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Lucas sequences whose nth term is

a square or an almost square

by

A. Bremner (Tempe, AZ) and N. Tzanakis (Iraklion)

1. Introduction. Let P and Q be non-zero integers. The Lucas se-
quence {Un(P,Q)} is defined by

(1) U0 = 0, U1 = 1, Un = PUn−1 −QUn−2 (n ≥ 2).

Historically, there has been much interest in when the terms of such se-
quences are perfect squares (or higher powers), and we summarize here the
numerous and diverse results. Ljunggren [9] shows that if (P,Q) = (2,−1)
and n ≥ 2, then Un is a perfect square precisely for U7 = 132, and Un = 22

precisely for U2 = 2. The sequence {Un(1,−1)} is the familiar Fibonacci
sequence, and Cohn [5] proved in 1964 that the only perfect square greater
than 1 in this sequence is U12 = 122. Ribenboim and McDaniel [17] show
that if P is even and Q ≡ 1 mod 4, then Un(P,Q) = 2 imposes neces-
sary conditions on the prime factorization of n. Earlier, in [16], the same
authors show with only elementary methods that when P and Q are odd,
and P 2 − 4Q > 0, then Un = 2 only for n = 0, 1, 2, 3, 6 or 12; and that
there are at most two indices greater than 1 for which Un can be square.
They characterize fully the instances when Un = 2, for n = 2, 3, 6. Brem-
ner & Tzanakis [2] extend these results by determining all Lucas sequences
{Un(P,Q)} with U12 = 2, subject only to the restriction that gcd(P,Q) = 1
(it turns out that the Fibonacci sequence provides the only example). Un-
der the same hypothesis, all Lucas sequences {Un(P,Q)} with U9 = 2 are
determined. In a later paper, the same authors [3] show that if n = 2, . . . , 7
then Un(P,Q) is square for infinitely many coprime P,Q and determine all
sequences {Un(P,Q)} with Un(P,Q) = 2, n = 8, 10, 11.

We discuss in this paper the more general problem of finding all inte-
gers n, P , Q, for which Un(P,Q) = k2 for a given integer k. Results of
Pethő [14], Shorey and Stewart [19], and Shorey and Tijdeman [20], show
the finiteness of the number of solutions of Un(P,Q) = k2 for fixed P,Q.
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Actually, these results are much more general as their scope is not only
squares and Lucas sequences, but perfect powers in general, in a much larger
class of second order recurrence sequences. The results are effective, but not
explicit. Yabuta [23] gives some special results concerning squares in the
Lucas sequences (effective, but not explicit), proved by elementary means.
When k is restricted to the possibilities 1, 2, 3, 6 several authors have given
specific results as follows. Mignotte and Pethő [10] show that if P ≥ 3,
then Un(P, 1) = 2 for n ≥ 3 has exactly the solutions U4(338, 1) = 62142,
U6(3, 1) = 122; and further, again for P ≥ 3, that Un(P, 1) = k2, k = 2, 3, 6,
has no solutions for n ≥ 4. Nakamula and Pethő [12] show that if P ≥ 1 and
n ≥ 4, then Un(P,−1) = m2 implies (P, n,m) = (1, 12, 12), (2, 7, 13); that
Un(P,−1) = 2m2 implies (P, n,m) = (1, 6, 2), (4, 4, 6); that Un(P,−1) =
3m2 implies (P, n,m) = (1, 4, 1), (2, 4, 2), (24, 4, 68); and Un(P,−1) = 62

has no solutions.
If n0 ≥ 8 is fixed, then for fixed k it is shown here that there are at

most finitely many coprime P,Q for which Un0
(P,Q) = k2 (in fact, for

n0 ≥ 9 this follows trivially from either Faltings’ Theorem or from Darmon
and Granville [7]). More generally, we consider the problem of explicitly

determining all integers n = mn0 and P,Q such that Un(P,Q) = k2, under
the hypothesis that the prime divisors of m belong to a prescribed finite set
of primes. To put this problem in context and give some general motivation,
we make the following remarks about the equation un(P,Q) = “almost”
rth power, where un is a second order recurrence sequence defined by un =
Pun−1−Qun−2. The associated problems, of types (i)–(vi), are summarized
in Table 1, in which the indication c denotes known, the indication x denotes
unknown. The final two columns indicate bibliographic references for the
appropriate problem type.

Table 1

Type (P, Q) n r References Comments

(i) c x c [5], [9]

(ii) c x x [4] an explicit result, highly technical

[14], [19], [20] finiteness results

(iii) x c c [2], [3]

(iv) x x c [10], [12] P unknown, Q prescribed as ±1

[16], [17] P, Q restricted, elementary methods

[23] finiteness results

(v) x c x

(vi) x x x

Problems of type (i) in general lead to explicit Thue–Mahler equations,
with associated intricacy of computation (the above papers are exceptions,
[5] using only elementary methods, and [9] avoiding Thue–Mahler equa-
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tions). See Section 4 of this paper for examples of type (i) with r = 2.
Problem (ii) is very difficult. A solved example of this type may be found in
Bugeaud, Mignotte and Siksek [4]. Problem (iii) leads to solving hyperellip-
tic or superelliptic equations. Bremner and Tzanakis [2], [3] solve problems
of this type. Problems (iv), (v), (vi) are of essentially strictly increasing
difficulty. Problem (iv) is already very difficult, though may be treated by
elementary methods under certain restrictions on P,Q such as in [16], [17].
The problem referred to above that we study in this paper (viz. Problem 1
of Section 2) is a restriction of problem (iv). Its solution reduces to two
separate steps, which may be succinctly described as follows: first, that of
finding the finitely many P,Q satisfying Un0

(P,Q) = k02, where k0 runs
through a finite set of square-free integers whose prime divisors are those
of m and/or k; and second, for each such pair P0, Q0, finding all integers
n with n0 |n and Un(P0, Q0) = k2 (in fact to find all such n at this stage,
the requirement that n0 |n can in principle be relaxed). The first step de-
mands finding explicitly all rational points on certain curves of genus greater
than 1. Although this task has in general not yet been proved to be effective,
in any particular example of “reasonable” nature, there is expectation that
an explicit determination of all points may be obtained. For example, the
papers [2], [3] perform this computation in the case k = 1, 8 ≤ n ≤ 12; see
also the relevant bibliography therein. The second step is shown to reduce
to solving finitely many Thue–Mahler equations, which, at least in principle,
are explicitly solvable; see Tzanakis and de Weger [21].

The layout of the paper is as follows. Sections 2, 3 show that Problem 1
has an effective solution. In Section 2, finiteness of the number of solutions
(P,Q) to Un0

(P,Q) = k2, n0 ≥ 8, is established (of course, explicitly finding
these solutions may be very difficult). The main result is Theorem 2.1. In
Section 3, we show that for fixed P,Q, k, finding n such that Un(P,Q) = k2
leads to solving finitely many quartic Thue–Mahler equations, which in prin-
ciple may be effectively solved. Section 4 illustrates the methods by ex-
plicitly finding all P,Q, n with Un(P,Q) = k2, where k = ±1,±2 and n
is a power of 2. The main result is Theorem 4.2. Its proof requires Theo-
rem 4.1 (which solves problems of type (iii)), with proof of this theorem given
in Section 5. It also requires solving two Thue–Mahler equations, namely
u4 − 17v4 = ±2z+2 and u4 − 84v4 = 17z, which are solved in Sections 6
and 7, respectively.

2. Preliminaries. We consider the Lucas sequence with parameters
P,Q, defined by

U0(P,Q) = 0, U1(P,Q) = 1, Un = PUn−1 −QUn−2 for n ≥ 2
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and the associated Lucas sequence

V0(P,Q) = 2, V1(P,Q) = P, Vn = PVn−1 −QVn−2 for n ≥ 2.

The characteristic polynomial t2 − Pt+Q has discriminant D = P 2 − 4Q.
Throughout this paper we assume that

(2) PQ 6= 0, gcd(P,Q) = 1, D 6= 0.

We will often use various properties of the Lucas sequences, which can be
found, for example, in the first two sections of [15].

For any non-zero integer x we define

P(x) =

{ {1} if |x| = 1,

set of primes dividing x if |x| > 1.

Problem 1. Let k 6= 0 and n0 > 1 be fixed integers. Let S be a fixed

non-empty finite set of primes. Find all integral triads (m,P,Q), under the

constraint (2), for which

P(m) ⊆ S, Un0m(P,Q) = k2.

Until the end of this section we will often write, for example, Un instead
of Un(P,Q), in order to avoid overloaded notation. Put n0m = n (then, of
course, Un0

|Un); also, put d = gcd(Un0
, Un/Un0

). By results of Lehmer [8]
(see also (2.2) of [15]), d |m (1), hence P(d) ⊆ P(m) ⊆ S. On the other
hand, the relation Un = k2 can be written

Un0

d
· Un/Un0

d
= k2,

where the factors on the left-hand side are relatively prime; hence

(3) Un0
/d = ±k02,

where k0 is a positive integer with P(k0) ⊆ P(k). Equation (3) therefore
reduces to

(4) Un0
(P,Q) = ±pi1

1 · · · pir
r 2, i1, . . . , ir ∈ {0, 1},

where

{p1, . . . , pr} ⊆ P(k) ∪ P(d) ⊆ P(k) ∪ S.
In general, if n0 ≥ 8, then any equation (4) has only finitely many solutions
in relatively prime integers P,Q. Indeed, we have the following result.

Theorem 2.1. Let k, n0 be fixed non-zero integers with n0 ≥ 8. Then

Un0
(P,Q) = k2 can hold for at most finitely many relatively prime integers

P,Q.

(1) The assumption P > 0 made in [15] does not affect the result, as Un(−P, Q) and
Un(P, Q) differ at most in sign.
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Proof. For n0 odd, we have Un0
(P,Q) = Pn0−1Un0

(1, Q/P 2), so that
Un0

(P,Q) = k2 implies that the curve Un0
(1, x) = ky2 contains a ra-

tional point with x = Q/P 2. For n0 even, we prove by induction that
Un0

(P,Q) = PU ′

n0
(P,Q), where U ′

n0
(P,Q) ∈ Z[P,Q], with U ′

n0
(P,Q) ho-

mogeneous in P 2, Q of degree n0/2 − 1. Also by induction, U ′

n0
(P,Q) ≡

n0(−Q)n0/2−1/2 mod P (indeed, modP 2), so that the greatest common di-
visor of P and U ′

n0
(P,Q) divides n0/2. Thus Un0

(P,Q) = PU ′

n0
(P,Q) = k2

implies that U ′

n0
(P,Q) = k′2, for k′ one of the finitely many divisors of

kn0/2. But Un0
(1, Q/P 2) = U ′

n0
(1, Q/P 2) = P 2−n0U ′

n0
(P,Q), so that the

curve Un0
(1, x) = k′y2 contains a rational point with x = Q/P 2. The poly-

nomial Un0
(1, x), of degree ⌊(n0 − 1)/2⌋ has distinct roots: Schinzel [18,

formula (70), p. 58] gives this without proof, and for completeness we in-
clude a proof below. The genus of the hyperelliptic curve Un0

(1, x) = k′′2
(k′′ = k, k′) is accordingly ⌊(n0 − 3)/4⌋, so at least equal to 2 when n0 ≥ 11,
and the theorem will follow for n0 ≥ 11 from Faltings’ proof of the Mordell
Conjecture.

Write un0
(x) = Un0

(1, x), so that un0
(x) = un0−1(x) − xun0−2(x), u0(x)

= 0, u1(x) = 1. Solving the recurrence yields

un0
(x) =

1√
1 − 4x

(zn0 − zn0), z =
1 +

√
1 − 4x

2
, z =

1 −
√

1 − 4x

2
.

It follows that the ⌊(n0 − 1)/2⌋ zeros of un0
(x) occur where zn0 = zn0, i.e.

where z = ζz, ζ an n0th root of unity, i.e. where
√

1 − 4x = (ζ − 1)/(ζ + 1).
Thus the roots of un0

(x) are given specifically by x = ζ/(ζ + 1)2, as ζ runs
through the n0th roots of unity. Put ζ = e2πij/n0, 1 ≤ j ≤ ⌊(n0 − 1)/2⌋;
then the roots xj satisfy

x−1
j = ζ + 2 + ζ−1 = 2 + 2 cos

2πj

n0
= 4 cos2

πj

n0
.

Thus for 1 ≤ j ≤ ⌊(n0 − 1)/2⌋ we obtain ⌊(n0 − 1)/2⌋ distinct roots, as
required.

It remains to deal with 8 ≤ n0 ≤ 10, when the corresponding equations
define a curve of genus 1 in weighted projective space.

Case n0 = 8. Now U8 = k2 implies

(5) P = λ1a
2, P 2 − 2Q = λ2b

2, P 4 − 4P 2Q+ 2Q2 = λ3c
2,

with finitely many possibilities for squarefree λi ∈ Z, i = 1, 2, 3. Eliminating
P and Q at (5) yields

(6) −λ4
1a

8 + 2λ2
1λ2a

4b2 + λ2
2b

4 = 2λ3c
2,

and there may of course be infinitely many solutions to this equation: if the
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elliptic curve

(7) −λ4
1A

4 + 2λ2
1λ2A

2B2 + λ2
2B

4 = 2λ3C
2

has positive rank, then a point (A,B,C) leads to the point on (6) given
by (a, b, c) = (A,AB,A2C). However, with the demand that (a, b) = 1, we
show that there can only be finitely many solutions, as follows.

Let (U0, V0,W0) be an integer point on the underlying quadric

(8) −U2 + 2UV + V 2 = 2λ3W
2;

then by standard arguments (see, for example, formulas (20) in Section 61
of [11]), the integer primitive solutions of the quadric (8) are of type

(U, V,W ) = (((U0 − 2V0)u
2 − 2V0uv + U0v

2)/∆,

(−V0u
2 + 2U0uv − (2U0 + V0)v

2)/∆,

W0(u
2 − 2uv − v2)/∆),

where (u, v) = 1 and ∆ lies in a finite set. We thus have finitely many
possibilities

λ2
1a

4 = ((U0 − 2V0)u
2 − 2V0uv + U0v

2)/∆,(9)

λ2b
2 = (−V0u

2 + 2U0uv − (2U0 + V0)v
2)/∆,(10)

for some such (u, v) and ∆.
The u, v-quadratic at (10) is non-singular (its discriminant is 4(U2

0 −
2U0V0−V 2

0 )/∆2 = −8λ3W
2
0 /∆

2 6= 0), and assuming it is rationally solvable,
we can similarly parametrize the points giving finitely many possibilities

(u, v, b) = (q1(r, s), q2(r, s), q3(r, s))

for quadratics qi and coprime r, s. Note that we cannot have q1(1, 0) =
q2(1, 0) = 0, otherwise q3(1, 0) = 0 (from (10)) and the determinant of the
coefficients of the quadratic forms q1, q2, q3 is zero, which is impossible.
Substituting this parametrization into (9), we obtain finitely many quartic
curves of type

ca4 = quartic in r, s,

namely

(11) ∆λ2
1a

4 = q(r, s) = (U0−2V0)q1(r, s)
2−2V0q1(r, s)q2(r, s)+U0q2(r, s)

2.

We claim these quartic curves are non-singular, and hence of genus 3. First,
the quartic q(r, s) is not identically zero. For U0 − 2V0 and U0 cannot
both be zero, so suppose without loss of generality that U0 − 2V0 6= 0.
If q(r, s) is identically zero, then q1(λ, 1)/q2(λ, 1) is a root of the trinomial
(U0 − 2V0)X

2 − 2V0X + U0 for more than two distinct values of λ, so that
q1(r, s) = k1q2(r, s) for some constant k1. Substitution into (10) then implies
q3(r, s) = k3q2(r, s) for some constant k3. This contradicts the fact that the
determinant of the coefficients of the quadratic forms q1, q2, q3 is non-zero.
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Now singularity of the curve (11) occurs precisely when the quartic q(r, s)
contains a repeated factor, so we have two cases to consider.

Case I : q(r, s) contains a repeated linear factor. By linear transforma-
tion on r, s we can suppose the quartic is of type

(12) q(r, s) = s2 quadratic(r, s).

The coefficient of r4 in q(r, s) at (11) is (U0−2V0)q1(1, 0)2−2V0q1(1, 0)q2(1, 0)
+ U0q2(1, 0)2, which must therefore be zero. Since q1(1, 0) and q2(1, 0) are
not both zero, necessarily the discriminant 4V 2

0 − 4(U0 − 2V0)U0 = 8λ3W
2
0

must be a perfect square, forcing λ3 = 2. Thus P is even, Q is odd, and λ2

is also even. The quadric (8) has become

−U2 + 2UV + V 2 = 4W 2,

so that with (U0, V0,W0) = (0,−2,−1) the equations at (9) and (10) are
now

λ2
1∆a

4 = 4u(u+ v),
λ2

2
∆b2 = u2 + v2.

Rational solvability of the second quadric implies λ2∆/2 = m2 + n2, say, so
that the parametrization (u, v, b) = (q1(r, s), q2(r, s), q3(r, s)) is given by

q1(r, s) = (mr2 + 2nrs−ms2)/δ,

q2(r, s) = (nr2 − 2mrs− ns2)/δ,

q3(r, s) = (r2 + s2)/δ

for finitely many choices of δ. The quartic at (11) becomes

λ2
1δ

2∆a4 = 4(mr2 + 2nrs−ms2)((m+ n)r2 − 2(m− n)rs− (m+ n)s2),

and the discriminant of the right-hand side is 512(m2 + n2)6 6= 0, so the
quartic cannot have a repeated root.

Case II : q(r, s) at (11) contains a squared quadratic factor. But now the
curve (11) is of genus 0, allowing a, r, s, hence u, v, b, to be written as polyno-
mials in a single variable, so that the curve (7) is rationally parametrizable
and of genus 0, which it is not. Thus the quartic at (11) is non-singular,
and (11) defines a curve of genus 3. The finitely many such curves mean the
original curve at (6) can only have finitely many points with coprime (a, b).

Case n0 = 9. When n0 = 9, then U9 = k2 implies P 2 − Q = λ1R
2,

P 6 − 6P 4Q + 9P 2Q2 − Q3 = λ22, with only finitely many possibilities for
the λi ∈ Z, i = 1, 2. Eliminating Q, we get

3P 6 − 9λ1P
4R2 + 6λ2

1P
2R4 + λ3

1R
6 = λ2S

2,

and the sextic has discriminant −2639λ15
1 , so is non-singular. Thus x = P/R

gives a point on a curve hyperelliptic of genus 2, and we are done.
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Case n0 = 10. We have

(13) P = λ1a
2, P 4 − 3P 2Q+Q2 = λ2b

2, P 4 − 5P 2Q+ 5Q2 = λ3c
2,

for finitely many squarefree λi ∈ Z, i = 1, 2, 3. Thus (x, y) = (P 2, Q) satisfies

x(x2 − 3xy + y2)(x2 − 5xy + 5y2) = λ2λ32,

and finiteness of the number of solutions follows from Theorem 2 of Darmon
and Granville [7].

Remark. Theorem 2.1 is not true for n0 = 2, . . . , 7; in fact, it is easy
to check that for each fixed n0 in this range, Un0

(P,Q) = 2 has infinitely
many solutions (P,Q) with gcd(P,Q) = 1. See Section 2 of [3].

Assume now that we have computed explicitly all pairs (P,Q) satisfying
(2) and (4). Then, for any such specific pair (P,Q) = (P0, Q0) we must find
all positive indices n = n0m with P(m) ⊆ S, satisfying

(14) Un(P0, Q0) = k2.

In Section 3 we show that, for a fixed pair (P0, Q0) as above, it is possible, at
least in principle, to solve explicitly equation (14) in the unknown n without
any restriction on the prime divisors of n.

3. Terms of Lucas sequences being almost squares. In this section
we will show that for fixed non-zero integer k and parameters P,Q which
satisfy (2), the problem of finding all n for which

(15) Un(P,Q) = k2

leads to finitely many quartic Thue–Mahler equations, where the subscript n
will appear in the exponents of the prime numbers on the right-hand side of
these equations. Thue–Mahler equations, in general, can be explicitly solved,
at least in principle, by the method explained in great detail in [21]. It is of
some interest to note at this point that for our special purposes we do not
need the complete solution of the Thue–Mahler equations but only a small
upper bound for the unknown exponents of the right-hand side; we make a
short discussion of this issue at the beginning of Section 6.

By Section 1 of [15] we have

(16) Vn(P,Q)2 −DUn(P,Q)2 = 4Qn

and gcd(Un(P,Q), Vn(P,Q)) = 1 or 2.

Suppose first that n is even, n = 2m, say. Then (2Qm, U2m(P,Q),
V2m(P,Q)) is an integer solution of the equation

(17) X2 +DY 2 − Z2 = 0, (X,Y, Z) = 1 or 2.
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A special primitive solution of (17) is (X,Y, Z) = (−1, 0, 1), and therefore
all primitive solutions are given by

(18) (X,Y, Z) =

(

S2 −DT 2

∆
,
2ST

∆
,±S

2 +DT 2

∆

)

,

where gcd(S, T ) = 1 and ∆ is, up to sign, the gcd of the numerators of the
fractions on the right-hand side. It follows that ∆ must divide the deter-
minant of the coefficients of the three quadratic forms in S, T appearing in
these numerators; therefore ∆ | 4D.

Now 2ν+1ST = ∆Un = k∆2 and 2ν(S2 −DT 2) = 2∆Qm, where ν = 0
or 1, according as gcd(U2m(P,Q), V2m(P,Q)) = 1 or 2. Since gcd(S, T ) = 1,
the first equation yields S = k1u

2, T = k2v
2, where gcd(u, v) = 1 and k1, k2

are integers that can be easily computed explicitly by means of k and ∆.
Substitution of these expressions for S and T into the second equation gives

k2
1u

4 −Dk2
2v

4 = ∆Qm or 2∆Qm.

Obviously, the polynomial k1t
4−Dk2

2 has distinct complex roots, and there-
fore the above equation is a Thue–Mahler equation.

Suppose second that n is odd, n = 2m+1, say. Then (2Qm, U2m+1(P,Q),
V2m+1(P,Q)) is a solution (X,Y, Z) of

(19) QX2 +DY 2 − Z2 = 0, (X,Y, Z) = 1 or 2.

A special primitive solution of (19) is (X,Y, Z) = (−2,−1, P ), and therefore
all primitive solutions are given by

(20) (X,Y, Z)

=

(

2QS2 + 2DST − 2DT 2

∆
,
−QS2 + 4QST +DT 2

∆
,±P QS

2 +DT 2

∆

)

,

where, as before, ∆ (up to sign) is the gcd of the numerators of the fractions
on the right-hand side. Hence ∆ | 2P 3QD.

Now 2ν(−QS2 + 4QST + DT 2) = ∆Un = k∆2 and 2ν(QS2 + DST −
DT 2) = ∆Qm, where gcd(S, T ) = 1 or 2 and, as before, ν = 0 or 1, according
as gcd(U2m(P,Q), V2m(P,Q)) = 1 or 2. The first equation leads to

(21) k∆X2 − 2νP 2Y 2 + 2νQZ2 = 0,

where Y = T and Z = S−2T , so that gcd(X,Y, Z) = 1 or 2; and the second
equation then becomes

(22) 2ν(QZ2 + P 2ZY + P 2Y 2) = ∆Qm.

Equation (21) implies an equation Ax2 +By2 +Cz2 = 0, where A,B,C are
non-zero integers and ABC is square-free (2). For the non-trivial solvabil-

(2) In general, the implied equation is not equivalent, from the point of view of integer
solutions, to (21).
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ity of this equation there is the classical Legendre criterion, which is easily
applied. Finding an actual solution is a much more difficult and computa-
tionally interesting problem, especially if the size of A,B,C is large; for the
discussion of this problem we refer the reader to [6]. Here, we assume that
we know an integer solution (x0, y0, z0) of (21) with gcd(x0, y0, z0) = 1 and
z0 6= 0. Then all integer solutions to (21) with gcd(X,Y, Z) = 1 are given
by the formulas

δX = −k∆x0 · u2 − 2ν+1P 2y0 · uv + 2νP 2x0 · v2,

δY = k∆y0 · u2 − 2k∆x0 · uv − 2νP 2y0 · v2,

δZ = ±z0(k∆ · u2 + 2νP 2 · v2),

where gcd(u, v) = 1 and δ > 0 is the gcd of the numbers on the three
right-hand sides; δ must divide the determinant of the coefficient matrix
of the three quadratic forms on the right-hand sides, which is equal to
22ν+2k∆P 2Qz3

1 .

Substitution of the above expressions for Y, Z into equation (22) gives
a quartic form in u, v being equal to ∆Qm. The discriminant of the corre-
sponding quartic polynomial is equal to −28+6ν(DQ)3(k∆)6(Pz0)

12 6= 0, so
that we have arrived at a quartic Thue–Mahler equation.

4. An example: solution of Un(P,Q) = ±2 or ±22 for n a power

of 2. As an application of the discussion in the previous sections we will
solve the equations

U2e(P,Q) = ±2,±22,

in the unknowns e, P,Q, with e ≥ 3 and P,Q satisfying (2). In the notation
of Problem 1, n0 = 8, m = 2e−3, S = {2} and k = ±1 or ±2. Relation (4)
now becomes

U8(P,Q) = ±2i1
2, i1 ∈ {0, 1}.

In this connection we have the following result.

Theorem 4.1. Let k0 | 2. The only solutions (P,Q) of U8(P,Q) = k02

satisfying (2) are (P,Q) = (k0,−4), (4k0,−17) when k0 = ±1, while no

solutions exist when k0 = ±2.

Proof. See Section 5.

Theorem 4.1 implies i1 = 0 and (P,Q) = (±1,−4), (±4,−17). Since for
n even, Un(P,Q) = −Un(−P,Q), without loss of generality it remains only
to find explicitly all n = 2e, with e ≥ 3, such that

Un(±1,−4) = k2, k = 1, 2,(23)

Un(±4,−17) = k2, k = 1, 2.(24)
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Consider the case k = 1 at (23) and write for simplicity Un, Vn instead
of Un(±1,−4), Vn(±1,−4). Relation (16) now reads (2n+1)2 + 17U2

n = V 2
n ,

leading to an equation of the form X2 + 17Y 2 = Z2, where X is even and
gcd(X, 17Y ) = 1. This is an equation as at (17), and from the formulas (18)
we obtain ±2n+1 = (17T 2 − S2)/2 and Un = ST , where ST is odd and
gcd(S, 17T ) = 1. Since Un = 2, we are finally led to

(25) u4 − 17v4 = ±2n+2, uv odd.

From Proposition 6.1, it follows that n = 8.

Second, consider the case k = 2 at (23). Since Un(±1,−4) is always odd,
this case is impossible.

Third, consider the case k = 1 at (24). As before, write Un, Vn instead
of Un(±4,−17), Vn(±4,−17). Relation (16) becomes (17n/2)2 + 21U2

n =
(Vn/2)2. It is easy to check that, except for U0, every Un and every Vn

is indivisible by 17. Moreover, for n even, Un is even. Therefore we are
led to an equation (17) with D = 21, in which X is odd, Y is even and
gcd(17X,Y ) = 1. By the formulas (18) or otherwise, and in view of the fact
that Un = 2, we obtain the equations

±17n/2 = 21b4 − 4a4, ±17n/2 = 84a4 − b4,

±17n/2 = 7b4 − 12a4, ±17n/2 = 28a4 − 3b4,

in which b is odd, gcd(a, b) = 1 and ab 6≡ 0 mod 17. The last two equations
are impossible mod 17; and in the first equation we see mod 4 that the
plus sign holds, whereas mod 3 the minus sign holds (since n/2 is even),
impossible. In the second equation the minus sign must hold, and we finally
get, on putting (u, v) = (b, a),

(26) u4 − 84v4 = 17n/2

where uv 6≡ 0 mod 17. From Proposition 7.1 below it follows that n = 8.

Lastly, consider the case k = 2 at (24). Arguing as above, we are led to
the equations ±17n/2 = 7u4 − 3v4, ±17n/2 = u4 − 21v4, of which the former
is impossible mod 17. In the latter, a congruence mod 3 shows that the plus
sign must hold, resulting in the equation

(27) u4 − 21v4 = 17n/2.

This equation is very similar to (26). Indeed, although the quartic fields
corresponding to x4 − 84 and x4 − 21 are not isomorphic, both have class
number two, and in both fields 17 splits into four prime ideals, of which two
are principal, and two are non-principal. Solving the equation u4 − 21v4 =
17z using the same techniques as illustrated in Section 7 shows that the only
solution with n > 0 of (27) is (u, v, n) = (5, 2, 4).

We have now proved the following result.
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Theorem 4.2. The only solutions (2e, P,Q) with e ≥ 3 of the equation

U2e(P,Q) = ±2

under the constraint (2) are (8,±1,−4) and (8,±4,−17). There are no so-

lutions with e ≥ 3 to the equation

U2e(P,Q) = ±22.

5. Proof of Theorem 4.1. The demand that U8(P,Q) = k02, k0 | 2,
is that P (P 2 − 2Q)(P 4 − 4P 2Q + 2Q2) = k02, and P,Q must satisfy the
constraint (2). Necessarily there exist integers a, b, c, pairwise coprime, sat-
isfying P = δ1a

2, P 2 − 2Q = δ2b
2, P 4 − 4P 2Q + 2Q2 = δ3c

2, with δi | 2,
i = 1, 2, 3, and k0 ≡ δ1δ2δ3 mod Q∗2. Eliminating P,Q, we get

(28) −δ41a8 + 2δ21δ2a
4b2 + δ22b

4 = 2δ3c
2.

It is straightforward to check that (28) is everywhere locally solvable only
in the following instances:

(29) (δ1, δ2, δ3) = (±1,±2, 2), (±1, 1, 1), (±1,−1,−1), (±2,±2, 2).

With the first triple at (29), a, b, c satisfy −a8 ± 4a4b2 + 4b4 = 4c2, so that
a is even, and (A,B,C) = (a/2, b, c) have B, C odd, and

(30) −64A8 ± 16A4B2 +B4 = C2;

for the second triple at (29),

(31) −a8 + 2a4b2 + b4 = 2c2;

for the third triple at (29),

(32) −a8 − 2a4b2 + b4 = −2c2;

and for the fourth triple at (29),

(33) −4a8 ± 4a4b2 + b4 = c2.

It suffices to find all integer solutions to the equations (30)–(33), with co-
prime (A,B) and (a, b), as appropriate. The equations (30)–(32) have been
treated in Bremner & Tzanakis [3]. The only solutions to (30) with the plus
sign, i.e. for δ2 = 2, having (A,B) = 1 and B odd, are (±A,±B,±C) =
(0, 1, 1), (1, 5, 31); and with the minus sign, i.e. for δ2 = −2, the only solu-
tions are (±A,±B,±C) = (0, 1, 1). The sole resulting (P,Q) satisfying (2)
arises from (1, 5, 31), with (P,Q) = (4δ1,−17) = (4k0,−17), as required. The
only solutions to (31), (32) are respectively (±a,±b,±c) = (1, 1, 1), (1, 3, 7),
and (1, 1, 1). The sole resulting (P,Q) satisfying (2) arises from (1, 3, 7), with
(P,Q) = (δ1,−4) = (k0,−4). Consider finally (33), where a solution (a, b, c)
implies a solution (A,B,C) = (a, 2b, 4c) of (30). Thus (33) may be treated
similarly to the equation (30), where we instead seek solutions with B even.
The modifications necessary are very minor, and the only solutions to (33)
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with the plus sign are (±a,±b,±c) = (0, 1, 1), (1, 1, 1); and the only solu-
tions with the minus sign are (±a,±b,±c) = (0, 1, 1). None of these leads
to suitable P,Q.

6. Solution of u4−17v4 = ±2z+2. In this section we prove the following:

Proposition 6.1. The only solutions of the Diophantine equation u4 −
17v4 = ±2z+2 with uv odd and z ≥ 1 are given by 14 − 17 · 14 = −24,
34 − 17 · 14 = 26 and 74 − 17 · 34 = 210.

Note that, for the needs of the proof of Theorem 4.2 a considerably
weaker result suffices, namely that z is bounded by a small upper bound,
say, of the size of 1000. For, in this case, we can very easily check all n that
are powers of 2, for which Un(±1,−4) has the required shape. We decided,
however, to solve completely the Thue–Mahler equation of Proposition 6.1,
as this can be accomplished, at least in this special example, with very little
extra cost. Note that the curves x4 − 17y4 = cz4, ±c = 1, 2, 4, 8, of genus 3,
all have Jacobian of rank at least 5, and direct Chabauty arguments are
inapplicable.

6.1. Preliminaries to the solution. We work in the fieldK = Q(θ), where
θ4 = 17. Using pari [13] we obtained the following information: The class
number of K is 2, an integral basis is 1, θ, ψ = (1 + θ2)/2, ω = (1 + θ +
θ2 + θ3)/4, and a pair of fundamental units is ε1 = 2 − θ, ε2 = 4 − θ2, with
respective norms −1 and +1. The ideal factorization of 2 is

〈2〉 = p1p2p
2
3,

p1 = 〈2,−1 + ω〉, p2 = 〈2,−1 + ψ + ω〉, p3 = 〈2, 1 − θ + ψ〉
and the ideal class of p2 generates the ideal class group of K.

Factorization of (25) in K gives

(34) (u− vθ)(u+ vθ)(u2 + v2θ2) = ±2z.

We have the ideal factorizations

〈1−θ〉 = p
2
1p2p3, 〈1+θ〉 = p1p

2
2p3, 〈1−θ2〉 = p

3
1p

3
2p

2
3, 〈1+θ2〉 = p1p2p

6
3.

Without loss of generality we may assume that u ≡ v mod 4. Then, with
the aid of the above relations, it is easy to see that the ideal 〈u − vθ〉 is
divisible by pi for i = 1, 2, 3, but is not divisible by a higher power of pi for
i = 2, 3. Also, each ideal 〈u+vθ〉 and 〈u2 +v2θ2〉 is divisible by p1 but by no
higher power of p1. This, in combination with the ideal equation obtained
from (34), leads to the ideal equation (3)

(35) 〈u− vθ〉 = p
z−2
1 p2p3.

(3) On considering equation (25) mod 8 we see that z ≥ 3.
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The ideals p2 and p3 belong to the same ideal class and p2
2 is principal.

Therefore, the above ideal equation implies that z must be even. We put

z − 2 = 2n1.

With the aid of pari we see that

p2p3 = 〈1 + θ + ω〉, p
2
1 = 〈−2 + θ − 2ψ + ω〉,

so that (35) finally leads to

(36) u− vθ = ±αεa1

1 ε
a2

2 π
n1

1 ,

where

α = 1 + θ + ω =
1

4
(5 + 5θ + θ2 + θ3),

π1 = −2 + θ − 2ψ + ω =
1

4
(−11 + 5θ − 3θ2 + θ3).

Notations and conventions in what follows. The conjugates of the typical
algebraic number γ, say, considered either as p-adic numbers (p = 2), be-
longing to a finite extension of Q2, or as complex numbers, will be denoted,
in both cases, by γ(i), i = 1, 2, . . . . However, there is no fear of confusion,
as it will be absolutely clear from the context whether we work in C or in
an extension of Q2.

The 2-adic integer b0 + 2b1 + 22b2 + · · · , where the bi’s are binary digits,
is written in the form 0.b0b1b2 . . . . Also, ord2 will denote the 2-adic additive
valuation, which is defined on any finite extension of Q2 and extends the
usual 2-adic additive valuation of Q. For a quick practical survey we refer
to Section 4 of [21].

As usual, i stands for the root of the polynomial t2 + 1 ∈ Q[t] and ı will
denote its “value”, complex or 2-adic, as the case may be.

Similarly, ϑ will denote the value of θ which in the “real context” will
mean the number

√
17 = 4.123105 . . . ∈ R and in the “2-adic context” the

number
√

17 = 0.101101011011 . . . ∈ Q2.

6.2. A large upper bound for max{n1, |a1|, |a2|}. Following the notation
of [21] we put A = max{|a1|, |a2|} and H = max{A, n1}. The various c
constants with subscripts, which we will occasionally mention below, always
agree with those in [21].

We set

(37) θ(1) = ϑ, θ(2) = −ϑ, θ(3) = ıϑ, θ(4) = −ıϑ,
and

λ = δ

(

π
(4)
1

π
(3)
1

)n1
(

ε
(4)
1

ε
(3)
1

)a1
(

ε
(4)
2

ε
(3)
2

)a2

− 1 = δ

(

π
(4)
1

π
(3)
1

)n1
(

ε
(4)
1

ε
(3)
1

)a1

− 1
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(note that ε
(3)
2 = ε

(4)
2 ), where

δ =
θ(1) − θ(3)

θ(1) − θ(4)
· α

(4)

α(3)
.

Below we will view λ both as a 2-adic and a complex number. In the first
case we consider Λ1 = log2(λ + 1), where log2 stands for the logarithm in
the p-adic sense (see Section 12 of [21]) with p = 2; and in the second case
we consider Λ0 = ı−1 Log(1 + λ), where Log, here and everywhere in this
paper, stands for the principal branch of the complex logarithmic function.

It is worth noticing at this point that ε2, hence a2 as well, “disappeared”
from λ and consequently from Λ0 and Λ1. However, “hidden” in A, a2 indi-
rectly appears in the absolutely crucial relation

(38) 0 < |Λ0| < 1.02c21e
−c16A

(see relation (27) in [21]). Moreover, it should be stressed that both ε1
and ε2 play a significant role in the computations of the numerous positive
constants (4) leading to the upper bound for H.

The numbers (complex or 2-adic) appearing in λ are

δ =
1

8
(ϑ− ϑ3 + (9 − ϑ2)ı),

π
(4)
1

π
(3)
1

=
1

16
(33 − 9ϑ2 + (13ϑ− 5ϑ3)ı) = −δ−2,

ε
(4)
1

ε
(3)
1

= −33 + 8ϑ2 − (16ϑ− 4ϑ3)ı := β,

hence,

(39) λ = (−1)n1δ1−2n1βa1 − 1.

First we work p-adically, with p = 2. Following [21] (5) we see that, for
n1 positive, ord2(λ) = 2n1. On the other hand, with the aid of the the-
ory of linear forms in p-adic logarithms applied to λ, which we write as
(±δ)1−2n1βa1 − 1, we can bound ord2(λ) from above in terms of the loga-
rithm of the maximum absolute value of the integer unknowns appearing in
(39), i.e. in terms of log max(|a1|, 2n1 − 1), hence in terms of logH. Actu-
ally, using a very useful theorem of Kunrui Yu [24] (6) we compute constants
c13, c14 such that

(40) n1 ≤ c13(logH + c14),

(4) Such a constant is, in the notation of [21], c15 and all constants depending on it.

(5) Cf. relation (13) therein.

(6) See also Appendix A2 in [21] for a version of Yu’s theorem specially adapted to
our needs.
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where the large constant is always c13. In our example, this is of the size
of 1019.

Next we work in C. Now each of the complex numbers β and δ in (39)
is the ratio of two complex-conjugate numbers, and therefore the Log is at
most π in absolute value. On the other hand, in general, Log(z1 + z2) ≡
Log z1 + Log z2 mod 2π, therefore

ıΛ0 = Log δ + n1 Log(−1) − 2n1 Log δ + a1 Log β + 2a0 Log(−1)(41)

= (2a0 + n1) Log(−1) + a1 Log β + (1 − 2n1) Log δ,

so that a new unknown integer a0 makes its appearance, satisfying |a0| ≤
2H + 1.

With the aid of the theory of linear forms in real/complex logarithms
we can bound ıΛ0 from below in terms of log max(|2a0 + n1|, |a1|, 2n1 − 1),
hence in terms of logH. We applied the corollary to the main theorem (7) of
A. Baker and G. Wüstholz [1] to obtain |Λ0| > exp{−c7(logH + c′8)}, with
explicit constants c7, c8 of which c7 is the really large one; in our case this is of
the size of 1027. Combined with (38) this gives a relation A < C3 logH+C4,
with explicit constants, and from (40) we have a relation n1 < C1 logH+C2.
In view of the definition of H, these two inequalities combine to bound H
by a linear function of logH, implying thus an upper bound for H. In our
case this bound is of the size of 1029.

The rather long sequence of boring computations culminating in the
upper bound for H, including the application of the theorem of Yu and that
of Baker and Wüstholz, were performed “almost” automatically with the aid
ofMaple. We say “almost” because we computed the minimal polynomials
of various algebraic numbers first, which we then inserted as (part of the)
input of our Maple procedure. Our code is available upon request.

6.3. All solutions of equation (25). Having obtained such large upper
bounds for n1 and H we must reduce them in order to be able to solve our
equation explicitly. We follow the reduction strategy as explained in great
detail in Sections 13 through 16 of [21]. The main tool for the reduction is the
LLL algorithm, which is applied to appropriate two- or three-dimensional
lattices generated by basis vectors with rational integer coordinates. In one
instance, among the basis coordinates there appears an integer which is a
2-adic approximation of log2 β/log2 δ to a precision 2m, with m sufficiently
large, depending on the size of the upper bound for n1. In our case it has not
been necessary to take m larger than 170. This is the p-adic reduction step.
In the other instance, among the basis coordinates there appear the integer
parts of the real numbers C Arg δ, C Arg β and Cπ, where C is a sufficiently
large integer, depending on the size of the upper bound for H. In our case,

(7) In fact, the application of this corollary was as proposed in [22].
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the larger value for C that we needed was 1065. This is the real reduction

step.

One starts with the initial large upper bounds for n1 and H, say N0

and H0, respectively. The p-adic reduction step is applied first and reduces
N0 to a considerably lower bound N1 which, in our case, turned out to be 85.
According to the remark we made at the beginning of Section 6, if we are
interested just in proving Theorem 4.2 and not in the Thue–Mahler equation
itself, we can stop here and easily check for which n = 8, 16, 32, 64 it is true
that Un(±1,−4) is, up to sign, a square or two times a square. It turns out
that only n = 8 is suitable.

However, at a little more cost, we can solve completely our Thue–Mahler
equation, as follows. After the above reduction of the upper bound of n1, we
apply the real reduction step taking into account the bounds N1 and H0.
As a result, a reduction of H0 to a considerably smaller bound H1 (less
than 600) is achieved. The p-adic reduction step is again applied, taking
into account the bounds N1 and H1 and returning a smaller upper bound
N2 etc. The iterative application of the p-adic and real reduction goes on
until no further essential improvement is achieved. In our case, three couples
of iterations had as a result the bounds n1 ≤ 10 and A ≤ 32.

Now we can run through all (n1, a1, a2) in the range 1 ≤ n1 ≤ 10,
−32 ≤ ai ≤ 32 to check for which of them it is true that the coefficients
of both θ2 and θ3 in αεa1

1 ε
a2

2 π
n1

1 are zero; cf. (36). Although there is no
problem in checking 42250 triads (n1, a1, a2), we can do somewhat better
and diminish the number of checks by a factor of 65, as follows. We observe
that if (n1, a1, a2) is such that (36) holds, then

u− vθ

u+ vθ
=
α(1)

α(2)

(

ε
(1)
1

ε
(2)
1

)a1
(

π
(1)
1

π
(2)
1

)n1

=
5 + 5θ + θ2 + θ3

5 − 5θ + θ2 − θ3

(

2 − θ

2 + θ

)a1
(−11 + 5θ − 3θ2 + θ3

−11 − 5θ − 3θ2 − θ3

)n1

.

If we denote the right-hand side by R(n1, a1), then

1

1 −R(n1, a1)
=

1

2
+

u

34v
θ3

and we must check for which pairs (n1, a1) the left-hand side has rational
part 1/2 and both coefficients of θ and θ2 zero. It turns out that the only
solutions n1 with corresponding u/v are (n1, u/v) = (1, 1), (2,−3), (4, 7/3),
which completes the proof of Proposition 6.1.
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7. Solution of u4 − 84v4 = 17z. In this section we prove the following:

Proposition 7.1. Under the constraint uv 6≡ 0 mod 17, the only solu-

tion to the Diophantine equation u4 − 84v4 = 17z is 314 − 84 · 104 = 174.

A comment analogous to that made immediately after the announce-
ment of Proposition 6.1 is still valid: A small upper bound for the exponent
z appearing in the above equations suffices for the needs of the proof of
Theorem 4.2.

We work in the field K = Q(θ), where θ4 = 84. The class number of
K is 2, an integral basis is 1, θ, ω, θω, where ω = (2 + θ2)/4, and a pair of
fundamental units is ε1 = −55 + 18θ − 6θ2 + 2θ3, ε2 = 2 + ω. The ideal
factorization of 2 is 〈2〉 = p2

2 and the ideal class [p2] generates the ideal class
group. Also, 〈17〉 is the product of four ideals p17,i, i = 1, . . . , 4, two of which
are principal and two non-principal:

p17,1 = 〈θ−ω〉, p17,2 = 〈17,−2+θ〉, p17,3 = 〈17, 2+θ〉, p17,4 = 〈θ+ω〉,
where

p17,2 = (−1 + θ/2)p2, p
2
17,2 = 〈1 − 2θ + 2ω〉,

p17,3 = (1 + θ/2)p2, p
2
17,3 = 〈1 + 2θ + 2ω〉.

Consider now u4 − 84v4 = 17z, with uv 6≡ 0 mod 17. From the ideal factor-
ization 〈u−vθ〉〈u+vθ〉〈u2+v2θ2〉 = 〈17〉z, in which the ideals on the left are
pairwise relatively prime, we see that 〈u− vθ〉 = pz

17,i for some i = 1, . . . , 4,
with i = 2, 3, being possible only if z is even. It follows that 〈u− vθ〉 must
be equal to one of the following ideals:

〈θ − ω〉z, 〈1 − 2θ + 2ω〉z/2, 〈θ + ω〉z, 〈1 + 2θ + 2ω〉z/2.

The third and fourth possibilities are essentially the same as the first and
second one, respectively, in view of the automorphism θ 7→ −θ. Moreover,
on choosing appropriately the signs of u, v, we obtain from the first two ideal
equations the following element equations:

u− vθ = εa1

1 ε
a2

2 (θ − ω)n1 , n1 = z,(42)

u− vθ = εa1

1 ε
a2

2 (1 − 2θ + 2ω)n1 , n1 = z/2.(43)

We work in complete analogy with Section 6.1. Now p = 17 and ϑ, the value
of θ, in the “real context” will mean the number

√
84 = 9.16515139 . . . ∈ R,

and in the “17-adic context” the number
√

84 = 0.8(13)(12)4(13)(13) . . .
∈ Q17.

The symbol i still stands for the root of the polynomial t2 +1 ∈ Q[t] and
ı will denote its “value”, complex or 17-adic, as the case may be.

We put

π1 =

{

θ − ω in the case of equation (42),

1 − 2θ + 2ω in the case of equation (43),
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and, in both cases, we keep the notations in (37) with θ, ε1, ε2, π1 having, of
course, their new values. In analogy with Section 6.1 we set

λ =
ϑ(1) − ϑ(3)

ϑ(1) − ϑ(4)

(

π
(4)
1

π
(3)
1

)n1
(

ε
(4)
1

ε
(3)
1

)a1
(

ε
(4)
2

ε
(3)
2

)a2

− 1 = −ı
(

π
(4)
1

π
(3)
1

)n1
(

ε
(4)
1

ε
(3)
1

)a1

− 1.

The numbers (complex or 17-adic) appearing in λ, besides −ı are now

δ :=
π

(4)
1

π
(3)
1

=

{

1
17

(

−109 + 11ϑ2 −
(

37ϑ− 7
2ϑ

3
)

ı
)

in the case of (42),
1

289(1633 − 200ϑ2 + (536ϑ− 66ϑ3)ı) in the case of (43),

β :=
ε(4)

ε(3)
= 12097 − 1320ϑ2 + (3996ϑ− 436ϑ3)ı.

Now λ = −ıδn1βa1 − 1 and, in analogy with Section 6.2, we consider the
17-adic linear form Λ1 = log17(λ + 1) and the complex linear form Λ0 =
ı−1 Log(1 + λ). On “expanding” Log on the right-hand side, a new integer
unknown a0 makes its appearance as a coefficient of 2π = 2Log(−1). Since
ı2 = −1, we now have ıΛ0 = n1 Log δ + a1 Log β + (1 − 4a0) Log(−ı).

In complete analogy with the strategy of Section 6.2, we next find in
terms of logH = log max{|a1|, |a2|, n1} an upper bound for ord17(λ) by
applying Yu’s theorem, and a lower bound for |Λ0| by applying the theorem
of Baker and Wüstholz. From these we find upper bounds for H and n1

of very similar size to those found in Section 6.2. An analogous reduction
process to that described in Section 6.3 has as a result the drastic reduction
of H down to 20 and of n1 down to 5. A final check, similar to that at
the end of Section 6.3, shows that no solutions come from (42) and only
the solution (|u|, |v|, n1) = (31, 10, 2) comes from (43). Since z = 2n1, this
completes the proof of Proposition 7.1.

For the needs of the proof of Theorem 4.2 the first p-adic reduction step
is sufficient, for, as a result of it, an upper bound for n1 less than 100 is
obtained and then all one has to check is whether Un(±4,−17) has the
required shape just for those values of n that are powers of 2 less than 200.
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