<,<,,p > ¢ , and we can
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replace (9) by
m/(logm—4)

1 0 dt
1o 1+—>§K5+ — . m>m@
T( ) <o | S momo

(m(6) was chosen with something to spare to satisfy the technical inequality
(1 —38)logm < (1 —26)((logm — 4)(log(logm — 4)))'/?). Then we obtain
for x > 3, instead of (12),

(lo z)
R(z) < K.z € (V2+e) loilogz log .

-2
6215

It can be shown that we can take K. = e

4. Proof of Theorem 2

4.1. Augziliary propositions. Denote by o4(n) the sum of digits in the
base g representation of n € N.

LEMMA 3 ([11]).

ag(n):n—(gq)ZEJ, n e N.

t>1

By Lemma 3 we may express n in terms of ,,(n) and the exponent ey(n)
for which per(™||n!:
(15) n = (p— ep(n) + ap(n).

In [11], the estimate o4(n) < (g — 1)log,(gn) is proved. The following
lemma improves this bound, which will be useful later.

LEMMA 4.

og(n) < (g9 —1)log,(n +1).

Proof. Let o4(n) = (modg—1), where 0 <1 < g—2. Given any k, the

smallest n for which o4(n) = (9 — 1)k + 7 is
n=rg" +(g-1""+g" P+ ) = (r+1)d" -1
= (r+1)g@em=")/(g=1) _ 1,

Hence for every n we have
og(n) <r+(g—1)logy(n+1) — (g —1)log,(r +1).
Now for » = 0 the lemma follows directly, while for » > 1 we have r <

(9 —1)log(r +1)/logg, and so 1 < r < g — 2, since z/log(x + 1) increases at
least for x > 1. n

From Lemmas 3 and 4 we obtain the following estimate.

COROLLARY 1. ey(n) =n/(p — 1)+ Rp(n), where —log,(n+1) < Ry(n)
<0.
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ProroSITION 1. For n > 6 we have n € C’é if and only if there exists
an o > 2 such that n = 2%+ 2 orn = 2% + 3.

Proof. If n is of the required form, then
ea(n) =201 41420724 41=2%  a>2,

and thus n € C5.
Now assume that n € Ch, n > 6. By (15) there exists some a € N so that
ea(n) = 2% and

(16) n = ez(n) + o2(n) = 2% 4+ oa(n).
Further, by Lemma 4,
o2(n) < |logy(n+1)| <n/2, n>6.

Therefore, by (16) we have 2¢ < n < 2% 4+ n/2 and consequently 2% < n <
207150 that o = [logy n]. Taking this into account, we apply o2 to both
sides of (16):

(17) o2(n) = o2(21°22™ + 55 (n)).
Since o9(n) < 1+ |logy(n)| < 2U°82(M] by (17) we have
(18) o2(n) =1+ o2(02(n)), n >6.

Now by (18), and Lemma 3 for g = 2,
oa(n
o2(n) =1+ o3(n) — Z{ 22(t )J
t>1

and therefore Y, [02(n)/2"] = 1. Tt follows that ga(n) = 2 or 3, and (16)
implies that n =24+2o0orn=2+3. =

PROPOSITION 2. If q is an odd prime, then |Ch N C’é| > 2.

Proof. If ¢ = 3, then 3,6 € C5 N C4. Let ¢ > 5. Put k = [logy(q + 1)].
Then k > 3and 257141 < ¢ < 28 —1.1f ¢ = 281+ 1, then by Proposition 1
we have ¢ + 1, q—|—2€CéﬁCé. If ¢ > 251 4+ 3, then 2¢ > 2% 4+ 6 and

g+3<2F+2<2F 13 <2
Therefore, | (2% 4 2)/q| = [(2F +3)/q) = 1,1e. 28 +2, 28 +3c CyN C’é. ]
Later we shall see that the minimal ¢ for which |C} N Cé] =21is ¢ =3T7.

PROPOSITION 3. If p < q are primes so that (¢ —1)/(p—1) is not a
power of 2, then the set 01!7 N C’fl is finite. Moreover, if n € 01!7 N C(!], then

log 2 9
2114 —— -1
"= ( +210gq—1>q
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Proof. We have (p —1)/logp < (¢ — 1)/log q, whence
(p—1)log,(n+1) <(¢—1)log,(n+1), neN.

Therefore, by Lemma 4,

(19) max(o,(n),04(n)) < (¢ —1)log,(n + 1),
and we find
(20) n—(q—1)log,(n+1) - n — op(n) - n—1 .
n—1 n—og(n) n—(q¢g—1)log,(n+1)
Notice that the function
log, =
Yq(x) = r+qg—2

decreases for x > max(q — 2,€?). Let a be the positive root of the equation
log2 + a/2 —a?/8 = alogq. Then a < 1 and we have

2 2
log(2 + «) :10g2+10g<1+%) <log2+ % - %—k% = alogg,

i.e. log,(2 +a) < @, and

2—|—logq(2+a) _ 1
2+a)®+q-2 ¢*

(2 + a)q®) =

Therefore, for n > (2+ a)g®> — 1 we have 7,(n+1) < 1/¢* and consequently
qlog,(n+1) < (n+q—1)/q. By (20),
n—op(n) n—1 q
< = )
n—ogn) n-n/g-1+1/q q-—1

and
n —op(n) > qg—1 > q—2.
n —og(n) q q
Thus
(21) q—2<(q—1)w<q-
n—oq(n

Further, since n € C; N C’f], there exist nonnegative integers «, 3 so
that e,(n) = 2%, e,(n) = 2%, where a > 3, and according to (15) we have
n—op(n) = (p—1)2%and n — oy(n) = (¢ — 1)2°.

Consequently, by (21) we obtain ¢ — 2 < (p — 1)2°# < ¢, whence
(p—1)2°78 = ¢ — 1, which is a contradiction. Therefore, n < (24 a)q¢® — 1.
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It remains to notice that

a=2(((2logq — 1)2 4+ 21og 2)Y/2 — (2log g — 1))

2log?2 1/2
= 2(21 -1 14— —1
(2logg )<< +(210gq—1)2>

log 2 ~ 2log2
(2logg —1)2  2logg—1’

<2(2logg—1)

and the proposition follows. =

COROLLARY 2. If p = 2 and q is a non-Fermat prime, then for n €

C’éﬂC’}lwehave
log 2 9
clg2(1+ -2 )2 -1).
e (o))

In spite of the fact that the upper bound in Proposition 3 is quite conve-
nient, the numerical experiments show that the value of the maximal element
of the set Cz!) N C(!I depends on the distance between (¢ —1)/(p — 1) and the
nearest power of 2 (see Table 2). Now we shall give an estimate which is
more sensitive to this factor.

PROPOSITION 4. Under the conditions of Proposition 3, we have

n ! !
Tog(n +1) < max(a(p,q),b(p,q)) for neC,NC,,
where
p— 1 —flog, =11
a(p,q) = Tozp (1 — 2~ {log S=rhy—1.
q - ]. o g—1y_ _
blp.q) = oo (1= 20T,

and {x} denotes the fractional part of x.

Proof. For n € C;,OC'(!I there exist a > 3, o, B € Z, so that ep(n) = 29,
eq(n) = 26 and by Corollary 1 we have

n
o, n<2r<
og,(n+1) < P

n n
— 1 N<2P <« —
og,(n+1) < 1

Therefore

g@—@—l)@) <9078 < go_(q_l) wyl’
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whence

(22) a—5+b@(rwq—w

<a—p+iog (1 (p-1) 22D

b@ﬂ)>q—1(1_l>‘ﬂ:z@;g)

log q 2 log q
Consequently, if n/log(n+1) < 2(¢— 1)/loggq, then the conclusion of
the proposition is satisfied trivially. Let now n/log(n + 1) > 2(q — 1)/logq
(and certainly n/log(n + 1) > 2(p — 1)/logp). Then

(1 0 2B)

Notice that

> -1,

1 +1
_%Aﬁ_2>>_L

log, (1 —(p—1)
By (22),

-1
a—ﬁ—1<loggz 1<a—ﬂ+1.

We distinguish between two cases:
CAsE 1: |log, Z%H =« — 3 — 1. By the left inequality in (22) we have
log,(n +1 -1
a—ﬁ+b@(r—m—1%§i——l)Sa—ﬂ—1+{b&q }
n p—1
which implies n/log(n + 1) < b(p, q), and the proposition follows.

CASE 2: Llogz g:—“ = a — 3. By the right inequality in (22) we have
log,(n + 1)>

a—ﬁ+{logzz:1}Sa—ﬁ—logz(l—(p—l)

so that n/log(n + 1) < a(p, q), and the proposition again follows. m

n

PROPOSITION 5.

(i) If p < q are primes such that (¢ —1)/(p — 1) is a power of 2, then
n e C; N Cé if n € Cz!? and o,(n) = o4(n). For n > ¢* the converse
implication holds as well.

(ii) If n > 4, p = 2 and q is a Fermat prime, then n € Cy N C’é if and
only if n € Cy and o2(n) = o4(n).

Proof. (i) If n € C’;) and o,(n) = o4(n) then by (15) there exists a

nonnegative integer « such that

n=(p—1)2%+og4(n).
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Moreover, by assumption, there exists v € N so that (¢ —1)/(p — 1) = 27.
Therefore, by (19) and (15),

n=(q—=1)27" 4+ aq(n) = (¢ = V)eg(n) + oq(n),
and hence e4(n) =27 and n € C’;, N Cé.

Conversely, if n € C'I!, N C(!], then by (15) there exist nonnegative integers
« and 3 so that

(23) 2%(p —1) + 0p(n) = 2°(q — 1) + o4(n) = n
under the condition (¢ —1)/(p — 1) = 27. Therefore, by (23),
(24) n-—- Up(n) — 204—/3—’7'

n—og(n)
Furthermore,
(25) 1 <op(n) < (p—1)[log,(n+1)].

Therefore, by (24)-(25),
n—-Dllog(n+1] _ .5, n-1 |
n—1 - ~n—(¢—1)log,(n+1)]

Notice that the function (log,r)/x decreases for x > e. Since 2/p? <

1/2(p—1) for p > 2, we have
lo +1

g+l _

n—+1 P

(26)

2 1
2

<———  forn>p®—1,
2(p—1)

which yields
1
(b= 1)llog,(n+ 1)) < 1=

For n > ¢ — 1 we also have (¢ — 1)[log,(n +1)] < (n+1)/2, and by
(26), 1/2 < 207F=7 < 2. Now (24) implies o,(n) = o4(n).

(ii) Let p = 2 and ¢ be of the form 2¥+1. Since o9(n) # o4(n) forn = 4,5,
and 4,5 & C’é, we suppose that max(6,q) < n < ¢%, and n € C’é N C’é. By
Proposition 1 there exists an a > 2 so that n = 2% 4 4, where ¢ = 2 or 3.
Since o > k, put a = k + ¢, t > 0. Notice that

(n) n oktt g

e,n)=1|—| = |———

7 q 2k +1 |

where i = 2 or 3. For ¢ > 2 we evidently have -l 41 < 2t < 2!, which

2k+1
contradicts the fact that n € C(!l.
Therefore, consider t = 0 and ¢t = 1 only. We obtain four numbers

4 o2=q+1, 2843=¢g+2, 2" y2=2¢ 2FT143=2¢+1,

belonging to C4 N C’é, and for each of them oy(n) = oy(n). =
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Notice that for n = 3 € C5 N C}, we have 02(3) # 03(3).
As an important consequence we obtain the following statement.

PROPOSITION 6. Let q be a Fermat prime.
(i) For a > 2, we have 2°+2 € C(!l if and only if the diophantine equation
(27) q"+q¥=2"+2
1s solvable in nonnegative integers x, y.
(ii) For a > 2 we have 2*+3 € Cé if and only if the diophantine equation
(28) ¢ +¢"+q¢ =2+3
1s solvable in nonnegative integers x, y, 2.
Proof. Follows from Propositions 1 and 5. =

Thus, to describe the set Cé N C(!l for a Fermat prime g, it suffices to find
all solutions of (28) in nonnegative integers.

4.2. Proof of Theorem 2 for non-Fermat primes. We start with several
lemmas.

LEMMA 5. Let q be an odd non-Fermat prime so that 2k—1 43 < q < ok
for some k > 3. If some number n of the form n = 28 4+ i where i = 2
or 3, belongs to Cé, then 0 <1l <k-—1.

Proof. Notice that [ > 0, as otherwise n < g and n ¢ C’é. Put A =2F—q.
Now,

(29) 1<A<2k okl _3_9ok1l_3<y—6.
Furthermore,

_ok+l o : _ oliok _ 1 N ! .
(30) n=2""4+i=2"2"-A)+22A+i=2q+ (22°A+1).

Since, by Proposition 1, n € C'é, we have n € Cé N C'L!], and, by Corollary 1,
n < 3¢%> — 1. Therefore,

n n n
31 eqs(n)=|— +L—J§{—J+2.
31 o) L]J ¢? q
Suppose that [ > k. Then ¢ < 2F < 2!, and by (30),
(32) eq(n) > H >ol 41,

q
On the other hand, by (29)-(31) we have
2'A +3 2l(2F1 - 3)+3
(33) eq(n)gzl+{ + J+2§21+2+{ ( )+ J
q q
3.2 3.2k
! ! +1 _ ol+1

Now (32)-(33) contradict the condition n € CL!]. Thus, [ <k—1. =
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LEMMA 6. Under the conditions of Lemma 5, the number n = 25+ 44,
where 1 = 2 or 3, belongs to C’}I if and only if 2'A 4+ < q.

Proof. 1f 2'A +i < ¢, then by (30),
2l
eq(n) = 2!+ L—J =2,
q
ie, ne C’(!l.
Conversely, let n € C(!]. We distinguish between two cases:

CASE a: | =k — 1. We have n =22¢1 44 ¢ CéﬂCé, where 7 = 2 or 3.
Hence

n 22k—1 +3
4 | < | =5 | <L
(3 ) \‘QQJ — \‘(219—1+3)2J -~
By (29), (30) and (34),
2k—1 A ) ok—1(y — .

(35) eq(n) <2V 4 {%J 1<ty {%J +1.
Since ¢ < 2% — 1, and the function (Zk_l(a: —6) 4+ i) /x increases,

2k—1(q _ 6) 44 - Qk—l(Qk _ 7) +3

. < STl <2t -1

Therefore, by (35),
(36) eg(n) <281 4okl 94—k 1
On the other hand, by (30),
1A+
q J '

If 28=1A 44 > ¢, then (36)—(37) imply 287! + 1 < e,(n) < 2F — 1, which
contradicts the condition n € C’é.

CASE b: | < k—2. Now n < 22#72 1 3, and instead of (32) we obtain
|n/q?| = 0, and therefore instead of (35) we find that

(37) eq(n) > 281 4 {

2l(q —
(38) eq(n) <20 4 {MJ <242 —1) =24t 1.
q
On the other hand, by (30),
2LA 4
(39) eq(n) =2\ + { q+ ZJ

and again we conclude that, if 2/A +4 > ¢, then (38)-(39) contradict the
condition n € C(!]. .

Now we need an additional technical lemma.
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LEMMA 7. The diophantine equation
(40) n2m+1)=2M" 413 m >0, k>0 neN,
has only the following solutions:

1) k=0,m=0,n=2.
2) k=3 (mod4), m =2, n = (282 4 3)/5.

Proof. Let
k=rm+s, 0<s<m.

It is easy to see that

Lk/m]
=0
Therefore,
(41) oktm 13 = (=1)"t12° + 3 (mod2™ +1), m > 1.
If (40) is valid, then by (41),
(42) (=1)""12° +3 =0 (mod 2™ +1).

If r in (42) is even, then 2° —3 = 0 (mod 2™ + 1). This is impossible, since
2% —3 < 2™+1and 2°—3 # 0. If the r is odd, then 2°+3 = 0 (mod 2™ +1),
m > 1. If here m > 3, then 2° +3 < 2! 43 < 2™ 4 1. Therefore, m < 2,
and in addition the case m = 1 is impossible. If m = 2, from (40) we find
n = (282 4- 3) /5. Also notice that if in (40) we have m = 0, then 2n = 2F4-3,
sothat k=0and n=2. u

Now we are able to complete the proof of Theorem 2 in the case of a
non-Fermat prime q.

1) Let ¢ = 2k=1 1 3. First suppose that k > 4, i.e., ¢ > 11. Then by
Lemma 6, we have 25t 4+ 4 ¢ C’é N Cé, i = 2,3, 1 > 0, if and only if
A2 4§ < q=2F143, where A =21 _3. Thus,

(43) 2kt 3l <o lyo =23
If I > 1, this is impossible for £ > 4. Therefore [ = 0 and we have two
elements from C} N C(!], namely
#4+92=2¢—4 and 2¢4+3=2¢—3.
Moreover, in this case ¢ = 2¥~1 +3 € Cy N C’f]. Thus, if & > 4,
C’éﬂCé ={q,2q —4,3q — 3}.

It remains to deal with the case ¢ = 7, k = 3. Here (43) is satisfied if
2l < 6—1i,ie,l=0,1fori=23and! =2 for i = 2. That gives five
numbers from Cé N 0!7: 10, 11, 18, 19 and 34. Moreover, 7 € C’é N 0!7. Thus
|Cy N CY = 6.
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As a simple consequence we obtain the following statement.
PROPOSITION 7.
' ={1,2,3,6,7,10,11}.
Proof. 1t is sufficient to consider the numbers 1, 2, 3, 4, 5, 6, 7, 10, 11,
18,19, 34. u

2) Let ¢ = (2842 + 3)/5, where k = 3 (mod 4). The smallest ¢ > 7 of this
kind is ¢ = 103, obtained for k = 7. The smallest ¢ > 103 is ¢ = 6710887,
obtained for k = 23. Let k > 7. Here

k243 2k_3

A=2F—
5 5
Now by Lemma 6 we have 2"t +i € CoNC,, i = 2,3, 1 > 0, if and only if
ok+l _3_2l 5 ok+2 3
Aolgi= - +Z<q:T+, k> 7.
Hence [ < 2, and in the case [ = 2,
M2 1< oM 13
and ¢ = 2. Thus we have exactly five suitable numbers:
5¢+5 5¢+9
1=0: m=2"+2= q: , ne=2843= q: ;
5 1 5 + 3
l=1: ng=2"4+2= q; , n4:2k“—|—3:%,

1=2: ny=2"242=5¢-1,
so that |Cy N Cy| = 5.

3) Let ¢ > 2! + 5 and ¢ # (2872 4 3)/5. First of all, we will show
that in this case |Ch N C’é] is even. To this end, it suffices to show that the
inequality A -2 4+ 2 < ¢ implies A - 2! +3 < ¢. Indeed, if A- 2/ +3 = ¢ or
(2% — q) - 2! + 3 = ¢, then

g2t +1) =2k 1 3,
and by Lemma 7 we have | = 2, ¢ = (2¥*2 4+ 3)/5, where k = 3 (mod4).
This contradicts the assumption. Therefore, by Lemma 6, 25! 44 € C'é ﬂC’}I

if and only if (2¥ —¢)2' +3 < ¢. Notice that [ = 0 is trivially a suitable case,
which gives two numbers from Cé N Cé, namely, 2¥ + 2 and 2% + 3. In the
case of | > 1, the inequality (2¥ — ¢)2! + 3 < ¢ implies (2% — ¢)2! < ¢ — 5.
Thus, n € Cé N C’é if and only if n = 2Ft! 4+ 4, where i = 2 or 3, and
0<i< Uogz %J. Therefore
(44) chn Y| = 2(1 + {mgQ QJ )

q 2k _ q

This completes the proof of Theorem 2 when ¢ is a non-Fermat prime. u
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4.3. Proof of Theorem 2 when q is a Fermat prime. According to Propo-
sition 6, we need to investigate the diophantine equation

(45) 2°43=¢"+¢"+¢

in nonnegative integers «, x, y, z, where ¢ is a Fermat prime.
We need the following result of G. C. Gerono (1871).

PROPOSITION 8 (see [15, p. 374]|). The diophantine equation 2¢+1 = g*
fora>2 x>2, g>2, has the only solution a =3, x =2, g = 3.

Taking into account this result, we break up the investigation of (45) into
the following cases:

1. ¢ > 17, z,y,2 > 1,
2.q>217,z2=0,z#y

(except the solution o =1+ logy(q — 1), x =y = 1),
3.¢g=3,2=0,z#y

(except the solutions a =2, z=y=1,a=3,z =y =2)
4. ¢ =5, z2=0, z # y (except the solution a =3,z =y =1
5. ¢ =095, x,9y,2 > 1.
4.3.1. CASE 1: ¢ > 17, x,y,z > 1. We start with the following straight-

forward lemma.

LEMMA 8. Ifq = 22h_1+1, h > 3, then the subgroup of (Z/qZ)* generated
by 2 is

)

{(27:0<j<2 M u{g-2 1< <2

PROPOSITION 9. Ifq > 17 is a Fermat prime, then (45) has no solutions
with x,y,z > 1.

thofi It is sufficient to prove that 2% + 3 is not divisible by ¢. Let
q=2%""+1,h>3.1f2™ +3 =0 (modq) then —3 is generated by 2 in
(Z/qZ)*. Using Lemma 8, we easily see that the only possibility is h = 2.

4.3.2. CASE2: ¢ > 17, 2=0, z # y.

LEMMA 9. Ifq = 22h_1, h > 3, is a Fermat prime, then q divides 2™ + 1
if and only if m = 2"k — 2"~ for some k € N.

Proof. Follows from the connection between j and 27 (modm), which is
implicit in Lemma 8. u

Suppose now that in (45) we have z =0, z,y > 1, x #y, ¢ = 22" 4 1,
h > 3. Then ¢|2°~! + 1, and by Lemma 9 we have

a=2"k-1)+2"1 41
for some k > 1, so that
(46) 20222 Ly = (22" 1)t 4 (22 1),
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If £k =1, then
92— (22h_1 + 1)r—1 + (22h_1 + 1)3/—17

whence x = y = 1, contradicting the assumption x # y. Hence k > 2.
Consequently, 27k — 2h=1 > 2h+1 _ 9h=1 5 9h 5o that (46) yields

2=2""24+2""""y 42 (mod 22h).
Thus
(47) z+y=0 (mod22" ),

and in particular x and y have the same parity.
Suppose that, in (46), x and y are both even. Taking (46) modulo 3, we
obtain

24 (22 4 1)+ (22 1)

= (2% ) -1 (22 2 -1y

=2+ 1) -1+ 2022 +1)—1)Y =2 (mod3),
which is a contradiction. Thus, = and y are both odd. Let x = 2] — 1,
y=2m—1,1,m € N. By (47),

I+m=1(mod2¥" 1)

Hence, | and m have different parities. Moreover, by (46),
(48) 22T 4@+ D) = (@ + D) (@ + )™

Notice that, since h > 3, we have 227" +1 = (292" 4 1 = 2 (mod5).
Therefore (22’171 +1)2 = —1 (mod5), and according to (48), since ! and
m have different parities, we have 0 = 92"k=2""1 4 = 92" 2k 4 =
((242"7*)2k=1 4 1 = 2 (mod5). This contradiction shows that (45) has no
solutions with 2 =0, x > 1, y > 1 and « # y. A simple sorting out of other
possibilities gives the following.

oh—1 oh—1 oh—1

PROPOSITION 10. If ¢ > 17 is a Fermat prime then (45) has only the
following solutions (up to permutation of z,vy, z):

erx=19=0,2=0, a=logy(q—1);

erx=y=1 2=0, a=1logy(q—1).

4.3.3. CASE 3: ¢ =3, 2 =0, x # y. Here we investigate the equation
(49) 2942 =3"+ 3.
Since
0 (mod3), « =0 (mod?2),

20l 1 =@3-1)*1+1=
T ( T {2(m0d3), a =1 (mod?2),
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ain (49) is even: a = 2t, t > 2. Rewrite (49) as
(50) A1 42=3"4+3Y, t>2 x,y>1x#uy.
Suppose that, say, x > y. Suppose x,y have distinct parities. Then
37 43V =3Y(3-3"Y"1 1) =0 (mod 4),
which contradicts (50). Next, suppose x,y are both odd. Then
3743V —2=33""1+3"1) =2 =39 D/2 L 9@=1)/2) _ 9 =4 (mod38),

which is again impossible in (50). It follows that xz,y are both even, say,
x = 2r, y = 2u. Substitute this in (50):

(51) 4142=9"4+9" (r>u>1,t>2).
Writing ¢ = 354, where s > 0 and i = 1,2, 3, we easily obtain 22141 =0
(mod9). Thus ¢ = 2 and ¢ = 3s + 2, and instead of (51) we consider the
equation
(52) 05T L 9 —9" 494 r>u>1,5>0,
whence
4=2"42" (mod7).

Since 2! =2, 22 =4, 23 =1 (mod7), it follows that r = u =1 (mod 3).

Put r=3v+1,u=3w+1, v >w > 0. Then by (52),
(53) 43542 L 9 = g3l L g3whl g 5 >0, 5 > 0.
By taking this modulo 5 we have

(-1)*+2=(-1)"" + (=1)“"! (mod5).

Therefore, v and w have the same parity; moreover, v and w are even, and
s is also even.
Put s = 20, v = 2v, w = 2w. Then by (53),

(54) 46042 4 9 — gbrtl 4 gbwrl oy 5 >0,
Let us write (54) in the form
(55) 16 -8%7 +2 =927 +27%), v >w>0.

Now by taking this modulo 19 we have
~3-8% 42 =9(8% 4 8%) (mod 19).
Taking into account that
8* = 642 = 72 = 11 (mod 19),
we have
(56) 9(11" +11¥) 4+ 3 - 119 = 2 (mod 19).

Since 11' =11, 112 =7, 113 = 1;9-11' =4,9-112 =6, 9 - 113 = 9;
3-111 =14, 3-112 = 2, 3-113 = 3 (mod19), we see that the unique
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possibility in (56) is 0 = v = w = 0 (mod 3). Finally, put v = 303, w = 3y,
o =34, 5>~ >0.By (54) we have
2365"1‘4 + 2 — 3365+2 + 336'y+2 ﬁ > ,_y > 0
Consider two cases:
1) y=0, 8> 1. Then
2360+4 = 7 (mod27), ie. 1649279 =7 (mod27),

whence 16 = 7 (mod 27). We have a contradiction.
2) y>1, #>2. Then

2360+4 = 95 (mod 27), ie. 16-49270% =25 (mod 27),

whence 16 = 25 (mod 27). Again we have a contradiction. Consequently, we
have proved the following statement.

PROPOSITION 11. The diophantine equation (49): 2% 4+ 2 = 3% 4+ 3Y does
not have solutions inx > 1,y > 1, x # y.

By a simple sorting out of the possibilities not included in Proposition 11,
using Proposition 8, we obtain the following consequence.

COROLLARY 3. Ifx,y > 0, a > 2 then the diophantine equation 2%+2 =
3% 4+ 3Y has only the following solutions:

ca=4r=y=2;
ea=3zz=2,y=0a=3,z=0,y=2;
ea=2,x=y=1.

4.3.4. CASE 4: ¢ =5, 2 =0, x # y. Here we investigate the equation
(57) 2 4+2=5"+5Y  xy>1,x#y, a>5h.

(It is evident that for & < 4, (57) has no solutions in x > 1, y > 1, x # y.)
Since modulo 5 we have 2! = 2, 22 = 4, 23 = 3, 2¢ = 1, it follows that
in (57), « =4k + 3, k > 1. Thus by (57),

(58) QA3 L9574 5Y k>1,z>1,y>1,z#y.
By taking this modulo 16 we have
2=04+1)"+(4+1)=(z+y)+2 (mod 16).

Therefore, x + y = 0 (mod4), and x,y have the same parity. Taking now
(58) modulo 3, we have

1=(6-1)"+(6—-1)Y =2(—1)" (mod3).
Consequently, both x and y are odd.
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Put x =2/ -1, y =2m — 1. Then | + m = 1 (mod2). Now instead of
(58) we have

(59) 2¥F3 Lo Al 52ml k> 0>1,m>1,
l#m,l+m=1 (mod?2),

ie. 5(2%+3 £ 2) = 25! + 25™, By taking this modulo 13 we immediately
obtain

(60) 22 1 1=0, ie 4% =12 4% =3 (mod13), k> 1.
Since modulo 13 we have
gt=4, 42=3, 43=12, 4*=9, 4 =10, 4°=1,
from (60) we obtain
2k =2 (mod6), ie. k=1 (mod3).
Put k =3r+1, r > 0. Then by (59),
(61) 2Ty =521y s2m=l 1> 1 m>11#m,l+m=1(mod?2).
Further, by taking this modulo 7 we have
4= 2271 _92m=1 e 4l 4 4™ =6 (mod7).
Since 4! = 4, 42 = 2, 43 = 1 (mod?7), it follows that either | = 1, m = 2

3

(mod3) or I =2, m =1 (mod3). By symmetry it suffices to consider only
the first possibility. Put I = 3u+ 1, m = 3v + 2, u,v > 0. Since in (61),
l+m =1 (mod2), we have u + v = 0 (mod 2), and by (61) we obtain

(62) 12T 9 — 50utl 4 56vF3 0 >0, u4 v =0 (mod2).
We shall write (62) in the form
2127 42 = 5. 1257 4 125°°*.
Since 125 = —8 (mod 19), we have
21207 4 9 = 5. 96w _ 963 (1110d 19).

Since 26 = 7 (mod 19), we obtain 2- 7?1 +2=5.7% — 8.7 (mod 19), i.e.
(63) 7FH 47t 4.7 =18 (mod19), ru,v >0, u+v =0 (mod?2).
Notice that modulo 19 we have 7' =7, 72 =11, 72 =1;4-7' =9, 4.7 = 6,
4-73 = 4. Consequently, as is easy to check, we have only three cases in (63):

(a)2r+1=0, u=1, v=2 (mod3),

(b)2r+1=2, u=2, v=2 (mod3),

(¢)2r+1=1, u=0, v=0 (mod3).

CASE (a). Put 2r4+1=32A+1),ie.r =3 +1, u=3+1,v=3n+2,
A &m 20,
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Since v + v = 0 (mod 2), we have £ + 1 =1 (mod 2). By (62),
36A-+19 _ 18647 | r189+15
(64) 2 +2 = I8EHT 4 plantls,

By taking this modulo 125 we have 23018 = —1 (mod 125).
Since min{a > 1:2% = —1 (mod 125)} = 50 and ¢(125) = 100 we have

(65) 36\ + 18 = 50 (mod 100), i.e. 9A =8 (mod25).

On the other hand, notice that 5% + 1 = 15626 = 2 - 13- 601 and 5% = —1
(mod 601). Now by (64) we have

236AH19 1 9 — 5(59)3¢H1 1 125(55)3712 = 5(—1)5T1 +125(—1)" (mod 601).
Taking into account that £ + 7 =1 (mod2), we conclude that, modulo 601,

936AH19 | o — { 130, 7 is even,

—130, 7 is odd,
ie.
(66) 936A18 64, 7 is even,
~ | —66, nisodd.

Now notice that all residues of powers of 2 modulo 601 are:
20 i=1,2,...,9; 2!0 =423 2l =945 212=1490, 2" =379,
oM =157, 215 =314, 216=27, 217 = 54,
218 =108, 29 =216, 220=432, 22!=263,
222 =526, 2% =451, 2*=301, 2®=1.
Now we see that in (66) the residue —66 = 535 (mod601) is impossible.

Therefore 7 is even and 23612 = 1 (mod 601), so 36\ + 12 = 0 (mod 25),
hence 9\ = —3 (mod 25). That contradicts (65).

CASE (b). Put 2r +1 =32 A+ 1)+ 2, ie. 7 = 3XA+ 2, u = 3§ + 2,
v=3n+2, \&n>0.8Since u+v =0 (mod2), we have { + 7 = 0 (mod 2).
By (62),

(67) 936A+31 | o _ 5I86+13 | g187+15.

By taking this modulo 125 we have 236A+30 = _1 (mod 125). Consequently,

as in Case (a) we obtain

(68) 36) + 30 = 50 (mod 100), ie. 9\ =5 (mod25).

On the other hand, again, since 5 = —1 (mod 601), by (67) we have
236M31 19 — 5(59)3%+2 1 125(55)37+2 = 5(—1)¢ 4 125(—1)" (mod 601).

Taking into account that £ + 7 =0 (mod2), we conclude that

936A+31 | o — { 130, 7 is even,

—130, n is odd,
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and as in Case (a) we find that 7 is even and
236024 = 64 (mod 601), 36\ 4 24 = 0 (mod 25),
i.e. 9A = —6 (mod 25). That contradicts (68).

CASE (c). Put 2r +1 = 3(2\) + 1, i.e. 7 = 3\, and u = 3§, v = 3,
A, &,m > 0. Since u+ v =0 (mod2), we have £ + 71 =0 (mod2). By (62),

(69) 936AHT | o _ gI8EH | pl8n+3.
Here we consider two subcases: (¢/) £ > 1, (¢”) £ = 0.
SUBCASE (¢/): £ > 1. By taking (69) modulo 125 we find
23626 = _1 (mod 125).
Therefore, as above 36\ + 6 = 50 (mod 100) and so
(70) 9\ = 11 (mod 25).
On the other hand, by (69) we have
23607 19 — 5(55)3¢ 4 125(5%)%" = 5(—1) + 125(—1)" (mod 601)

and ‘
930MT | 9 = 130, 7 is even,
—130, 7 is odd.

As above we find that 7 is even and 23%* = 1 (mod601). Consequently,
36A = 0 (mod 25). This contradicts (70).

SUBCASE (¢"): £ = 0. By (69),
(71) 236)\"!‘7 _ 3 — 51877+3.
This equation is a special case of the following equation considered in [1]:
1424 = 3b5¢ 4 243¢5/
fora=36A+7,6=0,c=18n+3,d=2,e= f=0.Since a > 7, ¢ > 3, by

[1] the equation (71) has only the solution A = 0, n = 0.
Thus, we proved

PROPOSITION 12. The diophantine equation (57): 2* 4+ 2 = 5% + 5V has
only the following solution: A\=7, x =3, y=1,im A>2, x>y > 1.

4.3.5. CASE b: ¢ =5, z,y,z > 1. Here we investigate the equation

(72) 2+ 3=5"+5Y+5%, z,y,z>1 a>4
Since in (72), 2¢ = 2 (mod5), we obtain A =4t + 1, ¢ > 1. Thus,
(73) ML L 3 = 5% 4 5Y + 5%, tox,y,z> 1.

By taking this modulo 3 we have
2=(-1)"+(-1)Y + (-1)* (mod3).
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By symmetry, it is sufficient to consider the case: x =0, y = z = 1 (mod 2).
Put x =2k, y =2l — 1, z = 2m — 1. Then by (73),

(74) ¥+l 4 3 — 52k 4 521 52m=l kL m > 1.
After multiplying (74) by 5, we consider it modulo 13:
10-16" +2 = —8(—=1)F + (—=1)' + (-=1)™,
ie.
1657 —2 =8(—1)F + (=) + (=)™ (mod 13).

Taking into account that 16! = 3, 162 = 9, 163 = 1 (mod 13), notice that
the expression 8(—1)F + (—1)!*1 4+ (=1)™*+1 4 2 gives a residue of a power of
16 only in case when k, [, m are odd; therefore t = 1 (mod 3). Put k = 2a+1,
l=2b+1, m=2c+1,t=3d+1, a,b,c,d > 0. Then by (74),

(75) 21200 3 — 54H2 L 58 L5t b, d > 0.

Modulo 7 this gives 0 = 24¢+2 — 24b+1 _ 9detl i o since 2 =2 (mod7),
20t = 2% 4 2¢ (mod 7).

Since 2! =2, 22 =4, 23 =1 (mod7), we evidently have three possibilities:

(a) a=b=c=1 (mod3),
(b) a=b=c=2 (mod3),
(c)a=b=c=0 (mod3).

Let us consider each of them.

(a) a=b=c=1(mod3). Puta=36+1,b=3y+1,¢c=35+1,
B,7,8 > 0. By (75) we have

12415 4 3 = 512046 4 p12H5 4 1205 3 4 5 > 0.

Since 5% = —1 (mod 601), we have 22945 = —142.55 — 3 = 236 (mod 601).
However, the number 236 does not appear among the residues of powers of
2 modulo 601 (see above). We have a contradiction.

(b)a=b=c=2 (mod3). Put a =36+2,b=3y+2, c=35+ 2,
B,7,0 > 0. By (75) we have

9l2d+5 4 3 _ 5l26+10 4 512949 5126—&-97 B,7,8 > 0.

By taking this modulo 601 we have 212445 = 5104 2.59 3 = _54_2.53_3 =
324 (mod 601). We again obtain a contradiction.

(c)a=b=c=0 (mod3). Put a =30,b= 3y, ¢c=30, 5,7,0 > 0. By
(75) we have

(76) 21205 4 3 = 512042 | pl2ytl L 512041 3 5 > 0.
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By taking this modulo 601 we have 2'29+5 = 25 4 10 — 3 = 32 (mod 601).
Thus 12d = 0 (mod 25), and so d = 0 (mod 25). Put d = 25X, A > 0. By (76),

2300A5 | 3 — 512042 | 51201 | 512041\ 5 4§ > 0.

Now we show that  or § is 0. Indeed, if 7, § > 1, then 239025 = _3 (mod 25).
Consequently, 300A+5 = 17 (mod 20). This is a contradiction. By symmetry
we can further suppose that 6 = 0 in (76). We have

(77) 2300>\+5 9= 512ﬂ+2 + 512’)/—}—1’ )\767’7 Z 0.

Now we show that also v = 0. Indeed, if v > 1 then taking this modulo 25
gives
23005 = 9 (mod 25), so 300\ + 5= 1 (mod20).

Again we obtain a contradiction.
Thus, v = 0 in (77). Therefore
9300A+5 _ 7 _ 512642

If 6 > 1, then

2300A+5 = 7 (mod 125).
Notice that min{a > 1 : 2% = 7 (mod 125)} = 85. Since ¢(125) = 100, we
have 300\ + 5 = 85 (mod 100), and so 5 = 85 (mod 100). Again we have a
contradiction. Therefore in (74), 8 = 0, 239925 = 32 and A = 0. Hence, we
proved the following statement.

PROPOSITION 13. The diophantine equation (72): 2% + 3 = 5% 4+ 5Y + 57
has the only solution: a =5, x =2, y=1,z=1mzx>y>2>1, a >4

By a simple sorting out of the possibilities not included in Propositions
12, 13, using Proposition 8 we obtain

COROLLARY 4. The diophantine equation 2% +3 = 5* 4+ 5Y 4+ 5% has only
the following solutions (up to a permutation of x,y, z):

ea="72x=3,y=1, 2=0;

ea=5rx=2y=1 2=1;

ea=3,xz=19y=1,2=0;

ea=2,2x=1,y=0,z2=0.

Now we are able to complete the proof of Theorem 2 when ¢ is a Fermat
prime in the following more detailed form:

PROPOSITION 14.
(i) If ¢ > 17 is a Fermat prime, then C’éﬂC’é ={q+1,9+2,2q,2q+1}.
(ii) C3NCL = {3,6,7,10,11,18,19}.

(iii) C5NCE = {6,7,10,11,35,130,131}.
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Proof. (i) According to Propositions 6 and 10 the solution x = 1, y = 0,
z = 0, a = logy(q — 1) of (45) (or its permutation) corresponds to the
elements ¢ + 1, ¢ + 2 of C’é N C’é, while the solution z =1, y = 1, z = 0,
a = logy(q— 1) (or its permutation) corresponds to the elements 2¢, 2¢ + 1.

(ii) According to Proposition 6 and Corollary 3 the solution o = 4,
x =y =2, z=0 of (45) (or its permutation) corresponds to the elements
18,19 of Cy N C’é; the solution a = 2, x = y = 1, z = 0 (or its permuta-
tions) corresponds to 6,7, while the solution « = 3, x = 2, y = 2z = 0
(or its permutation) corresponds to 10,11. Finally, notice that by Propo-
sition 1 the numbers < 5 are considered separately. Among them only
3e€CynNCy.

(iii) According to Proposition 6 and Corollary 4 the solution a = 7,
x =3,y =1, z=0 (or its permutation) of (45) corresponds to the elements
130,131 of C’é N Cé; the solution @ = 5, x = 2, y = 1, z = 1 (or its
permutation) corresponds to 35; the solution @« =3, z =1,y =1, 2 =0
(or its permutation) corresponds to 10, 11, while the solution a = 2, x = 1,
y =1, 2 =0 (or its permutation) corresponds to 6, 7. Finally, 5 ¢ C’é N C’é.
This completes the proof of Theorem 2. =

5. Proof of Theorem 3. 1) Let ¢ be a prime in the interval [2’“_1 + 5,
28 — 1], ¢ # (2" +3)/5. By Theorem 2, |Cy N C;| = 2t if and only if
271 < (¢-5)/(2F —¢q) <2, or

2k‘—|—t—1 +5 2k+t + 5
78 —_— << — k > 3.
(78) iyl <9< i1 >
Put ktt—1 k+t
2P 45 28T 45
Srir1 S g S etAr
Then htt—1 t—1
28Tt — 5. 20 1
Ax = ~ k
TE ety “reit ko)
By the prime number theorem, for A = 1/(2¢ + 1),
A
7(z + Az) — () ~ 1@5’; (z — 00).

Therefore, the number of primes ¢ in [2¥~1 45, 2% —1] for which |C’éﬂC’é| =2t
is

\z Qk+t—1 kE—1
72k logz  (2t+1)(2t714+1) 2F-1(k+t—1)
2t

~ (k — o0),

(2t=1+1)(2t4+1)
whence the first formula of Theorem 3 evidently follows.



Compact integers and factorials 225

REMARK 5. In particular, we see that

[e.e]

2t
2T+ 1)(2 + 1)

t=1

It also follows directly that

(e}

2t = 1 1
=2) -
(21 +1)(28 4+ 1) — <2t1 +1 204 1)

_o 1 1 n 1 1 n 1
~\2 3 3 5 5 '
2) Further, by (78) the lim sup on the left-hand side of the second formula
of Theorem 3 is attained for the sequence

) 2mt 45
Ny = | —a7 = |»
2t+1

t=1

while the liminf of the same expression is attained for the sequence

. \‘2m—1+t+5J

R T

Thus we have

Hge P,g<n: |C’éﬂC}1|:2t}|

lim sup
n—o0 7‘—(”)
L Seen (50  s(BE)
e (5t)
i T (G - x(35)
- 1m om-+t
meee (557)
2kt k+t—1
— lim >k<m W((2t+1)(2t+2)) - 1 lim Dok<m (2 )
T mSoo 7-((22;”_:;) o 2t—1 + 1 m—oo 77(2m+t)

Since by the Bertrand postulate 7(271+1) > 7(2m+%) the classical Stolz
theorem and the prime number theorem yield

Ve w(2mtil)
lim = = lim

m—oo T(2m+t) m—oo r(2mFt) — gr(2m+t-1) =1.

Thus the second formula of Theorem 3 follows.
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Analogously,

. HaeP g<n:|CiNC,| =2t}
lim inf

n—o0 7r(n)

~ i Zkgm—l (77 ( 2;?{5 ) -7 ( 2];:-1;{5 ) )

— 2m71+t+5
meee ( 2t-141 )
2k+t

_ Zkem1 T (@rhey)

= W}LIHOO om+t—1
(2t—1+1)

1 lim Dkemo1 T2 _
2t 4 1 mooo m(2mti=1) 241

6. Some corollaries. Since the function (z —5)/(2¥ — z) increases for
any fixed k > 4, from (44) we obtain the following result.

COROLLARY 5. If q is a prime > 7, then in the estimate

(79) C3 N Cyl < 2(1 + [logy(q — 5)))

we have equality if and only if q is a Mersenne prime.
Further, from (79) and Proposition 2 we have:
COROLLARY 6. If 7 < q < 2*, then

(80) 2<|CiNC| < 2k.

Moreover, the upper bound in (80) is attained if and only if q is a Mersenne
prime.

COROLLARY 7. Ifqg>T7 andn € C'éﬂC’é, thenn < %(q—}—l)Q—l—S. Equality
holds for Mersenne primes > 31.

Proof. From the proof of Theorem 2 it follows that

(81) S, :=max{n:n¢c Cyn C’}I}

19, =3,

131, q=75,

5q¢ — 1, q=(2*%*t1 1+ 3)/5, k> 1,

—{2g+1, q=22"41k>3,

2¢ — 3, =284+ 3 k>3,

ofi+llogs ;k—j]J 43, 2k lyp<g<ok_1,
k>4, q# (282 +3)/5.

Therefore, for ¢ > 31 the maximal value of S, is attained at a Mersenne
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prime ¢ = 28 — 1,k > 5. Thus, for ¢ > 31,

q+1

Sy < (g +1)2008=D] 1 3 = (g +1) S +3=5e+ 1)% +3,

1
2
and this estimate, according to (81), is true for ¢ > 7. m

COROLLARY 8. For q=7 and all non-Fermat primes q> 13, q €
(21 2%) k > 4, that do not have the forms 2" + 3, (2" +3)/5 (n > 3)
and for which

qg—1
(82) {logz T qJ 1k
we have
(83) \CéﬂC’é\ = 2max{a € N: 3m, [2"/q] =291}
Proof. From the equality |2™/q| = 2%~!, we find
2m
84 2T < g < 2mTtL
( ) — 9a—1 +1 q
So, m — a + 1 = k. Therefore, by (84),
+1 2" k
2m—Oé - 2 _
2a—1 +1 > 4,
whence 2/(2F — ¢) > 2071 + 1, 2071 < ¢/(2% — ¢). Thus,
q
maxa =1+ {logQ o _ qJ'
By Theorem 2 it is left to prove that
q q—35
85 logg — | = [logy =—|.
(83) {Og22k—QJ {OgQQ’“—QJ
If (85) is not true, then there exists 5 € N so that
qg—>5 3 q
<2 <
2k — ¢ —2k—¢g’
so that
(86) kP < q(2° +1) < 2P 4 5.

But if ¢(2° + 1) = 2¥+7 + 3, then by Lemma 7, ¢ has the form (2" + 3)/5,
contrary to assumption. Thus by (86),

q(2% +1) =2MF8 11
whence 3|k and 8 = |log, 2‘1,€__qu. The latter contradicts (82). In addition
notice that formula (83) is also true for ¢ =7. m

COROLLARY 9. For everyt > 1 the set of primes
{ge P:|C5NC,| =2t}
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1s infinite. Moreover, every arithmetic progression a,a + d,a + 2d, ... with
(a,d) =1 contains infinitely many primes of this type for every fived t.

Proof. Tf, for a fixed t, zp = (281 +5)/(2"=1 + 1), then the interval
(78) contains only primes under consideration and has length asymptotically
equal to zp/(2! + 1) (k — o0). Consequently, as is well known [10], it con-
tains asymptotically zp/p(d)(2! + 1) log z; primes belonging to the above
arithmetic progression. m

7. Proof of Theorem 4. In the theory of the existence of primes in
short intervals the best result known to date is due to Baker, Harman and
Pintz [2]. They showed for sufficiently large x the existence of a prime in the

interval (z,z + 2%°2%) and, moreover, obtained the estimate
0.525 $0.525

87 ' — > 0.09 .

(87) (o +20%) — m(a) > 009 T

According to Theorem 2 the interval (78) contains only primes ¢ € (281 +3,
2 — 1), k > 4, for which [C} N Cy| = 2t if g # (2572 + 3) /5.

We shall show that for each ¢ € [1,0.475k — 1] (k > 5) the interval (78)
contains an interval of type [,z + 2%5%%]. Indeed, we have

2k+t +5 B 2k+t—1 +5 N 2k+t—1 -5- 2t—1
2041 2t-l1 (214 1)(20 4 1)
2k+t—1 +5 N 2k—t—1 - 2k+t—l +5 N 20.5251‘:

20141 - o2l 41
ok+t—1 4 5 ok+t—1 4 ok 0.525
T2 ( 2011 | )
oktt=1 4 5 /okti=1 4 50525
> .
- o2l 41 <2t—1+1)

By (87) for sufficiently large k the number of primes for which |C} ﬂC’fI| =2t
with ¢ € [1,0.475k — 1] is not less than

0.09 9k+t—1 +5 0.525 | ok+t—1 + ok 0.09 20.525(k—1)
( 211 1 ) /T 2 hog2 k

REMARK 6. Notice that if H. Cramer’s 1937 conjecture (|8, A2])

= 1’
n—oo (lnpn)2

where p,, is the nth prime, is true, then in Theorem 4(i) for large enough &
the number |C} N C’é| assumes all even values in the interval [2, | (1 —¢)k]].
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8. Proof of Theorem 5. Notice that from Theorem 2 it follows that
q(1) =37, q(2)=13, q¢(3) =5,
q(4) =29, q(5) =31,
Let ¢t > 5. For k > t consider the number

(88) 0=o(k,t) =min{j >2F"t:3<2" —jec P}

It is evident that

(89) 2kt <o, e k—t<|log, ol
LEMMA 10. If

(90) g=2"-peP,

then in (89) equality holds if and only if

(91) CyNCyl=2t, t=>5.

Proof. Tt is evident that ¢ > 2¥~! and o < 2¥~1. Let (91) be valid. Then
by Theorem 2 for the prime ¢ of (90) we have

q—5 2k —0—5
<1+ [logy(2" — 0= 5)] — [logy 0] < 1+k —1— [logy o]
:k—l_lOg2QJ,

ie. k —t > [logy 0]. Therefore, in (89) we have equality.
Conversely, let

(92) E—t = logl.
Then by Theorem 2 and (90) we have

— 9k _ 5
ICynCL| = 2(1 + {log2 T _‘ZJ) = 2(1 + {log2 75 5J>

< 2(1 + [logy(2T1E22) — o —5)| — |log, o))
2(1 4+t + [logy o] — 1 — [logy 0]) = 2¢.

On the other hand,

\CéﬂC’é| :2<1+ {logQ _gg 5J>

> 2(1+ [ |logy(2" — 0 — 5)] —logy o))
2(1 + [logy(2" — 0 — 5)] — logy o))
20+k—-1—-k+t) =2t

So, |C4NCY =2t.
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COROLLARY 10. Let

(93) ko(t) = min{k >t : k —t = |logy o(t, k)] }.
Then
(94) g(t) = 200 — o,

Now we complete the proof of Theorem 5. Put z = 2F — 20-525% Then

0.525
x+x0.525 — 2]{: _ 20.525k’ +20.525k (1 _ 1 > — 2k5 0525 < 2k’

90.475k "~ 90475k
So by (88)—(89), taking into account the above result of Baker, Harman and
Pintz, for sufficiently large k, say k > k1, we have

2k7t <o< 2max(0.525k,k7t).

Therefore, the condition k& — ¢t = |logy o(¢, k)] in (93) is satisfied at least for
k > max(t/0.475, k1). Consequently, for large enough ¢, namely ¢ > 0.475ky,
we have kg < [40t/19]. By (94) we conclude that g(t) < 2[40t/191 4

REMARK 7. According to Cramer’s above-mentioned conjecture the in-
terval (x, z+2%) must contain a prime for sufficiently large =, namely z > x..

In this case in the same way one can prove that for ¢ > (1 — ¢)x. we have
q(t) = olt/(1—€)]

9. Numerical results. 1) Theorem 2 and Proposition 3 give a possibil-
ity to fill the following tables, except for the cases 3 < p < ¢ < 47 for which
(g—1)/(p—1) is a power of 2.

Table 1. The cardinality of Cz!o N C!q for 2 <p<q<A47

g\p| 2 3 5 7 11 13 17 19 23 29 31 37 41 43
7
77
6 8

11 3 4 9 22

13 |4 3 11 7 23

17 |4 7 7 13 23 22

19 (3 2 10 16 38 25 42

23 |4 0 7 28 28 53 29 37

29 |8 3 16 13 15 24 48 39 40

31 |10 6 25 11 18 21 61 46 39 90

37 12 3 8 14 36 22 36 ? 52 50 63

41 2 3 21 7 36 27 42 73 53 52 96

43 |2 3 5 21 26 39 25 33 109 57 55 81 147

47 |4 3 10 32 19 69 26 29 79 68 63 64 93 120
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Notice that for the exceptional cases the count up to 10® shows that
C5NC51 225, |C3NCigl 210, |C3NCig 223, |C7NClg| = 66,
|Cl,NCy| > 76, |ClgN Chy| > 175.

Table 2. The maximal elements M, , of the sets C;, N Cj, 2 < p < g < 47

g\p| 2 3 5 7 11 13 17 19 23 29 31 37 41 43
19

131 2

7 34 20 20

11 19 20 24 98

13 | 35 20 38 ? 54

17 | 35 ? ? 50 50 38

19 [ 35 20 39 55 170 56 152

23 | 67 - 39 202 98 390 68 94

29 (259 71 260 55 54 116 144 86 68

31 | 575 518 524 55 92 64 278 154 92 260

37 | 67 71 74 104 332 110 152 ? 184 86 154

41 | 67 71 74 202 ? 204 84 170 368 122 92 332

43 | 67 71 74 202 175 207 84 94 730 128 128 184 696

47 | 131 71 134 1550 98 1550 140 94 390 234 140 110 204 386

Notice that for the exceptional cases the count until 108 shows that

M35 > 524306, Ms17 > 262160, M5 17 > 262164,
M7 13 > 25165860,  Mij141 > 20503,  Mig 37 > 18874439.
Further, notice that Proposition 4 gives a qualitative explanation of the

variation of the numbers M, ,, in particular, near the “resonance points”
(p,q), for which (¢ —1)/(p — 1) is a power of 2.

2) The list of primes < 108 for which formula (83) of Corollary 8 is not

true contains only 25 primes. They are:
3,5,11,13,17,19,43,67,103, 131, 241, 257,683, 2731, 4099, 32771, 43691,
61681, 65537,65539,174763,262147,2796203, 6710887, 15790321.

3) Ewaluation of the function q(t). Notice that formulas (88), (93), (94)
give a simple algorithm for finding the values of ¢(¢). It follows from The-
orem 5 that the running time of this algorithm is O(¢) with the implicit
constant in O(...) not exceeding 40/19.

EXAMPLE. Lett =6.1f k = 6, then o = 64—61 = 3, but 6 # 6—|log, 3|;
if k =7, then o = 128 — 113 = 15, but 6 # 7 — |log, 15 if k = 8, then
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0 = 256 — 251 = 5 and 6 = 8 — |logy 5]. Therefore, by (93), (94), ko = 8,
0 =5, and ¢(6) = 28 — 5 = 251.

Table 3. Values of ¢(t)

t 1 2 3 4 5 6 7 8 9 10
qt) 26 —-27 2 -3 22 -3 2°-3 2° -1 28 -5 271 2°-3 203 22_5

t 11 12 13 14 15 16 17 18 19
q(t) 22 —3 2117 28 1 21T _9 218 _ 11 218 _5 217 _1 220_5 9219

t 20 21 22 23 24 25 26 27 28
q(t) 2% —15 222 -3 226 _97 224 3 226 _3 230 _35 231 61 23 —19 229 -3

4) On numbers n for which e,(n) and ey(n) are powers of an odd prime v.
The following two tables are based on a natural generalization of Proposi-
tion 3. Let v > 2 be a prime. For a prime p define C’,!j’p ={neN:3Jace
Z, ep(n) = v*}. One can prove, similarly to Proposition 3, the following
generalization.

PROPOSITION 15. If p < q are primes so that (¢ —1)/(p—1) is not a
power of v, then the set Cl!,’p N C’}w is finite. Moreover, if n € C'l!,m NnC

l/’q’
then w9
0og 2
20l + —————— —1].
e [q’ ( +2logq—1>q >

Notice that if v > 3 and p = 2 then (¢ —1)/(p — 1) is never a power
of v and thus all sets C},}Q N Cl!,jq are finite. In addition consider the case
p=2,q=v.

PROPOSITION 16. For v > 5 we have \C!Mz NC,

1/,1/‘

=0 or?2.

Proof. Let n € CL,Q N Cl!,’l,. By Proposition 16 for ¢ = v > 5 we have
log 2
2logh —1
Therefore, e,(n) = 1 or v. Notice now that n ¢ [2v, 12 — 1] (else 2 < e, (n) <
v—1)and n & [1?,2.62...0% — 1] (else e,(n) > v+ 1). Thus, n < 2v — 1
and e,(n) = 1. Further, n > v > 5, therefore ez(n) > 3, and consequently
ea(n) > v. Moreover, ez(n) < n < 2v — 1. Thus, ez2(n) = v, and if n is even,
alson+1¢€ C'!VQ N C!V’l,. Since e2(n —2) < v —1and ea(n+2) > v+ 1, we

have \C!Mz NC,,[=2or0. =

n§2<1+ >1/2—1:2.62...1/2—1.

In addition, notice that if an even n € 01!/,2 N C',!W is given then by
Lemmas 3, 4 using the facts that n < 2v — 2, e3(n) = v we have

v+1<n=en)+oz2n) <v+logy(n+1)
<v-+logy(2v—1) <v+1+logyr.
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Thus, if for some even n € [v+ 1,v + 1+ log, ) we have ea(n —2) <v —1
and es(n) > v + 1, then

ChonGC,,, =0.

According to Proposition 16 we have a partition of the set of all primes
> 5 into two subsets. In Table 4 we provide the value of |C'!V72 N C!V,V] for
v < 200.

Table 4. The numbers \, = |C},,NC, [, 5 < v < 199

v 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
A 02 2 0 0 2 2 0 2 0 2 0 2 2 0 0 2

v 71 73 79 &8 89 97 101 103 107 109 113 127 131 137
A2 002 2 0 2 2 2 0 2 0 2 2 2 2

v 139 149 151 157 163 167 173 179 181 191 193 197 199
A O 2 0 0 0 0 2 0 2 2 2 2 0

Table 5. The cardinality of Cém N Céﬁq for2<p<qg<6l

g\p|2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
3 3
1 1
0o 3
1 (0 1 9
13 10 3 ? 6 14
17 10 9 3 16 10
19 |0 2 1 ? 7 26
23 |2 1 5 5 11 10 11 22
29 |0 1 6 2 33 13 12 10 22
31 |0 3 10 6 ?7 20 14 12 15 61
37 10 3 ? T 7 ? 17 18 14 26 38
41 |0 3 4 7T 3 18 28 19 18 17 22 59
43 |2 6 2 11 1 10 34 20 20 15 19 50 97
47 |2 6 0 14 0 5 58 36 23 18 16 34 58 77
53 |2 12 0 21 7 0 26 76 28 24 22 21 34 46 70
59 |2 1 3 4 11 1 30 46 29 28 22 23 27 46 82
61 2 0 5 11 5 22 58 29 30 24 21 25 38 74 156

Notice that for the exceptional cases for which (¢ — 1)/(p — 1) is a power
of 3, the count up to 10% shows that



234 V. Shevelev

! | | | | ! | |
|C33NC57] > 8, |C55NC343] > 18, |C33NC5 19| > 7, |C37NC5 19| > 29,
| | | | i !
[C311NC531] 265, [C35N0C537] 217, |C313NC5 37 > 75.

REMARK 8. One can prove, similarly to Proposition 4, the following
generalization that gives a qualitative explanation of the variation of the
maximal elements M, ,, , of the sets C’l!,m N C’,!j7q.

PROPOSITION 17. If v is an odd prime and p < q are primes so that
(g—1)/(p—1) is not a power of v, then for n € C,i,p N C,!j,q we have

n
- <
log(n+1) ~ max(a, (P, q), by (P- 0))
where
p—1 —{log, =1} —1
v 3 pr— 1 —_ 17 —1 ,
av(p; q) o8 (1-v 1))
q— 1 {log q—l}fl 1
b,(p,q) = 1— vop—1 )
(p,q) oz (1-v )

10. Open problems

1. Is C;) infinite for p > 37

Due to the fact that C), is of density close to 1 by Theorem 1, we expect
the answer to be in the affirmative.

2. Is the set Cz!? N Cé finite for primes 3 < p < ¢ with (¢—1)/(p—1) a
power of 27

3. Does the diophantine equation o,(n) = 04(n), where p # ¢ are fixed
primes, have infinitely many solutions?

4. Ts the set of primes ¢ for which |C N Cé] = 3 infinite?

Notice that by Theorem 2 this question is equivalent to the question
about the infinity of primes of the form 2" 4 3.

5. Is the set of primes ¢ for which |C} N Ct!1| = 5 infinite?

By Theorem 2, this question is equivalent to the question about the
infinity of primes of the form (2" + 3)/5.

6. Is the set of primes ¢ for which |C;, DC(!]| # 2max{a € N : Im, |2 /q]
=221} infinite?

The question arises in view of Corollary 8.

7. Find a generalization of Theorem 2 to the set C’,!w NnC!

g V< q (see
Sections 7, 4).

REMARK 9. Together with Proposition 15, one can obtain a generaliza-
tion of Proposition 5: if p < ¢ are primes so that (¢ —1)/(p — 1) is a power
of v (> 3), then n € C,!,,p N C,i,q ifn e C,!,,p and op(n) = o4(n) (and for
n > g2, only if).
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Moreover, if we call the primes of the form 1+ (v —1)v* v-Fermat primes,
then for n > 2v, p = v and a v-Fermat prime ¢ (cf. Proposition 5(ii)) we
have: n € Cl!,’l, ﬂC’,!m if and only if n € C',!W and o, (n) = o4(n). Moreover, as
in Proposition 1 one can prove that for n > v3 — 12 + v we have: n € C',!/,,/ if
and only if n has the form (v—1)v*+v+i,a > 2,1 =0,1,...,v—1. Taking
into account that [2v,13 — v% +v) N Cl!,’y = (), we conclude that if n > 2v
and ¢ is a v-Fermat prime, then there is a bijection between C’!V’l, N C!V’q and
the set of solutions of the diophantine equation

2v—1
qui:(y—l)yo‘—}—QV—l, v>2,
j=1
in integers a > 2, 0 < 7 < -+ < x9,_1 (cf. Proposition 6).
8. Is the set {p € P: |C'I!)72 N C;7p| =t} infinite a) for ¢ = 0; b) for t = 27

REMARK 10. Notice that this question for ¢ = 2 is equivalent to the
question of infinitude of primes of the form p = e3(n), n € N. E.g., for the
Mersenne primes p = 2¥ — 1,k > 3, we have es(p + 1) = p. Thus, in this
case |C’]!D72 N C’;,,p\ = 2. On the other hand, for the Fermat primes p = 2* +1,
k > 2, we have ea(p+1) =p—1and es(p+3) = p+1+0p5. Thus, for each
Fermat prime p > 5 the set C’;),Q N Clg’p is empty.

Analogously, one can show that for a prime p of the form p = 28 + 2! —1,
2 <1 <k—1, we have e3(p + 3) = p. Thus, ’C;!),z N Cz!)7p| = 2. On the other
hand, for a prime p of the form p = 2 —1, 3 <1 < k, we have ea(p+1—2) < p,
e2(p + 1) > p. Therefore, 01!7,2 N Cé),p = (), etc.
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