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The Selberg–Delange method in short intervals
with an application
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1. Introduction. Many number-theoretic problems lead to the study
of mean values of arithmetic functions. For this purpose, between 1954 and
1971, Selberg [8] and Delange [2, 3] developed a quite general method us-
ing the analytic properties of the Dirichlet series associated to the arith-
metic function under study. This is nowadays known as the Selberg–Delange
method. We refer the readers to [10, Chapter II.5] for an excellent exposition
of this theory.

Let f(n) be an arithmetic function and denote its corresponding Dirichlet
series by

(1.1) F(s) :=
∞∑
n=1

f(n)n−s.

Suppose that F(s) admits the factorization

F(s) = G(s; z)ζ(s)z

for <e s > 1, where ζ(s) is the Riemann ζ-function and z ∈ C. Under some
suitable assumptions on G(s; z), we may apply the Selberg–Delange method
to establish a very precise asymptotic formula for the summatory function

Sf (x) :=
∑
n≤x

f(n).

See [10, Theorem II.5.3]. In 2008, Hanrot, Tenenbaum & Wu [5] further
extended this method to investigate the mean value of f(n) over the friable
integers:

Sf (x, y) :=
∑
n≤x

P (n)≤y

f(n),
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where P (n) is the largest prime factor of n with the convention P (1) = 1.
In particular, suppose ζK(s) is the Dedekind ζ-function of the number field
K and κj ∈ R such that κ1 + · · ·+ κr > 0. If F(s) factors into

F(s) = G(s; z)
∏

1≤j≤r
ζKj (s)

κj

for <e s > 1, then Hanrot, Tenenbaum & Wu, using also the saddle-point
method of [9], established in [5, Théorème 1.2] a very precise asymptotic
formula for Sf (x, y) in wide ranges of x and y. It is worth noting that f is
not assumed to be multiplicative albeit it is a Dirichlet convolution.

In this paper, we extend the Selberg–Delange method to handle the sum∑
f(n) where n ranges over a short interval, and we give an application.

We shall proceed along the same line of argument as in [10, Chapter II.5].
Let κ > 0, w ∈ C, α > 0, δ ≥ 0, A ≥ 0, B > 0, M > 0 be some constants.
A Dirichlet series F(s) as in (1.1) is said to be of type P(κ,w, α, δ, A,B,M)
if the following conditions are satisfied:

(a) for any ε > 0 we have

(1.2) |f(n)| �ε n
ε (n ≥ 1);

(b) we have

∞∑
n=1

|f(n)|n−σ � (σ − 1)−α (σ > 1);

(c) the Dirichlet series

(1.3) G(s;κ,w) := F(s)ζ(s)−κζ(2s)w

is analytically continued to a holomorphic function in (some open set con-
taining) <e s ≥ 1/2 and, in this region, G(s;κ,w) satisfies the bound

(1.4) |G(s;κ,w)| ≤M(|τ |+ 1)max{δ(1−σ),0} logA(|τ |+ 1) (s = σ + iτ)

uniformly for 0 < κ ≤ B and |w| ≤ B.

In order to state our result, it is necessary to introduce some more no-
tation. From [10, Theorem II.5.1] (1), the function

Z(s; z) := {(s− 1)ζ(s)}z (z ∈ C)

is holomorphic in the disc |s−1| < 1, and admits the Taylor series expansion

Z(s; z) =

∞∑
j=0

γj(z)

j!
(s− 1)j ,

(1) In [10], Z(s; z) is defined as s−1{(s − 1)ζ(s)}z but obviously the argument there
works for our Z(s; z).
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where the γj(z)’s are entire functions of z that satisfy, for all B > 0 and
ε > 0, the estimate

(1.5) γj(z)/j!�B,ε (1 + ε)j (j ≥ 0, |z| ≤ B).

Under our hypothesis, the function G(s;κ,w)ζ(2s)−wZ(s;κ) is holomorphic
in the disc |s− 1| < 1/2 and

(1.6) |G(s;κ,w)ζ(2s)−wZ(s;κ)| �A,B,δ,ε M

for |s − 1| ≤ 1/2 + ε, 0 < κ ≤ B and |w| ≤ B. Thus for |s − 1| < 1/2, we
can write

(1.7) G(s;κ,w)ζ(2s)−wZ(s;κ) =
∞∑
`=0

g`(κ,w)(s− 1)`,

where

(1.8) g`(κ,w) :=
1

`!

∑̀
j=0

(
`

j

)
∂`−j(G(s;κ,w)ζ(2s)−w)

∂s`−j

∣∣∣∣
s=1

γj(κ).

The following result is an analogue of Theorem II.5.3 of [10] for the mean
value over short intervals.

Theorem 1.1. Let κ > 0, w ∈ C, α > 0, δ ≥ 0, A ≥ 0, B > 0, M > 0
be some constants. Suppose that

F(s) :=

∞∑
n=1

f(n)n−s

is a Dirichlet series of type P(κ,w, α, δ, A,B,M). Then for any ε > 0, we
have

(1.9)
∑

x<n≤x+y
f(n) = y(log x)κ−1

{ N∑
`=0

λ`(κ,w)

(log x)`
+O(RN (x, y))

}
uniformly for

x ≥ y ≥ xθ(κ,δ)+ε ≥ 2, N ≥ 0, 0 < κ ≤ B, |w| ≤ B,
where

λ`(κ,w) :=
g`(κ,w)

Γ (κ− `)
, θ(κ, δ) :=

5κ+ 15δ + 21

5κ+ 15δ + 36
,

RN (x, y) :=
y

x

N+1∑
`=1

`|λ`−1(κ,w)|
(log x)`

+
(c1N + 1)N+1

x1/2

+M

{(
c1N + 1

log x

)N+1

+ e−c2(log x/log2 x)
1/3

}
for some constants c1, c2 > 0. The implied constant in the O-term depends
only on A, B, α, δ and ε.
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The proof of Theorem 1.1 is rather similar to that of [10, Theorem II.5.3].
The main new ingredient we introduce is the contour of integration as in [7].
Thanks to the hypothesis (1.2), our proof seems slightly simpler.

As an application of Theorem 1.1, we generalize the Deshouillers–Dress–
Tenenbaum arcsine law on divisors to the short interval case. For each pos-
itive integer n, denote by τ(n) the number of divisors of n and define the
random variable Dn to take the value (log d)/log n, as d runs through the
set of the τ(n) divisors of n, with the uniform probability 1/τ(n). The dis-
tribution function Fn of Dn is given by

Fn(t) = Prob(Dn ≤ t) =
1

τ(n)

∑
d|n, d≤nt

1 (0 ≤ t ≤ 1).

It is clear that the sequence {Fn}n≥1 does not converge pointwise on [0, 1].
However Deshouillers, Dress & Tenenbaum ([4] or [10, Theorem II.6.7])
proved that its Cesàro means converge uniformly to the arcsine law, more
precisely,

(1.10)
1

x

∑
n≤x

Fn(t) =
2

π
arcsin

√
t+O

(
1√

log x

)
uniformly for x ≥ 2 and 0 ≤ t ≤ 1. The error term in (1.10) is optimal.
Very recently Basquin [1] considered the generalization of (1.10) for friable
integers. Interestingly he showed that the limit law shifts from the arcsine
law towards the Gaussian as u := (log x)/log y →∞.

Here we obtain an analogue of (1.10) for short intervals.

Theorem 1.2. Let ε > 0 be an arbitrarily small positive constant. Then

(1.11)
1

y

∑
x<n≤x+y

Fn(t) =
2

π
arcsin

√
t+Oε

(
1√

log x

)
uniformly for 0 ≤ t ≤ 1, x ≥ 2 and x62/77+ε ≤ y ≤ x, where the implied
constant depends only on ε. Further (1.11) with y = x implies (1.10).

2. Proof of Theorem 1.1. Since F(s) is a Dirichlet series of type
P(κ, α,w, δ, A,B,M), we can apply [10, Corollary II.2.2.1] with the choice
of parameters σa = 1, B(n) := nε, α = α, σ = 0 to write∑

x<n≤x+y
f(n) =

1

2πi

b+iT�

b−iT
F(s)

(x+ y)s − xs

s
ds+O

(
x1+ε

T

)
,

where b := 1 + 2/log x and 100 ≤ T ≤ x such that ζ(σ + iT ) 6= 0 for
0 < σ < 1.
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Let L be the boundary of the modified rectangle with vertices 1/2± iT
and b± iT , where

• the zeros of ζ(s) of the form 1/2 + iγ with |γ| < T are avoided by
the semicircles of infinitely small radius lying to the right of the line
<e s = 1/2,
• the zeros of ζ(s) of the form ρ = β + iγ with β > 1/2 and |γ| < T are

avoided by the horizontal cut drawn from the critical line inside this
rectangle to ρ = β + iγ,
• the pole of ζ(2s) at the point s = 1/2 is avoided by two arcs L3 and

L4 with the radius r := 1/log x,
• the pole of ζ(s) at the point s = 1 is avoided by the truncated Hankel

contour Γ (its upper part is made up of an arc surrounding the point
s = 1 with radius r := 1/log x and a line segment joining 1 − r to
1/2 + r).

Γρ

Γ

L1

L6

L3

L4

L5

L2

1 + 2
log x

σ

T

−T

τ

O 1
2

1

Fig. 1. Contour L
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Clearly the function F(s) is analytic inside L . By the Cauchy residue
theorem, we can write

(2.1)
∑

x<n≤x+y
f(n) = I + I1 + · · ·+ I6 +

∑
β>1/2, |γ|<T

Iρ +Oε

(
x1+ε

T

)
,

where

I :=
1

2πi

�

Γ

F(s)
(x+ y)s − xs

s
ds,

Iρ :=
1

2πi

�

Γρ

F(s)
(x+ y)s − xs

s
ds,

Ij :=
1

2πi

�

Lj

F(s)
(x+ y)s − xs

s
ds.

A. Evaluation of I. Let 0 < c < 1/10 be a small constant. Since
G(s;κ,w)ζ(2s)−wZ(s;κ) is holomorphic and O(M) in the disc |s − 1| ≤ c,
the Cauchy formula implies that

(2.2) g`(κ,w)�Mc−` (` ≥ 0, 0 < κ ≤ B, |w| ≤ B),

where g`(κ,w) is defined as in (1.8). From this and (1.7), it is easy to deduce
that for any integer N ≥ 0 and |s− 1| ≤ 1

2c,

G(s;κ,w)ζ(2s)−wZ(s;κ) =
N∑
`=0

g`(κ,w)(s− 1)` +O
(
M(|s− 1|/c)N+1

)
.

Thus we have

(2.3) I =
N∑
`=0

g`(κ,w)M`(x, y) +O
(
Mc−NEN (x, y)

)
,

where

M`(x, y) :=
1

2πi

�

Γ

(s− 1)`−κ
(x+ y)s − xs

s
ds,

EN (x, y) :=
�

Γ

∣∣∣∣(s− 1)N+1−κ (x+ y)s − xs

s

∣∣∣∣ |ds|.
Firstly we evaluate M`(x, y). By using the formula

(2.4)
(x+ y)s − xs

s
=

x+y�

x

ts−1 dt
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and Corollary II.5.2.1 of [10], we can write

M`(x, y) =

x+y�

x

(
1

2πi

�

Γ

(s− 1)`−κts−1 ds

)
dt

=

x+y�

x

(log t)κ−1−`
{

1

Γ (κ− `)
+O

(
(c1`+ 1)`

t1/2

)}
dt,

where we have used the inequality

47|κ−`|Γ (1 + |κ− `|)�B (c1`+ 1)` (` ≥ 0, 0 < κ ≤ B).

The constant c1 and the implied constant depend at most on B. On the
other hand, it is easy to see that, for 0 < κ ≤ B,

x+y�

x

(log t)κ−1−` dt =

y�

0

logκ−1−`(x+ t) dt

= y(log x)κ−1−`
{

1 +OB

(
(`+ 1)y

x log x

)}
.

Inserting this into the preceding formula, we obtain

(2.5) M`(x, y)

= y(log x)κ−1−`
{

1

Γ (κ− `)
+OB

(
(`+ 1)y

Γ (κ− `)x log x
+

(c1`+ 1)`

x1/2

)}
for ` ≥ 0 and 0 < κ ≤ B.

Next we estimate EN (x, y). In view of the trivial inequality

(2.6)

∣∣∣∣(x+ y)s − xs

s

∣∣∣∣� yxσ−1,

we deduce that

EN (x, y)�
1−1/log x�

1/2+1/log x

(1− σ)N+1−κxσ−1y dσ +
y

(log x)N+2−κ(2.7)

� y

(log x)N+2−κ

( ∞�
1/2

tN+1−κe−t dt+ 1
)

� y(log x)κ−1
(
c1N + 1

log x

)N+1

uniformly for x ≥ y ≥ 2, N ≥ 0 and 0 < κ ≤ B, where the constant c1 > 0
and the implied constant depend only on B.
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Inserting (2.5) and (2.7) into (2.3) and using (2.2), we find that

(2.8) I = y(log x)κ−1
{ N∑
`=0

λ`(κ,w)

(log x)`
+OB(E∗N (x, y))

}
,

where

E∗N (x, y) :=
y

x

N+1∑
`=1

`|λ`−1(κ,w)|
(log x)`

+
(c1N + 1)N+1

x1/2
+M

(
c1N + 1

log x

)N+1

.

B. Estimations of I3 and I4. For s = 1/2+eiθ/log x with 0 < |θ| ≤ π/2,
we have trivially

F(s)� (log x)|<ew|+A,

∣∣∣∣(x+ y)s − xs

s

∣∣∣∣� x1/2.

Thus

(2.9) |I3|+ |I4| � x1/2(log x)|<ew|+A−1 (x ≥ 3).

C. Estimations of I1 and I6. It is well known that

|ζ(σ + iτ)| � |τ |(1−σ)/3 log |τ | (1/2 ≤ σ ≤ 1 + log−1 |τ |, |τ | ≥ 2),(2.10)

|ζ(σ + iτ)| � log−1(|τ |+ 3) (σ ≥ 1− σ0(τ), τ ∈ R),(2.11)

where C > 0 is an absolute positive constant and

(2.12) σ0(t) :=
C

(log(|t|+ 3))2/3(log log(|t|+ 3))1/3
·

In view of (2.10), (2.11) and (1.4), we have

F(s)�MTmax{(1−σ)(κ/3+δ), 0}(log T )|<ew|+κ+A

for s = σ ± iT with 1/2 ≤ σ ≤ b. Thus

|I1|+ |I6| �
b�

1/2

MT (1−σ)(κ/3+δ)(log T )|<ew|+κ+A
xσ

T
dσ(2.13)

� x

T
(log T )|<ew|+κ+A

provided T ≤ x1/(κ/3+δ).
D. Estimations of I2 and I5. For s = 1/2+iτ 6= 1/2+iγ with ζ(1/2+iγ)

= 0 and 1/log x ≤ |τ | ≤ T , the estimates (2.10), (2.11) and (1.4) imply that

F(s)� (|τ |+ 1)κ/6+δ/2(log x)|<ew|+κ+A.
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This allows us to write

|I2|+ |I5| � x1/2(log x)|<ew|+κ+A
T�

0

(τ + 1)−1+κ/6+δ/2 dτ(2.14)

� x1/2(log x)|<ew|+κ+AT κ/6+δ/2.

E. Estimations of the Iρ. As in case C, we have

F(s)�M |γ|(1−σ)(κ/3+δ)(log |γ|)|<ew|+κ+A

for s = σ+ iγ with 1/2 ≤ σ ≤ β < 1−σ0(γ). From this and (2.6) we deduce
that

(2.15) |Iρ| �
β�

1/2

M |γ|(1−σ)(κ/3+δ)(log |γ|)|<ew|+κ+Axσ−1y dσ.

Denote by N(σ, T ) the number of zeros of ζ(s) in the region <e s ≥ σ and
|=mz| ≤ T . Summing (2.15) over |γ| < T and interchanging the summa-
tions, we have∑

β>1/2
|γ|<T

|Iρ| �My(log x)|<ew|+κ+A
1−σ0(T )�

1/2

(T κ/3+δ/x)1−σN(σ, T ) dσ.

According to [6],

(2.16) N(σ, T )� T (12/5)(1−σ)(log T )44

for 1/2 ≤ σ ≤ 1 and T ≥ 2. Thus∑
β>1/2
|γ|<T

|Iρ| �My(log x)|<ew|+κ+A+44

1−σ0(T )�

1/2

(T κ/3+δ+12/5/x)1−σ dσ(2.17)

� y(log x)|<ew|+κ+A+44(T κ/3+δ+12/5/x)σ0(T )

provided T ≤ x1/(κ/3+δ+12/5)/2.
Inserting (2.8), (2.9), (2.13), (2.14) and (2.17) into (2.1), we find that∑
x<n≤x+y

f(n) = y(log x)κ−1
{ N∑
`=0

λ`(κ,w)

(log x)`
+O(E∗N (x, y))

}
+RT (x, y),

where

RT (x, y) := y(log x)|<ew|+κ+A+44

(
T κ/3+δ+12/5

x

)σ0(T )
+
x1+ε

T
+ x1/2(log x)|<ew|+κ+AT κ/6+δ/2.

Taking T = x1/(κ/3+δ+12/5)−10ε, we obtain the required result.
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3. Proof of Theorem 1.2. Firstly we establish the following lemma
with the help of Theorem 1.1.

Lemma 3.1. For any ε > 0, we have∑
x<n≤x+y

1

τ(dn)
=

hy√
(π log x)

{
g(d) +Oε

(
(3/4)ω(d)

log x

)}
uniformly for d ≥ 1, x ≥ 2 and x47/77+ε ≤ y ≤ x, where ω(n) is the number
of distinct prime factors of n and

h :=
∏
p

√
p(p− 1) log(1− 1/p)−1,

g(d) :=
∏
pν‖d

( ∞∑
j=0

p−j

j + ν + 1

)( ∞∑
j=0

p−j

j + 1

)−1
.

Proof. As usual, we denote by vp(n) the p-adic valuation of n. By using
the formula

τ(dn) =
∏
p

(vp(n) + vp(d) + 1),

we write, for <e s > 1,

Fd(s) :=
∞∑
n=1

τ(dn)−1n−s =
∏
p

∞∑
j=0

p−js

j + vp(d) + 1

=
ζ(s)1/2

ζ(2s)1/24
Gd(s; 1/2, 1/24),

where

Gd(s; 1/2, 1/24) :=
∏
p

∞∑
j=0

p−js

j + 1

(
1− 1

ps

)1/2(
1− 1

p2s

)−1/24
×
∏
pν‖d

( ∞∑
j=0

p−js

j + ν + 1

)( ∞∑
j=0

p−js

j + 1

)−1
is a Dirichlet series that converges absolutely for <e s > 1/3. For <e s ≥ 1/2,
we easily see that∣∣∣∣ ∞∑

j=0

p−js

j + 1

∣∣∣∣ =

∣∣∣∣ log(1− p−s)
p−s

∣∣∣∣ ≥ log(1 + p−σ)

p−σ
≥ 1

1 + p−1/2
·

This implies

|Gd(s; 1/2, 1/24)| �
∏
pν‖d

{
1

1 + ν
+O

(
1
√
p

)}
≤ C

(
3

4

)ω(d)
for <e s ≥ 1/2, where C > 0 is an absolute constant.
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Hence, Fd(s) is a Dirichlet series of type P(1/2, 1/24, 1/2, 0, 0, 1/2,
C(3/4)ω(d)). Applying Theorem 1.1 with N = 0 and noticing that λ0(1/2) =
hg(d)/Γ (1/2) = hg(d)/

√
π, we get∑

x<n≤x+y

1

τ(dn)
=

hy√
(π log x)

{
g(d) +Oε

(
g(d)y

x log x
+

(3/4)ω(d)

log x

)}
uniformly for d ≥ 1, x ≥ 2 and x47/77+ε ≤ y ≤ x. This implies the required
result since g(d)� (3/4)ω(d) and y ≤ x.

We are now ready to prove Theorem 1.2.

In view of the symmetry of the divisors of n about
√
n, we have

Fn(t) = Prob(Dn ≥ 1− t) = 1− Prob(Dn < 1− t)
= 1− Fn(1− t) +O(τ(n)−1).

Summing over x < n ≤ x+ y and applying Lemma 3.1 with d = 1, we find
that

S(x, y; t) + S(x, y; 1− t) = 1 +O

(
1√

log x

)
(0 ≤ t ≤ 1),

where

S(x, y; t) :=
1

y

∑
x<n≤x+y

Fn(t).

On the other hand, we have the identity

2

π
arcsin

√
t+

2

π
arcsin

√
1− t = 1 (0 ≤ t ≤ 1).

Therefore it is sufficient to prove (1.11) for 0 ≤ t ≤ 1/2.

For 0 ≤ t ≤ 1/2, we can write

(3.1) S(x, y; t) =
1

y

∑
x<n≤x+y

1

τ(n)

∑
d|n, d≤nt

1 = S1(x, y; t)− S2(x, y; t),

where

S1(x, y; t) :=
1

y

∑
x<n≤x+y

1

τ(n)

∑
d|n, d≤(x+y)t

1,

S2(x, y; t) :=
1

y

∑
x<n≤x+y

1

τ(n)

∑
d|n, nt<d≤(x+y)t

1.

Firstly we evaluate S1(x, y; t). Changing the order of summations, we
have

S1(x, y; t) =
1

y

∑
d≤(x+y)t

∑
x/d<m≤(x+y)/d

1

τ(dm)
·
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For d ≤ (x+ y)t ≤ (2x)1/2 and y ≥ x62/77+ε, it is easy to verify that

(y/d) ≥ (x/d)47/77+ε.

Thus we can apply Lemma 3.1 with (x/d, y/d) in place of (x, y) to write

S1(x, y; t) =
h√
π

∑
d≤(x+y)t

1

d
√

log(x/d)

{
g(d) +Oε

(
(3/4)ω(d)

log x

)}

uniformly for 0 ≤ t ≤ 1/2, x ≥ 2 and x ≥ y ≥ x62/77+ε. Bounding (3/4)ω(d)

by 1, the contribution of the error term to S1 is � 1/
√

log x. According to
[10, Chapter II.6], we have

h√
π

∑
d≤xt

g(d)

d
√

log(x/d)
=

2

π
arcsin

√
t+O

(
1√

log x

)
,

which implies that

h√
π

∑
d≤(x+y)t

g(d)

d
√

log(x/d)
=

2

π
arcsin

√
t+O

(
1√

log x

)
,

since ∑
xt<d≤(x+y)t

g(d)

d
√

log(x/d)
� 1√

log x

∑
xt<d≤(x+y)t

1

d
� 1√

log x
·

Combining these estimates, we obtain

(3.2) S1(x, y; t) =
2

π
arcsin

√
t+O

(
1√

log x

)
uniformly for 0 ≤ t ≤ 1/2, x ≥ 2 and x ≥ y ≥ x62/77+ε.

Next, a similar treatment leads to

S2(x, y; t) ≤ 1

y

∑
xt<d≤(x+y)t

∑
x/d<m≤(x+y)/d

1

τ(m)
(3.3)

� 1√
log x

∑
xt<d≤(x+y)t

1

d
� 1√

log x
·

Inserting (3.2) and (3.3) into (3.1), we find that

S(x, y; t) =
2

π
arcsin

√
t+Oε

(
1√

log x

)
uniformly for 0 ≤ t ≤ 1/2, x ≥ 2 and x ≥ y ≥ x62/77+ε.
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Finally we prove that (1.10) follows from (1.11) with y = x. Since 0 ≤
Fn(t) ≤ 1, we have∑

n≤x
Fn(t) =

∑
√
x<n≤x

Fn(t) +O(
√
x)

=
∑

0≤k≤(log x)/(2 log 2)

∑
x/2k+1<n≤x/2k

Fn(t) +O(
√
x).

Applying (1.11) with y = x to the inner sum, we deduce that∑
n≤x

Fn(t)

= h

[(log x)/(2 log 2)]∑
k=0

{
x

2k+1

2

π
arcsin

√
t+O

(
x/2k+1√

log(x/2k+1)

)}
+O(

√
x)

= x
2

π
arcsin

√
t+O

(
x√

log x

)
,

since

2[(log x)/(2 log 2)]+1 �
√
x and

[(log x)/(2 log 2)]∑
k=0

1

2k+1
= 1 +O

(
1√
x

)
.

This completes the proof of Theorem 1.2.
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