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A lattice point problem associated with two polynomials
by

MANFRED PETER (Freiburg)

1. Introduction. B. Lichtin [5] proves the following result: Let g, €
Rlz,y], v = 1,2, be two polynomials which are nondegenerate with respect
to their polygon at infinity and hypoelliptic on [1,00)?. Define

R(Al,A2) = #{(w,y) S N2 | gu(xay) < Aua v = L 2}
for Ay, As > 0. There are finitely many sets
b, B,
Rj={(A1,42) € [1,00)? | AY < Ay < A}
with 0 < b; < B; < o0 and [1,00)% = U; R, polynomials p;(u,v) € Rlu, v]
which are positive outside some compact subset of [1,00)? and constants
uj,v; > 0 so that the following asymptotics holds: If Rosc € R; is an
unbounded connected semialgebraic set with dist((A1, A2),0R;) — oo as
(A1, As) — (00,0) in Reo then with some @ > 0,
R(Ay, Ag) = A% A p;(log Ay, log Ag) + O(AY ™% A5 )
as (A1, Az) — (00,00) in Reo

Lichtin gives an explicit description of R, u;, v; in terms of the region of
analyticity of some Dirichlet series which is associated with the polynomials
gy. It is the aim of this paper to derive a much sharper asymptotic expansion
of R(A1, As) under conditions on the polynomials g, which are in some sense

complementary to those of Lichtin.
Let

Z a(y) Wie Zlxy, v=1,2,
i+j<dy

be polynomials with nonnegative integer coefficients and agu)oag:l) % 0. De-

fine
= > alValyl € Zw,y)
i+j=d,
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and let the functions 7, : [0,&,] — RS and Z, : [0,7,] — R be implicitly
defined by

Gl gu(x) =1 for0<z <&, 5(6) =0,
gu(@u(y)y) =1 for0<y<n, z,(m)=0.
Assume that the rational function
(1.1) 91(Ly)™ /g2(1, )"
is not constant. Assume further that g, is not of the form
(1.2) agy) (y —bx)™ or aly(x — cy)™
with some b, ¢ € R. This paper is devoted to the proof of
THEOREM 1.1. There is a decomposition 0 = C* | < Cj < ... < C} <
Ch.i1 = oo and constants K,e > 0 with the property: For 0 < p <
m+1 and A, Ay > K with C := A, A7/ € (C;_) + min{A;, A},
C —min{Ay, A3} ~¢) we have
R(Al,A2) = area({(:n,y) € RQ | r,y > 07 gu(xyy) < AI/) v = 172})
+ T (Ar) + T3 (Az) + UM (A1) + U (4y)
— L min{A}/" €y, AY 2 6) — Lmin{A) My, AY P
i O(Aéllﬁ/(73d1)(10gA1)315/146)
" O(AgG/(73d2)(logA2)315/146).
The representation
LS]M)
T (A4,) = AQ/d)A=1/(pp,0+2)) Z H,S‘l‘)(All/d”)
1=1
+ O(Al(/l/drf)(1_1/(pu,v+2)_1/(pu,u+2)2) lOg AV)

holds with p, ., € N and Hl(,’f) periodic functions which are given by absolutely
convergent Fourier series. Furthermore, with some q,,, € N,

UM (A,) = O5(AY/d)1=1/qu0+0)y

for each § > 0. T (resp. UZS“)) can only appear if there is a zero of vy
or T, at which ¥y, or T, is rational (resp. irrational). p,, (resp. qu,) is at
most d, — 2.

The proof consists of three parts. In a combinatorial part the set in which
the lattice points are counted is dissected into finitely many subsets. Each
of these has a boundary which is described by one single algebraic curve.
These local problems can be treated in just the same way as in [9]. That is
the analytical part which uses exponential sum estimates. The last section is
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concerned with the question whether the requirements of this local analysis
can be met by imposing suitable conditions on the relative position of A;
and As. This part is again combinatorial in nature.

In principle it is possible to give an explicit description of C}, Ty (n )
Ué“ ) and ¢ in terms of Yv, T, and the coefficients of the g,. In Sections 4,
5 and 6 this is done for the local lattice point asymptotics. In the global
asymptotics an explicit description of all the constants and functions would
make it necessary to distinguish between a lot of cases. Therefore I chose the
above formulation which lays emphasis on the structure of the asymptotic
formula and not on explicit calculations.

In the following ¢ > 0 will be a sufficiently small constant, K > 0 a
sufficiently large constant and K; > 0, j € N, constants depending only on
the g,. Furthermore ¢ (x) := x — [z] — 1/2.

I would like to thank the referee for a suggestion which led to an im-
provement of the paper.

2. Reduction to algebraic boundary curves. Define an auxiliary
function h : [0,&1] — RT by h(z) := go(z,71(2)).
LEMMA 2.1. The function h is not constant.

Proof. Assume h(z) = A € R* for each z € [0, &,]. Then for 0 < z < &,
Ag (L e g (2) 2 = A e DGy (2,5 ()™ = h(z) Do
=z~ Mg (2, 1(2)" = go(1, 27 g (2)) ™
With 71(z) — 71(0) > 0 as z — 0+ 0 it follows that 7 '7;(x) — oo
as © — 0+ 0. Therefore the identity A g;(1,7)% = §a2(1,y)% holds for

infinitely many y and consequently it holds as a polynomial identity. This
contradicts the assumption on (1.1). m

Define the homogeneous polynomials of degree d,

gu(ray) =Y alr T ialy € Llr ).
i+35<d,

Define
i) = min{l1 <j<d,|af’ #0},
i((]y) = min{l1 <4 <d, | agyd) _, #0}.
For 0 <7 < (a (V)) 1/dv the functions ¥, (7,-) : [0,&,(7)] — RY and x,(7, ) :
[0,7,(7)] — R{ are implicitly defined by
gu(Tax7yu(7_7$)) =1, 0<z< EV(T)7 yV(T7 gl/(T)) =0,
go(Tay(Ty)y) =1, 0<y <nu(7), 2(r,m(7)) = 0.
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Both are strictly decreasing and inverse to each other. For 0 <z < &,(71),

(21)  guy(T 2, 90(7,2))

> max{a(y)i o (U)]é”)xdu & v, (T, 3:)](()” - %d) dyy, (7, 2) 71} > 0.

Consequently, y, is C*° on an open neighbourhood of
{(r.2) |0 <7 < (ag)) ™™, 0 <& < &(7)}

by the implicit function theorem. If jéy) = 1 then (2.1) is also valid for
x =&, (7) and consequently y, is C° on an open neighbourhood of

{(r,2) [0 <7< (aly) V4, 0 <z < &)}

We have 7, (1) = y,(7,0) for 0 < 7 < (a (V)) Vdv - Consequently, 7, is O
in this interval and 7, (1) = 7, + O(7) as 7 — 0. Analogous results are valid
for z,,.

For Ay, Ay > max{aoo ,a(()%),l} define fa, a, : [0, 04, 4,] — R by
S an (@) = min{ A/ Py (A7 AT ) AY By (AL ALY ),
0, 4, = min{A)/ Ve (AT VM), A e (A1)}
Then the following equivalence holds for x,y > 0:
(2.2)  gu(z,y) <A, v=1,2
& g (A Vb ATV vy ATV deyy <1y =1,2
& A g <& (A W), ATy <y, (A4 AJY ) v =1,2
ST 04,4, Y S fA17A2(l‘)'

Now it is clear that R(A;, A2) is the number of lattice points below the
graph of fa, a,. The function § : (0, (£, 1)%2] — R with

§(C) := min{gy (x) — CY e (C~Yeg) |0 <z < CYeE,)

is continuous with lim¢—od(C) = y1(0) > 0 and 5((E165H)%) < (&) —
5152 y2(£2) = 0. Choose 0 < Cy < (Elf 1yd2 minimal with 6(Cy) = 0 and
fix0<ag <1 < C’O/ §2 with A/ (zg) # 0. Set Cy := (xlggl)‘b < Cp. Then
for0<C<C,0<z< C’l/d2§~2 we have

71 (z) — CY gy (0~ g) > §(C) > min{s(C’) |0 < ¢’ < C1} = K1 > 0.

So for Ay, Ay > K, C := AyA7™/" < 01,0 < 2 < pa, a,, with 7, =
A;l/d”, we have

AV By (7, o) < AV OV B, (O Y 2 2) < AV (3 (12) — K.
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In particular g1 (1) > K; > 0 and so mqx < 51 — K3 with some constant
K3 > 0. Now y; is C* on an open neighbourhood of [0, 7o) x [0, &; — K3 for
sufficiently small 79. The mean value theorem gives y; (71, 112) = y1(T12) +
O(7) and so

Ay Py (r,moz) < A" () - K1) < 4"y )
if K is sufficiently large. It follows that
(2.3) Faya,(x) = A P ya (72, o).
Furthermore from x; < §~1 it follows that
Ay &a(m) = 4/ P&+ 0(m)) < 4" 06 + O(1)
= 4/ (@1 +0(n)) < A6 (n)
and consequently
(24) 0a1as = A 6s(r).

Set Cy = max{(261; )%, (21(0)72(€2/2)~1)%}. Then for C' > C, 0 <
x < & we have

J1(2) < 71(0) < CYVg,(65/2)/2 < CY % (o (C™V %2 2) — 12(€2/2)/2).
For Ay, Ay > K, C:= Ay A7/ > 0y, 0 < 2 < 04, 4,, it follows that
AV By (), ma) < AV DG (ma) < AV B OV (G (O Y 2 2) — 55 (62/2) /2).

In particular §o(C~Y42r2) > 75(£/2)/2 > 0 and so mz < & — Ky for
some constant K, > 0. Therefore

AY Py (1, miz) < A" (Ga(me) + O(12)) = Ay ®ya (7o, 7o)
for sufficiently large K and so
(2.5) Fayoa, (@) = AV Py (1, 7).
Furthermore
AV e (m) = AV (E + O(m)) < AY ey RE v o)
< A6 )2+ 0(1) < A P (m)
and consequently
(2.6) 04,4, = AV T E(T).

It remains to analyse the range C7 < C < (5. The functions 7, can be
continued holomorphically to regions of the form

GV — {z€C|—E<§RZ<gV+E, |%Z‘ <€,Z¢[guvoo)}
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with at most an ordinary algebraic singularity of order < d, at g,,. This
follows from general theorems on algebraic functions (for example [1], Chap-
ter 8.2). Therefore h’ is holomorphic on G; with at most an algebraic
pole at & and consequently in (0,81) it has only a finite number of ze-

ros & < ... < &—1 with r € N. Define { = 0, & := & . Let n, €
No be the order of the zero £, of h'. For each 1 < p < r the function
h[€o—1,&,) is strictly monotonic and continuous. Therefore it has an inverse
ko : lag, byl — [€o—1,&,) which is strictly monotonic and continuous. For

Ay, Ay > K, C = Ay A7™/™ €[04, Cy), we have
ro <z < Cé/d2§~2 < 51,
C Vg < Cl_l/dzmo = moxflgg =125 < 52
and consequently
ATV Mo, 4, = min{& (11), CV/ %28 (1)}
= min{&; + O(n), CV/* (& + O(2))} > xo

for sufficiently large K. Furthermore

(2.7)

Yo = Yo,a, 45 = Ay Y Fay a, (AT M)
= min{71 (z0) + O(71), CY 2 (7 (C~Y%20) + O(12))}-
So there are constants y1, y with
Yo < y1(wo) +O(11) < y1 < 71,
(2.8) CVyy < go(C™H 2 a0) + O(1s)

< 520y " w0) + O(r2) < 3 < 7
for sufficiently large K.

COLEMMA 22. Let 1 < 0 €1, 61 ST <6, T<6,0<T <&,
Cy > C1 > 0. There are constants €, K > 0 with the property: For Ay, Ay >
K, C = A A7 %" € (01,04, |C = a,|, |C = by > ATS, x € [£5-1,7),
< CY%T, and |x — k,(C)| > A;50/(73d1) if C € [ap,b,] then

Al/dl (7— .T}) h(a:) <C
2.9 1,42 Al/dll’ - 1 ANEE ' ’
(2.9) fay,a,(Ay ) {Aé/d2y2(7.27c—1/d2x), h(z) > C.

Proof. From the mean value theorem it follows that, with ¢ between
i (z) and OV, (C—Vdag),

(2.10)  |h(z) = C| = |Ga(z, 1 (2)) — CGo(C™ 22, o (C~%21))]
= |1 (x) — CY 25y (C™H % 5)| - Goy (2, )|
< |1 (z) — Mgy (C— 2y,
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Assume first C' € [a,,b,]. Define y := ky(C) € [£p—1,&). Assume y >
(fg—l + fg)/z

CaSE 1: p =1,y > (T+&,)/2. The monotonicity of h[[{,—1,&,] together
with (2.10) gives

(2.11)  [gi(z) = CV%go(CH 2a)| > |h(x) — C| = [h(x) — h(y)|
> [W(@) — h(T+&)/2)] > 1.
CASE 2: p <71 or y < (T+&,)/2. Taylor’s formula gives
h(z) — C = h(z) = h(y) = h'(y)(x — y) + O]z — y/*).
In the case p =7, ({o-1+&,)/2 <y < (T+&,)/2, we have
W ()| = 1= [y — &

In the case ¢ < r the function h’ has a zero of order n, at £, and is nonzero
on [(§p—1+&p)/2,&,). This gives |/ (y)| < |y — &|™e again. So in Case 2 we
have

[h(z) - C]

|z = ko (C)]

if |z —y| < dly — &,|™e. Here 6 > 0 depends only on h[[,—1,&,].
CASE 2.1: |z — y| < 6|y — &,|™e. With (2.10) it follows that

(2.13) [91(2) — CYEG(C™YE0)| > |o —ko(C)] - |y — &,

(2.12) =1/ (y) + O(lz — y)| < |y — &l

CASE 2.2: [z —y| > 6|y —&,|"e. Then = & |11, 22|, 212 := yF |y —&p|™e.
In the case x < x; it follows from the monotonicity of h[[{,—1,&,] that

h(z) = h(y)| = |h(z1) = h(y)] > |x1 = ko(O)] - [y — &l = dly — &>
as in (2.12). The same is true in the case x > 2. So in Case 2.2 we have
(2.14) [91(2) = CY B (O B2)| > |y — &,

In the case ¢ < r Taylor’s formula gives

(ne+1)
) = &) = "o

With ¢’ > 0 depending only on h[[{,—1,&,] it follows that, for |y — &,| < ¢,
[y — ol < [h(y) — h(&)| = IC — h(&),
and for |y — &,| > ¢,
[y = [t 2 6T > 1> |0 = h(&,)].

(y — &)™ (1 + O(ly — &)

The last estimate is true also in the case p =1, y < (T+&,)/2.
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Taking € := 23/(73d;) it follows in Case 2 from (2.13) and (2.14) and
h(&,) € {ag, b} that

(2.15)  |gn(x) — CMEgy(CH %))
> min{|z — ko(O)] - [y — &I, |y — &I}
> min{A; %P0 pe,) e/ et D) |C = h(e,)|2re/ ety

> min{A;50/(73d1)*Eng/(nngl)’A;ZEnQ/(nngl)} > Al_,.g

with some constant 0 < x < 1/d;. By (2.11) this estimate also holds in
Case 1. Under the assumption y < (§,-1 + &,)/2 the same arguments can
be simplified somewhat.

In the case C ¢ [ay,, b,] it follows from (2.10) that

71 (z) — CY (0~ V%) > min{|a, — C|, |b, — C|} > A7F,

which also gives (2.15).
The equivalence

(2.16) 1 (x) > CY gy (C~Vd2y)
& Gp(C Vg o Vig (2)>1 & hz)>C

follows from the definitions. As x < T < 51, CViyp <F < §~2 it follows
from the mean value theorem that

(@) =1 () + 0(11),  ya(r2, ™V %z) = Jo(C™V%2) + O(r).
If h(z) < C then by (2.16) and (2.15),
y1 (11, ) — CY 2y, (g, C7 V2 0) = Gy () — CY2(C7Y%22) + O(1y)
< —K AT + K5 ATV <0

for sufficiently large K where K4, K5 > 0 are constants independent of
A1, Ay. If h(z) > C the same reasoning gives

y1 (11, 2) — CY%2yy (1o, O~V 22) > 0.
From this (2.9) follows. m

3. Decomposition of the lattice point set. For Ay, Ay > K, C :=
A AT/ < ¢y it follows from (2.2), (2.3) and (2.4) that

R(Ay, Ap) = #{(z,y) € N? | 2 < A) P 6a(m), y < AY ®ya(me, 7o) }.
If C > (s it follows from (2.5) and (2.6) that
R(A1, As) = #{(z,y) e N* |z < Ai/dlfl(ﬁ), y < Ai/dlyl(ﬁ,ﬁx)}-

So in these cases the problem of evaluating R(A;, A3) asymptotically in-
volves only one polynomial. This situation was investigated in [9]. There
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the error estimates are more precise than in this paper and an explicit de-
scription of the terms T, and U, is possible. Therefore in the remainder of
this paper the range C' € [C, (5] is investigated. Then

(3.1) R(A1,As) = RU(Ay, Ay) + R* (A1, Ay) — [AY D yg 4, 4, ][AY M o)
with
RT(AlaAZ) = #{(xay) € N2 ’ rz < Ai/dlx(]v ) < fA1,A2(x)}a

R* (A1, As) = #{(z,y) € N* | y < AV Mo a, s < f1 10, ().
From h'(zg) # 0 it follows that there is some 1 < gg < r with §,,—1 < 79 <
oo Take 0 = 0o, =T = 20, T = 22, C1 = C1, C3 = O in Lemma 2.2.
From (2.7) it follows that for A;, Ay > K, C = AgAl_dQ/d1 € [C,Cy),
(€ = gy, [C = boo| > A" and |zg — kg, (C)] = AT if C € [y, by,]
then
(32) Y0,A1,A2

_ y1(71,0) = y1(w0) + O(71), C > h(xo),

Cl/deQ(TQ, Cil/dQSCU) = Cl/ngQ(Cfl/Ubﬁo) + O(Tl), C< h(l‘g)

From k), (h(zq)) = h/(x0)~" # 0 it follows that for C' € [a,,,by,] by Taylor’s
theorem we have

C = h(xo) = h(kg, (C)) = h(xo) = I'(x0)(kgy (C) — 20) (1 + O(Jkg, (C) — o))

and consequently |C' — h(zg)| < |ky, (C) — o] for ky,(C) near zp. In the
opposite case the same holds by the monotonicity of h[[{,,—1,&,,]. Therefore
there are constants €9, K > 0 so that (3.2) holds for 4,4, > K, C =
A AT € [C1,Cal, |C = agyl, [C = by, [C = h(wo)| > A7

RY(Aq, As) and R¥(A;, Ay) are defined in the same way but with z and
y interchanged. The only asymmetry is that ¢ is constant whereas yg, 4,4,
depends on A;, A;. Therefore the following notation is introduced which
covers both cases: Let Co > C; > 0and 0 < Z < €1, 0 < Z < &. Let
2 : [K,00)? — RT be a function with

2(A1,A)) <7, O Hez(A41,4,)<7Z
for Ay, Ay > K, C := A, A7 ™/" € [Cy, Cs). Define
R* (A1, Ag) = #{(z,y) € N? | 2 < A/ 2(A1, Ag), y < fa, a,(2)}

From (2.7) and (2.8) it follows that both RT and R¥ are of this type. Then
R* (Al, Ag) = 22:1 RZ(AI’ AQ) with

R:(Ar, As) = #{(2,y) € Z2 | AY/ M€, 1 < 2 < AV min{é,, 2(A1, As)},
0<y < fa, @)}
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The following lemma gives a reduction of R} to the case where only one
algebraic curve is involved.

_ LEMMA 3.1. Let 1 < p < r. Then for Ay, Ay > K, C := A2A1—d2/d1 c
[C1,C3], |C —a,l, |C —by| > AT we have:

o in the case C € [ay,by), hl[€o—1,&,] increasing with z,(Aq, Az) =
min{k@(c)vz(Al’A2)}:

Ry(Ar, Ag) = #{(w,y) € 22 | A" 6y 1 < < A" 2, (A1, 4y),
O0<y< A}/dlyl(ﬁ,ﬁaj)}
+#{(2,y) € 22 | A/ ky(C) < & < A" min{&y, 2(Ar, A2)},
0 <y < A/ P ya(mo, mow)} + O(ATY )
e in the case C € [a,, by|, h[[€o—1,&,] decreasing:
Ry(A1, As) = #{(w,y) € Z2 | A/ "€ 1 < < AV 2,(A1, Ay),
0<y< Aé/deQ(TQ,TQIL’)}
+#{(z,y) € Z | AY/Mk,(C) < v < AV min{g,, 2(Ay, A2)},
0 <y < A"y (m,ma)} + O(ATY )
e in the case C' < a,:
Rj(Ar, Az) = #{(w,y) € 22 | A7/ "¢, 1 < o < AV min{g,, (A1, A2)},
0<y< Aé/deQ(TQ,TQ.’L')};
e in the case C' > b,:
Rj(Ar, Az) = #{(w,y) € 22 | A7/ "¢, 1 <o < AV min{g,, (A1, A2)},
0<y< A}/dlyl(ﬁ,ﬁx)}.

Proof. Only the case z(Ai,As) > £,—1 is of interest. Assume first
C € [ag, by), hl[€e—1,&,] increasing. For £, < = < min{¢,, z(A41,A2)},
|z — ko (C)| > 7‘150/73 it follows from Lemma 2.2 with T := min{¢,,z},7:=2
that
1/ds —1/dy
fA1,A2 (A}/dlx) - A%/dlyz(Tz’ c x)’ v k9(0)7
Ay My (o), z < ky(C).

Consequently,
R} (Ay, As)
= #{(x,y) € 22 | AV, < 2 < AV min{k,(C) — %™ 2(Ay, As)},
0<y< A}/dlyl(ﬁ,ﬁaj)}
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+#{(z,y) € 22 | AY" max{€p_1,ko(C) — 1} < w
< A" min{ky(C) + 7%, 2(A1, A2), 6.}, 0 < y < fa, ,(2)}
+#{(,y) € 22 | AY " (ko(C) + 7Y ™) < o < AV min{g,, 2(Ar1, Ad)},
0<y<A, 1/d 2y (12, Tox) }.
For max{§,_1,k,(C) — 50/73} <z <min{é,, k,(C) + T 50/73 z(A1,A2)} we

have x = k,(C) + O(t 50/73) ko(C) < z(A1,As) + 750/73 and by Taylor’s
theorem

)
)

(3:3) yi(71,2) = i (ko(C)) + O ™),
. g (72, O V%2 = o (C— 2k, (C)) + O(20 7).

Furthermore
G2(C™ V% ky(C), C~ % (ko (C))) = C G2 (ko (C), 11 (ko (C)))
= C7'h(k,(C)) =1
and consequently
(34) 2(C7 V% Ey(C)) = O~V %4 (k,(C)).
This gives
(35)  faran (A" 2) = AT (o (C)) + O(AT )
= A3/ P (C7Vk,y(0)) + 043V ).
It follows that
R%(Ar, As)
= #{(z,y) €72 | AV e, | <2 < AV, (A1, Ay),
0<y<A/"yi(n,ma)}
- Z Ay Py (1, )]

Al/ I max{k,(C)— 700/73 }<z<A zQ(Al,Ag)

+ Z [fA17A2 (ZE)]

AL M max{€,—1,ko ()1 Py << A} M 2, (A1, A2)

+ Z [fA17A2 (SL‘)]

Al/d1 max{k,(C)— TOO/73 2o (A1, Ag)}<x<A1/d1 min{k, (C)+T5O/73 2(A1,A2),&0}
+ #{(z,y) € Z* | A"k, (C) < 2 < AT/ min{g,, 2(A1, A2)},
0< y < < A;/d2y2(7'2,7'2.%')}

- > A5/ s (72, 7).

AV M, (0)<z< AY M min{k, (C)+75% 73 ¢,,2(A1,A2)}
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By (3.3) and (3.5) the difference between the first and the second sum is
O(Af?’/(mdl)A}/lefoﬁs) = O(Aéllﬁ/(mdl)). The difference between the third
and the fourth sum is
dz d1
O(A§3/(73 )A}/ 7_150/73)

+ Z [fA17A2 (33‘)]

AV max{k, (C)—12%% 2,(A1,A2)}<w< ALY %1 2,(A1,As)

The sum is zero and the error term is O(Aéllﬁ/(mdl)). The case of h[[€,—1, &,
decreasing is handled in the same way.

Assume now C' < a,. For §,_1 < 2 < min{&,, (A1, A2)} we have h(z) >
ap, > C. From Lemma 2.2 it follows that fAl,Az(A}/dlm) = Aé/dzyg(m,
C~1/d2g). This proves the conclusion of the theorem. The case C' > b, is
handled in the same way. =

4. The case of irrational slope. In this and the next section the
following general situation is investigated:

Let 9 > 0,d €N, a,b € R, and let f:U — R be C° on the open neigh-
bourhood U of {(t,z) | 0 < 7 < 719, a < = < b}. Define f := f(0,-). For
A> 154 AYg < o < AV, define fa(x) := AVIF(AY A A=Y g, Let
a,b: [0, 79] — R be functions with a(t) = a+O(7), b(T) = b+O0(7) as T — 0.

The argument of this section follows the general line of Miiller-Nowak [6].

The main difference is that the estimates are uniform in the variable 7. This
gives rise to additional complications.

LEMMA 4.1. Let I C R be an interval and f € C*(I) with g,(x, f(x))=
for x € I. Then f*) £ 0 for each k € Ny. In particular g,S’“) Z0 on [0,¢,
and 7 #0 on [0,7,) for each k € Ny.

1
)

Proof. Surely f is not constant. If f(*) = 0 is assumed for some k € Ny
then let k& be minimal with this property. Then k£ > 2 and f(z) = Zﬁ;é bx"”
on I with coefficients b, € C and bi_1 # 0. Then

k—1 .
Z ag)x%’;)b,w“)] =1.

k—l)

For k > 3 this gives the contradiction 1 = aéz)y (b—1z dv 4 monomials of

lower order. Therefore £ = 2 and

d, .
m (v) JNpi—rpe _
E x E ady_j,j<b>b1 by = 1.
m=0 0<<j<d,

d,—t=m
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This gives ag d) bd = 1 and therefore by # 0, and for 1 <m < d,,

dy .
_ (U) ‘7 j_(du_m) d,—m
0=">_ “dymj<dy<_,n>b1 o

j=d,—m

1 ghv—m
(d, —m)!  dyd—m
Therefore by is a zero of g, (1, y) with multiplicity at least d,, and so g, (1,y) =

__gdy,—m
= bO

gu(1,b1).

aé d) (y — b1)%. Since the coefficients of g, are real this would imply b; € R
and g, (z,y) = a(()d) (y — byz)® contrary to assumption (1.2). m

LEMMA 4.2. Let xg € [O,EN,,) with y!/(xg) = 0. Then y.,(xo) is algebraic
over Q.

Proof. Twofold differentiation of g, (x,y,(z)) = 1 shows (zo, ¥, (x0)) is
azeroof k:=g,—1land [ := §Vm§3y — 20uayJvaGvy + JuyyJae- Now [ is not
zero because otherwise y,, = 0 contrary to Lemma 4.1. Let 0 # b(z) € Z[z]
be the leading coefficient of [ as a polynomial in y with coefficients in
Z[z]. Let R(x) € Z[z] be the resultant of k and [ with respect to y. Then

R(zp) = 0 or b(xp) = 0 because k has leading coefficient a ;é 0 with
respect to y (van der Waerden [10], p. 104). If R # 0 then ro € Q.
Then k(xo,-) # 0 has algebraic coefficients and therefore its zero y,(zg)
is algebraic. Consequently,

gz//(xﬂ) = _gyas(xOvgl/(xO))gVy(xngl/(l‘O))_l € @

Now the assumption R = 0 will be proved contradictory. Then for each
z € C with b(z) # 0 the polynomials k(z, -) and I(z, -) would have a common
zero. The discriminant Dy (z) of k with respect to y is not zero because
Di(0) = (=1)%~1(d,al) )% # 0. Let x, € R with Dy (1) # 0, b(w) # 0.
From general theorems on algebraic functions it follows that there is an open
disk U C C with centre 1 where b and D;, have no zeros and on which there
exist d,, holomorphic branches w,...,wq, of the algebraic function which
is deﬁned by k(z,w) = 0. Twofold differentiation of k(z,w;(z)) = 0 gives
(2) = —(1/g3,)(2,W;(2)) on U. Here g,y (2, w;(z)) # 0 for z € U because
k:( -) has only simple zeros. We have b(z) # 0 and wi(2), ..., wq, (z) are the
zeros of k(z,-). Therefore by assumption there is some 1 < j(z) < d, with
I(z,W;(»)(2)) = 0 and consequently w7 (z) = 0. From the identity theorem
it follows that @;’ (2) = 0 on U for some 1 < j < d,. This contradicts
Lemma 4.1. n

The following lemma is used for parts of the boundary curve on which
the curvature does not vanish.
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LEMMA 4.3. Let f, f"" be zerofree on [a,b]. Then for A>17% a<d <
b < b we have

D Ufaln) < AN/TD (10g 4) M348,
Al/da’<n§A1/db’
Proof. Define 7 := A~Y4 M := [AY4(b — a)], T := AY4M. For
AVdg < ¢ < Al/db, 0 < 7 < 79 the mean value theorem gives
() = A7 fo(rmx) = AV (72) £ O(7)).
f" is zerofree and consequently | f(rz)| = 1. For large A this gives | fi(x)] <
A7Vd = TM~3 and similarly |f{(z)] < TM~*. Let ¢ € [a,b], M, :=
M +[AY4(c — a)]. Define h(z) := fa(x +[AY?a] — M), 2 € [M,2M]. Then
I (z)| = TM=3, | (z)| = TM~*, M < M, < 2M, T"/? = M, and the
discrete Hardy—Littlewood method in the form of [2], Theorem 18.2.2, gives
S wla)= Y (h(n) +O(1) < AT (1og AN
Al/da<n§A1/dc M<n<M,.

uniformly in A and c. In this theorem f(7,-) is assumed to be independent
of 7. This is not an essential assumption as was pointed out in [7], Theo-
rem B. Choosing ¢ = b’ and ¢ = a’ and subtracting proves the lemma. m

The next lemma is used for parts of the boundary curve which do not
come too close to points of vanishing curvature.

LEMMA 4.4. Let f’, f”, ]7”’ be zerofree on (a,b]. Let pu € N with f(k)(a)
=0 for2 <k <p+1and f*"D(a) # 0. Let 0 < A < (u+1)"" and
Ao := min{20(83u+103) "1, A}. Then for A > 75% a+71* < < b we have

Z P(fa(n)) < A46/(73d)(]0gA)315/146 1+ AQw+1)/(2d)
Al/d(a+TA)<n<Al/dy

Proof Leta<c<b. For0<7 <7, a+7 <z<c, k=23, Taylor’s
theorem gives

Flut2)
%h 7) = ‘(,{ :;—2_(%; (z = a)" 271+ O(le — a| + 7120270,
~ ft2)(g)

rz) = f'(a) + 0——2(x — a)*t! ¢ — a| + 7 AEEDY),
folr) = Fla) + TS @ = a1 4 Ol af 4 712200

Fixing ¢ close to a gives, with 1 — A(uz+ 1) > 0,
| fao (T, 2)| < |z —al*, | fosa(T,2)] < |2 —a' .
In the case f'(a) # 0 we have | f,(7,2)| =< 1 and with constants K1, K5 > 0,
£ (7, 2) frwa (T, @) = 3o (T, 2)?] > |2 — a1 (K — Kalx — al"*1)
> |o — a7 fo(r, @)
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for ¢ sufficiently close to a. In the case f'(a) = 0 we have |fu(r,2)| =
|z — a|**t! and

‘fﬂ?(Tﬂ x)fxmx(Ta :L’) - 3fmx(7—7 :L’)2|

~ —3(p+1 _
— f(“+2)(a)2|a:—a|2“ M(M +</f)w) +O(lc — qf 4+ 1 A(u+1))

= |z —al* | fulr, 2)].
For AY%(a + 1) < x < A% this gives

ary VA= ATVUA Y )] < A A et
’ ") ! (2 _3f// T 2 > f/ T A72/d Afl/dx_aufl'

|fa(@) fa A A

Define My := A'Y4r20 M, := AY%(c —a), J := [log A], B := (M;/My)'/".

Then B = e*/? 4 o(1) as A — oo. For 1 < j < J define M; := MyB’ and

9;(x) = fa(z +[2M; 1 — M)+ [AY%a))  on [M; — M;_1,2(M; — M;_1)].

Then
5 im 5 P(a ()
Al/d(a4720)<n< A/ 4 min{d’,c}
J
= > > P(g;(n)) +O(J)
j=1 Mj—Mj_1<n§Mj/4(b/)
with

Mj(b,) = IIllIl{Q(MJ —Mjfl),Al/d(b,—a)—QMjfl +M]} < 2(M] —Mjfl).

For 1 < j < J define 7' := A=GHD/dNIH3 N = M; — M;_y. For x €
[M,2M] it follows that

|97 ()| =< TM 3, |g}"()] = TM ™,

|95(2)g5" () — 3¢5 (2)?| > TM~*|gj(=)].

From the choice of Ag it follows that MT—83/146  « 1 and TY/2M-1
< 1. Theorem 18.2.2 in [2] gives S; < A%0/(734) (1og A)315/146 Lemma 4.3
gives
Sy 1= Z w(fA<n)) < A46/(73d)(]0gA)315/146.
Al/’ic<n§A1/db/

By (4.1), f% and f/{ are zerofree on [AY?(a + ), AY/4(a 4 77)] and con-
sequently f% is monotonic. From van der Corput’s theorem (Krétzel [3],
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Theorem 2.3) it follows that
Sy = 5 U(fan)
Al/d (a7 ) <n< AV d(a4120)
A4 (a4720)
< | Aveh ATy gt /B dy 4 (AT AT
AL/ (at7)
< A%6/(T3d) | A(1+An)/(2d)
using the special choice of A\g. =
The main result of this section is
PROPOSITION 4.5. Let f’(a) be an algebraic irrational, f', [, [ ze-
rofree on (a,b] and p € N with f(k)(a) =0 for2 <k < pu+1 and
f(“+2)(a) #0. Let 6 > 0. Then for A > T(;d and a + 720/(83u+103) </ <
we have
Z B(fa(n)) < AV/DO1/n0) L 246/(73d) (15 4)315/146.
Al/dq(A-1/d)<n< A1/ dp!
Proof. Define A :=1/(3u+ 2). For h € N define
S(h) i ) e(hfa(n)).
Al/d(qprl/n=0)<n< A/ d(atTN)
From Krétzel [3], Theorem 1.8 for s = 2 it follows that for arbitrary H > 0,

(4.2) S = > P(fa(n))

Al/d(a+71/r=0)<n<Al/d(a+T™)

H? 1
1-2)/d ;p—1 .
< AU=N/dp=1 4 me{ﬁ, E}]S(hﬂ.
h>1
Let C; be the arc of the circle with radius r := CAY4(t* — 71/#=%) which
starts at
Py = (AY%4a+ 71/170), fa(AY Y (a + 7/P70)))
and proceeds clockwise to its endpoint
Py = (AYYa+ ), fa(AYYa + 1))

and whose centre M lies below the line (P P;). Here C' > 1 is a constant
which is fixed later. The <-constants below are independent of C.

Let 2 be the angle under which C; is seen from its centre M and F3
(6 > 0) the angle between (P;P>) and the horizontal axis. In the follow-
ing the upper resp. lower sign is valid whenever (P;P;) has negative resp.
positive slope. From the mean value theorem it follows that

¥ tan B = [f4(Q)] < 1 with AV (a+7'/#70) < ¢ < AV a+ 7).
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Consequently, there is a constant €9 > 0 with 0 < 5 < 7/2 — ¢y. Therefore
| Py Py| = (cos B)_I(Al/d(a + 1) — Al/d(a + 7'1/”_5)) < 2r

for sufficiently large C' > 1. For such C' the arc C; exists in the form described
above. From sina = (2C cos 3)71 it follows that a =< C~!. Choose C' > 1
sufficiently large so that 0 < a < £¢/2. Further conditions on C' will be
given below. If m(P) denotes the slope of C; in P € C; then

(4.3) lgup |m(P)| < max{|tan(a F f)|, [tan(a + 3)|} < 1.

€
Let P3 € C; be the midpoint of C;. For AV (a+71/1=9) <o < AYV4(a+717)
there is some 6 between ¢ and x with
|[fa(x) £ tan 8] = | () = fA(Q)] = [f4(0) (= — Ol < 7.
For the slope my := tan(a/2 F ) of (P1Ps) and 0 < 7 < 79(C) it follows
that
my — fi(x) = £(cos ) "2 (£a/2) + O(1*) > a/2 4+ O(1) > 0
with some 6 between (5 and §F a/2. Therefore the graph of f4 between P;
and P, lies below (P;Ps3). The same holds for (P3P,) and consequently the
graph of fa lies below Cy. Let Fy : [AY%(a + 71/179), AVd(q + 7)) — R
be the function whose graph is C;. Then we have |F’| < 1 by (4.3). For
AV (g0 =0) < g < AV (a+71) we obtain r~t = |FY{ (x)|(14+F/y (x)?)~3/2
and consequently |F{(z)| < r~' < C~'A=Y47r=2 From van der Corput’s
theorem (Krétzel [3], Theorem 2.1) it follows that, for h € N,
(14)  Si(h)
— Z e(hFA(n)) < h1/2A(17)\)/(2d)Cl/2.
Al/d(a471/r=8)<n< AV d(a+T2)

The main task is the estimation of Sy(h) := S1(h) — S(h). Let C2 be the
part of the graph of f4 between P; and P, and

B:={(z,y) e R* | AU (a+7/"7%) <z < AV (a+ 1),

fa(z) <y < Fa(z)}.

For k := (k,h) € Z x N define I(k, h) := {5 e(kx + hy) dz dy and the vector
field U(Z) = vz(%) := e(Zk) k(2| k||2)~* where ||k|| is the Euclidean norm
of k. From Poisson’s sum formula (Kréatzel [3], p. 23, equation (1.11)),

Al/d(a—i-T)‘)
(45)  Sa(h) = | (e(hFa(x)) — e(hfa(x)))e(kz) dx + O(1)

kEZ Al/d(a-‘rﬂrl/#*‘s)

= > 2mihI(k,h) + O(1).

kEZ
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From the divergence theorem it follows that, for keZxN ,
(4.6) I(k) =\ divi(@)di = -\ 7" do+ | 771" do
B C Ca

where ©* is the outer normal unit vector on dB. The second integral is
estimated first. Let L be the arc length of 7C5 and @ : [0, L] — R? the
natural parametrization of 7Cy. Then £(s) = @'(s) is the tangent unit vector
to 7Cq in @(s) and @”(s) = k(s)7i(s) where k(s) is the curvature of 7Cs in u(s)
and 7i(s) is the normal unit vector to 7Cs in @(s). Let g(s) := k - @(s)||k|| L.

Then
L

(4.7) \ 7" do = —AY42mi|[K|1?) 1 { e(g(s) AV 4| K| - 7i(s) ds.
Ca 0

For 0 < s < L we have

(4.8) k(s) <1 and ||7@(s)|| = ||— s(s)t(s)|| < 1.

Furthermore L < 7*. Now |¢/| is estimated from below.
CaskE 1: [¢’(0)] > 1/2.For 0 < s < Land 0 < 7 < 79 it follows from (4.8)

and the mean value theorem that |¢'(s) — ¢’(0)| = |¢”(¢)s| < Lk(s) < 1/4
with 0 < ¢ < s. Therefore |¢’(s)| > 1/4.

CASE 2: |¢'(0)| < 1/2. Then |k-(0)]- HkH 1= ,/T=¢(0) > /3/4 and
the mean value theorem and (4.8) give |k - fi(s) — k - (0 ] HkH L <\/3/4
for 0 < s < L and 0 < 7 < 719. Consequently,

(49) F-it(s)] - IFI > V3/4.
Taylor’s formula gives for a + 71/#=% <z < a + 1
F4+2 (a) 1
foz(T,2) = T(w —a)* +O(t + |z — al'h)
u+2)
— —f ' (a) (:c—a)“(1+0(7'5“—|—7')‘)) = |z —alt
!

and consequently |k(8)| < | frz (T, u1(8))| < |u1(s) — a|]*. Furthermore
u1(s)
ui(s) —al = § (1+ folr.2)%)"/? da = o() + s

atri/ = . .
with o(7) := Sa+ 6(1 + fo(r,2)2)Y/2 dz > 0. With (4.9) it follows that
(4.10) 19" ()| = [k - 7is)r(s)] - I~ = w(s) < (o(7) + 9)*.

In particular ¢’ is strictly monotonic and consequently there is exactly one
0 < so < L with |g'(s0)| = ming<s<r |¢'(s)[. Choose 0 < v = v < 7/2 so
that 7/2 — 7 is the angle between #(0) and +k.
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Case 2.1: [¢'(s0)| > |¢'(0)|/2. Tt follows from ¢'(0) = =+ cos(w/2 — )
that |¢'(s")| > |¢'(s0)| > v for 0 < s’ < L.
CASE 2.2: |¢'(s0)| < |¢'(0)]/2. It follows from (4.10) that for 0 < s’ < L,
19/ = 19'(s) = g'(s0)| = | § " (s) | > \ ™)+ 5)" ds|
S0

> [(e(r) + )" = (o(r) + s0) ™| = \8 — sol(e(7) + s0)",

J 9" (s) ds| < (o(r) + so+*
0

7 < g (0)] <2[g'(0) — ¢’ (s0)| <

and consequently |g'(s")| > |8’ — so|y*/ (1),

Summarizing, in Case 1 we have |¢'(s)| > 1/4 and in Case 2 we have
|9/ (s)] > min{|s — so[y*/(#+1), 4} for 0 <5 < L.

Let v > 0 and & := (AY?|k|y*/(+1)=1/2 From (4.7) and (4.8) it
follows that in both cases (with arbitrary so in the first case), after partial
integration,

\ 77" do
C2
— AVt o+ § )

|[s—so|<d  |s—so|>d

< AV k|

FIEE( s LG (g6 1" 6)lg ()72 ds)).

|s—s0[26 |s—so|>8

In Case 1 the terms in parentheses are < 1. In Case 2, ¢" > 0 or ¢ < 0 by
(4.10) and the terms in parentheses are < § 1y~ #/(#+1) 4 4=1 So in both
cases
(4.11) | 7 i do < AV CD)|g|| =3/ 270/ CUrtD) ||~

Ca
The same arguments hold for the first integral in (4.6) in a simplified form
and therefore only the differences are mdlcated The corresponding objects
are written with a tilde ~. We have L < 7* with some <- constant in-
dependent of C. Furthermore R(s) = AVdr=1 < C~177* and |7’ (s)|| =
|— &(s)i(s)|| < C~ 27> for 0 < s < L.

In the first case [§7(0)] > 1/2 use [§/(s) — §(0)] < C~! for 0 < s < L. If
we choose C sufﬁmently large the upper bound becomes < 1/4. In the second
case |7 (0)] < 1/2 use |k- n() ()] Ikt < C~'for 0 < s < L. For C
sufficiently large we have |k -7i(s )| IE]|~! > 1. Then [§”(s)| > C~ 177> > 1
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for 0 < 7 < 79(C). This was the last condition on C. Now, ¢’ is strictly
monotonic. Let |¢’| take its infimum at so. Then [¢'(s")| > |4’ (s") — ' (s0)| =
|S§O §"(s)ds| > |s' — so| for 0 < & < L. Similar arguments with § :=

(AY| k)12 and [§"(s)] < O~ for 0 < s < L give

| 7" do < AV D || =5/2,

C1
From (4.11) and (4.6) it follows that
(4'12) I(E) < Al/(2d)||E||73/27£M/(2(M+1)) + HEHfQ%_;l

for all k = (k,h) € Zx N with 0 < vg < 7/2 and /2 — ;. the angle between
#(0) and +k.

Next ~; is estimated from below. Set (11, 72) 1= £(0) and for h € N define
k(h) € Z by —1/2 < k(h) + hro/m1 < 1/2. From Taylor’s theorem it follows
that

(4.13) KL folr,a+7H/19)
1

A I(AN]
_ f'(a) n Z fC +l')(a)T(1/M—5)z I 0(7(1/u—5)(u+1) +r)
=1 ’

= ['(a) + O(7).
In particular |72/71| < 1 and consequently k(h) < h for h € N. Further-
more 1 > 7y = (14 fo(1,a + 71/#79)2)=1/2 > 1. Applying Roth’s theorem
to the algebraic irrational f’(a) gives |f’(a) + k(h)/h| > K3(8)h~(?+9) for
h € N with some constant K3(J) > 0. From (4.13) it follows that with some
constant K4 > 0 for k = (k(h), h),
Ve = sinvg = [k(R)7y + hro| - [

> |[k(h) + hf'(a)] = |hf'(a) = hra /||

> (K3h~ %9 — K hr)h ™t
For 1 < h < A0=9/2)/Cd) we have hr/h~ 110 « 7°/4 and consequently
Vi > h~(2+9) for sufficiently large A. (4.12) gives, for 1 < h < A(1=9/2)/(2d)
(4.14) I(k(R), h) < AYCOpA+8/Dp/ (it 1)=3/2 4 p3,
For k = (k,h) € Z x N, k # k(h) the choice of k(h) gives

Vi 2 [krn bl (K| > R (1K = K()] = [K(h) + hra/71])
> ||k (k= k(R)] = [k = k(h)|/2) > K| 7 [k = K(R)]-



A lattice point problem 21

For h € N it follows from (4.12) that
S° Ik h)| < AYCDR2 4,
kK (h)

From (4.5) and (4.14) it follows that |Sa(h)| < AYCDRY/2 for 1 < h <
A(=3/2)/(2d) " The trivial estimate S(h) < A1~Y/? gives, with (4.2) and
(4.4) for H > 1,

H? 1
1-X\)/d 1 : 1/(2d)3,1/2
S<<A( )/ H + E Hllll{ﬁ,ﬁ}A /( )h/
h< A(1—3/2)/(2d)

H? (12
+ Y S5 A
h>A(-46/2)/(2d)
<« AU=N/AdF—1 | A1/Cd) g1/2 | 2 A(1/d)(6/2-N)

The optimal choice H = A2(1/2=2/(4) gives § <« AR=N/GD) TLemma 4.4
and the choice of A give

> Y(fa(n))
Al/da(A_l/d)<nSA1/db’
< AVdr1/n—6 | 4(2-X)/(3d)

 A6/(T3d) (165 4)315/146 4 A(vutD)/(2d)
<« AW/DA=1/1t8) | 416/(T3d) (155 4)315/146

5. The case of rational slope. The following lemma is used in the
asymptotic evaluation of the lattice integral.

LEMMA 5.1. Let 0 < w < 1. Forv>0,0#T € R, define
e .
H(v,T):= S u? " te T gy,

v

Then forv >0, T # 0,

(5.1) |H(v,T)| <, |T|" %Y, |H(v,T)| <, [T +v*
and for T # 0,
(5.2) H(0,T) = I'(w)e~GlenTiwn/2)p|=w,

Proof. The first and the third statement can be found in [4], p. 155.
The second statement is a slight generalization of the essential part of the
proof of Lemma 5 in [4]. Let T > 0, R > v > 0, let K resp. K3 be the
straight paths from v to iR resp. from v to R, and K5 resp. K4 the circular
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arcs with centre 0 from v to v resp. from R to ¢R. Cauchy’s theorem gives

(5.3) S e T2y = S + S + S .
K1 Ko Ks Ka

Decomposing K4 into those z with Rz > R1~¢)/2 and their complement
gives SK4 < R¥exp(~TRI~*)/2) 4 R@=1/2 Letting R — oo in (5.3) gives
e”“’/zﬂ(v,T) _ S Zw—le—Tz dz + S Zw—le—Tz dz

/CQ v

[o@]
< v+ S e Tt < v + T,
0

The case T' < 0 can be reduced to this case by complex conjugation. m
The following proposition is the analogue of Proposition 4.5 in the case

of rational slope at the point of vanishing curvature. The proof follows the
general line of [8].

PROPOSITION 5.2. Assume 0 < a < b and f > 0 on [a,b]. Let f'(a) =
—p/q, p € No, ¢ €N, (p,q) = 1, and p € N with fF)(a) =0 for 2 < k <
p+1 and f¥2(a) #0. Let f', f", f""" be zerofree on (a,b]. There is some
A > 0 with the property: For A > T(;d, a+ 71 <V <b we have
N = #{(x,y) € 22 | AMla(AV) <o < AV, 0 <y < fa(2)}

Al/db/
= | fa(x)dz — p(AY W) fa(AY )
Al/da(A—l/d)
1

+ (A (A7) fa(AY a(ATH ) + 5141/‘1(@(14*1”) — )
+ AN/ DA-1/(pt2))

1 : amh Al/d ry 0 ﬂ-(_l)a+1
x };Wsm Th(AY(pa+qf(a))+qf-( ,a))+m
_|_O(A(l/d)(171/(M+2)71/(,u+2)2)logA_|_A46/(73d)(10gA)315/146)‘

The constants are defined by

{o, F¥+2(a) <0,
1, f(a) >0,
1

= g~ 1=/ (p+2) 1N/ (e+2) )~ (r+1)/(1+2)
Ci=g (G + DYV (0 1-9) =

Q=

% 271/(u+2)7r7171/(u+2)|J?(u+2) (a)|fl/(u+2)'
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Proof. Choose o :== (p+3)(p+2)"2and 0 < XA < 1/(u+1). In
what follows several further conditions will be imposed on A. Define x :=
min{\, 1 — o(p + 1)} > 0. Define

G.(z) :==px+qf(r,x) fora+r°<z<a+1
Taylor’s formula gives, for these x,

p I (a)

(54)  fo(r,z)= — 5 + W(ZE — CL)MJrl +O(|x — a|M+2 +7)
o p Ft2) () 1 i
(5:5) = =L @@ o),

In the following only the case f(r+2) (a) < 0 is handled. The opposite case
is completely analogous. Then G’.(z) = p + qf»(7,2) < p+ q(—p/q) = 0 by
(5.5). Define F, := G71: [Br,7,] — [a+ 7¢,a + 7] with 8, = G.(a + ),
v+ = Gr(a+ 72). For t € Z define

N@t) :=#{z e Z]|pxr=t(q), AV a+7°) << AV (a+ 1),
pr <t < AYIG (A7Vdg)).
Then
(5.6) #{(z,y) €2 | AV a+7%) <z <AV a+7Y),0<y < fa(w)}

=> N(t).

tez
For t > A'/%, it follows that N(t) = 0. For AY?3, >t
N(t) = #{(z,y) € Z* | pr+qy = t, AV (a+7%) <z < AVa+7Y), y > 0}
and consequently

Z N(t) = #{(z,y) € 2% | AV a+1°) <2 < AY¥a+ 1),

t<Al/dp,
0 <y < (1/q)(AY"B, — px)}.

Here (AY8, —px)/q > AV9f(1,a+7") > 0 for sufficiently large A. Partial
summation and { 1(z) dz < 1 for u < v give

(5.7) > N
t<Al/dg,
= (A, — (AU AV — 1) = T A+ P
+ £A2/d(a + 7—9)2 _ ¢(A1/d(a + T)‘))Al/df(T,a T 7')\) I O(l)

2q

+ (A a+ T@)%Al/d(m —plat 7)) — 5 AV — 7).
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For AYdp. <t < AY4~_ we have
Nt)=#{z cZ|px=t(q), AV a+7°) <2 < AVIE (A=Yt}

because F, is strictly decreasing and t —pz > AYdqf (1,a+7") > 0 for suf-
ficiently large A. For to € {0,...,q — 1} there is exactly one g = xo(tg) €
{0,...,q — 1} with ty = pxo (q). Decomposing the range of ¢ into the re-
mainder classes modulo ¢ gives

> N(t)=H+ 51+ 5
AV/dB, <t<Al/d~y,

with

1,

H=-AY"Y" 3 (Fr (A7) = (a+79)),
1 to=0 A1/dg, <t <A/ dy,  t=to (q)
q—1
1

(58) Si=-)_ > w<5(A1/dFT(A_1/dt) —:co(to))>,

to=0 A1/dB, <t<Al/d~_ t=tg (q)
1
(5:9) S = AV, = B)V(A e +79) + O().

Partial summation and substitution ¢t = AY?G,(z) give

a+T>‘
1
(5.10) H = A2/d X f(r,z)dx + 5A2/d67(7'g - 7"\) - %AQ/d(a + 79)2

a+T1e
n %AQ/d(a+TA)2 n éAl/dw(Al/dﬁTxT)\ -y
Aldy,

| FLAY () dt.
Al/dp,

1
+ —
q
A trivial estimation of the lattice remainder and f/)(z) < 1 give
(5:11)  #{(z,y) € Z* | AVMa(A7V) < < AV a+79), 0 <y < fa(a)}
AV (g479)
= | fa@de - 0(A(a+ 7)) fa(A a0 + 7))
Al/da(Afl/d)
+ Y(AV (A7) fA (A4 A7) + O(AV 7).

Choose 0 < A < 20/(83u + 103) < 19/(73p). Partial summation and
Lemma 4.4 give

#{(z,y) € 22 | AV a+ 1) <z < AV 0 <y < fa(z)}
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Al/db/
= | fale)de —p(AVW) fa(AV )
Al/d(a+7>)
Al/db/
+ AV a+ ) fa A a+ )+ | fa@)e(z) do
Al/d(a4T12>)

_ %Al/d(b’ —a— TA) + O(A46/(73d) (10g A)315/146).

The function ¥ (x) := Sg Y(t)dt, x € R, is continuous, piecewise contin-
uously differentiable and bounded. From f/, < 1, f{ < A~Y/% it follows
by partial integration that the second integral above is < 1. Together with
(5.6) to (5.11) it follows that

Al/db/
1 1
(512) N= | fal@)do+-I+S — AV —a(r))
Al/da(T) 1 2

+ (A a(r)) fa(AY Ya(r)) — H(AV) f4(AV )
+ O<A1/d7_g) + O<A46/(73d) (lOg A)315/146)

with
Ay,
Ii= | F/(A Y%yt dt.
AV/dg,

The asymptotic development of this integral is done with tools from [4]. The
asymptotic behaviour of F and F!” cannot be determined as in that paper
because the influence of 7 and z on the value of f(7,z) cannot be separated
by inverting functions.

Define 6, := pa + qf(a) +qf-(0,a)T. For a +7¢ < x < a + 7, Taylor’s
formula gives

f(r,z)
_1 —Z—)x LMH)(Q) x—a)lt? r—al+7lr—al7*!
5.03) = 0= Lat T @ - @) (14 Ol —al 7l — a7 ))
1 p ]?(u+2)(a) 2 K
(5.14) =0~ ot Ty (@ = ) (L 0().

q
We have pa + ¢f(a) > 0 and consequently §, > 0 and §, =< 1 for sufficiently
large A. Now (5.13) gives

_MTQ(M+2)

R i e

(1+ O(Tl—@(wrl)))
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and in particular v, < J,. From (5.14) it follows analogously that
(5.16) 6 — By = TAHH2),
For B, <t < ~; it follows from (5.14) that

pn+2 f(u+2) (CL)

(5.17) t=Gr(F-(1) = 6- + q(F-(t) — a) (1 +2)!

(1+0(7%))

and consequently
(5.18) (6, — )Y 2 < F_(t) — a.

Define @4 (t) := F.(t)(6; — t)+tD/(+2) on [8,,7,]. From (5.5) and (5.17)
it follows that

(519)  Balt) = (3, — )/ GG (B, (1) 7!

_[gf U [FEEE (g f B @)\ T
_‘ (1 +2)! < (u+1)! > o
and in particular |®4(t)| < 1. Furthermore
#5(0) = ~@alG(F(0) 2 (GLF) + 20— 0 GUE ) ).

For the expression in parentheses Taylor’s formula and (5.4) give

%J?(’”Q) (a)(Fr(t) — a) + O(|Fr(t) — ")

£lut2)
R e
Qf(“+2)(a) +2 +3
<W(F‘r<t) — a)“ + O(T‘FT(t) — a’ + ‘Fr(t) — a‘“ ) .
Using (5.13) gives the more exact asymptotics
Flu+2)

_ +2 f (a) —nu—1
0= 0ol () -y (Lo L 0RO - al im0 - )
With (5.18) this gives, for the expression in parentheses,

Flu+2)
U E 0 - 0 + OF 0 - )
flut2)
w6 - 0 L o

x (t— 6, + O(|Fr(t) — a|* > + 7| F,(t) — al))
< |Fo(t) — a|t+! + 7| Fr (t) — o]~V
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From this together with (5.19) and (5.18) it follows that
(5.20) 1P, (1) < (67 — t)*(u+1)/(u+2) +7(6; — t)*(2u+3)/(u+2).

Substituting the Fourier development ¢(t) = (—1/(2m%)) > ;40 h=Le(ht),
which is valid in L2[0,1], into I gives I = (=1/(27i)) 3,0 h~ "I, with

Yr/0r

~ H
Iy = —AVAgH a2 el | @A(5Tt)%—(l —t,T)dt,
v
B/~
1
T := 27ThA1/d57—, W= —-7:.
2

Partial integration together with v, < §, and §, =< 1 give
I, = AV 2T g (v YH(1 — 7, /6., T)

+ O(Al/d|¢A(ﬂT)H(1 - ﬁT/(sTa T)D
Y- /07
+ O(Al/d | 184066H(1-1,7) dt).
8. /5,
The first half of (5.1), |94 (t)] < 1 and (5.16) show that the first error term

is < AV T|=1r=AMet1) (5.20), (5.15) and (5.1) show that the second error
term is

Yr/or
< AV S 1 — ¢~/ B2 = — et e
B /8~
Yr/6r
+ Al S 71 — |7 G/ D (|79 4 |1 — ¢|%) dt
B /8~

< B TrrTHe || Ter e 4 pmme,
(5.15) gives

1=+ /6+
[H(0,T) - H1 = /6., T)| < | w"'du< e
0
(5.4) yields

Fl(y:) = Ghla+79) 7" = (qﬁ_?g—?))_lTQ“‘*”ﬂ +O(r!7e D)),

This together with (5.15) gives

af U2 (a) ) e/ (a)
(p+ 1) (p+2)!

(n+1)/(p+2)
(1+ O(Tlfg(uﬂ)))_

Palyr) = (
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Putting everything together and using (5.2) and the choice of ¢ we get
ign h
591) I, = — AA/DA=1/(n+2)))3-1/(n+2) (hAl/déT B &>C
(5.21) I Ig e 13 ) O
+ O(A(lfg)/d)
if0<A<(1-0)/(n+1)

A better estimation is needed for large T. Uniformly in §,/§, < tg <
v+ /0- it follows from partial integration and (5.20) that

hAY45 t) to
I = AMasH (nt2) {—e( 2P (0,t)(1 — t)mn/wz)]
2mih Al/d§, 8. /5.
to 1/d
hAY4s t)
— AV/dgt/ (t2) e(hAort) 5.8 (5.1)(1 — £)~ D/ (+2)
T ﬁ;é QWZhAl/d(ST A( )( )
1
+ ¢A(5Tt)%(1 — t)(u+1)/(u+2)1> dt
7!
V- /07

+ AVAG ) (e (R AN S )B4 (5,1) (1 — £) =D/ (142) gy
t
< b7 - to)—(u+1§/(u+2)
to Y= /6
+ |h| ! S (1 —t)~ WD/ wt2)=1 gy g A1/d S (1 —t)~ WD/ wt2) gy
Br/0r to
The first term in the <-estimate only appears if to > (5, /0.

In the case 1 — |h|7'A=Y4 < 3./5, take ty := (3,/6,. Then from 1 —
By /6 < |h|"PA7V/4 it follows that I), < A1/DO=1/(ut2)) | =1/ (n+2),

In the case 1—|h| "t AY?® > ~_ /6. take to := v, /6,. Then from 1—~, /6, >
|h| =Y A=1/¢ the same estimate for I, follows.

In the case 8,/0, < 1 — |h|7PA7V4 <~ /5, take to := 1 — |h| 1A=/
and again the same estimate for I, follows.

Together with (5.21) this gives

1 1 1 1
(5.22) omi > BT o Z; Rt

_ 9C qa/a)a-1/(u+2)

24
sign f ( i ( 1/d ™
Z ————vexp| isignh| 2w|h|AV 0, — —F
141 2

ocimga [P0 201+ 2)

+ O(AV D=2 155 A),
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Extending the sum over all integers # 0 gives the additional error term

(5.23) <« AW/ DO=1/(1+2)) Z 1

TG < A/ DA=1/(u2)) =1/ (u+2)
h|1+1/(p+
|h|>A

< AL/ D=0 155 4.

Next the lattice remainder is estimated by the discrete Hardy—Littlewood
method. Taylor’s formula gives, for a + 7¢ <z < a+ 71, k= 2,3,

HMf(r.x) _ [*a) 2
Y — )" 2R (1 4+ O(7%)).
[t = L et o)
Together with (5.5) it follows that
G (2)GL () — 3G (x)?
P2y
pl(p 4+ 1)!
and analogously |G/ (x)| < |z — a|* T}, |GY(2)] < |x — a|*.
(5.18) gives, for 5, <t <.,
GUEW)
G (F- (1)
[F ()] = |67 — ¢ 731/ D),
Set My := 2¢~ L A*/(73d) A, .= q’lAl/d(vT — B, —2727/73) J := [log A],
B = (M;/My)*’, M := MyB? for 0 < j < J. Arguments similar to those
which led to (5.15) give v, — 8, = Ko7 W2 (1 4 o(1)) > 2727/ with
some constant K19 > 0 if 0 < X\ < (27/73)(u + 2) 1. Consequently, log B =
(1/d)(27/73 — AM(pp + 2)) + o(1) as A — oo and therefore B = K1 + o(1)
with some constant K37 > 1. For ¢t € {0,...,¢— 1}, 1 < j < J, set
hto,j(x) — qflAl/dFT(Afl/dtO + Afl/dq([qflAl/d%_]
— @ = [2M;—1 = Mj))) — ¢ "wo(to)
on [M;—M;_1,2(M;—M;_1)]. From (5.15) it follows that, for M; —M;_; <
r < 2(Mj — Mj_1),
|6, — A7Vt — A7Vq([g7 AV ] = — [2M 1 — M)
=10, = + AV (z +2M;_y — M) + O(7)| < A~VIM; .
Choosing M := M; — M,;_;, T := A(l/d)(l—l/(u+2))(Mj _ Mj,l)(“+3)/(“+2),

it follows that |hy ;(x)| =< TM~®, [h! ;(z)] < TM~* for x € [M,2M].

Furthermore T3 < M <« T'2. We have

q—1 J
Si=—-) > > (bt s (n)) + O(A®/T3D 4 1),

to=0j=1 M;—M;_1<n<2(M;—M;_1)

(x —a)*(1+O(1")) < |z — a|*

FL(1)] = \ = (6 — t] 2L D)
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Applying Theorem 18.2.2 of [2] gives S; < A%6/(73d) (1og A4)315/146 From
(5.12), (5.22) and (5.23) the proposition follows. m

6. The tails of the boundary curve. The result of this section is
used in the case where z/,(0) = 7)//(0) = 0 and 7z,,(0) # 0. Then it is not
possible to apply Propositions 4.5 or 5.2. Instead one goes to the inverse
function g, = ;1. This function is not C*° at the point &, but the order of
the singularity of ﬂ,(,k) for k = 2,3 is small so that no additional main term
arises. It is possible to improve this section considerably so that it can be
applied generally in the case ](() V) > 2. This would give a slight improvement
of the error term in the contribution of the tails of the boundary curve. For
this the reader is refered to [9].

PROPOSITION 6.1. Let 7/,(0) = 0 # 7/(0). There are constants 0 < &
< &, and K > 0 with the property: For A, > K, 1, := A;l/d”, E<eE<
&,(1y) we have
R:=#{(x,y) € Z° | AV <a < A/ M6, (1), 0 <y < AWy, (r,mw)}

&u(m)
=AY |y (r,ma)de — AV (6,(n) - €)
13
+ (A P AY Py, (1, €) + O(ALY T34 (log A,)*13/149),

Proof. Choose 0 < & < Ey with 7, (€) < 7, /2. A second condition on &
will be given below. For 0 < 7,,(27,(£)) < x < 5,, we have
ag’)ogdu — §V(§U7 ) =1 = gy T yy Z ag’)xzyy
i+j=d,
and consequently

&~z ) — o)

ad Lt
=Gyt Z ) I = ()
=3
For 0 < y < 27,(€) < 7, it follows that
~ ~ (v)
(6.1) &~z ) =y,
For 0 <k <3,0 <y <2y,(&) Taylor’s theorem gives
j(V) k
~ ‘ 1 k+0) (0)/! i$ —k+1
B = D, a0y + 0" ).
1=0
With 7,(0) = &, and (6.1) the choice k = 0 gives 7 )(0) =0 for [ =1,

(V)

.y Jo  —land zy i =9,

7" )( 0) # 0. From the assumptions it follows that jg
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Let K9 > 0 be a constant which will be chosen appropriately below. For
1<k <3, Ky, <y < 2y,(§) Taylor’s theorem gives

kl’
CE (st = (1= E)TL(0) + Ol + )

The error term is

<7 (1+ (Kaom)) ™) + 50(6) < 7 + Kag' +3,(9).
Choosing Ky sufficiently large and ¢ sufficiently close to 5,, gives, for k =
L2,

2—k

k
(6.2) ‘a v

a—yk(ﬂuy)‘ =Y
and

1T 0yyy (T, ¥) Ty (Tu, y) — 3T0yy (10, 9)2’
= | —320(0)2 + O(Ky' + 1, +3,(6))| < 1.

For 7, (27, (£)) < § Ko11, (< &,(1,)) with sufficiently large K91 > 0
if follows that 2y, ( ) > yu(x) > yu (1, x) >0, and (6.1) yields

Yo (70, 2)? < & = 20(70, Y0 (70, 2)) + O(7)] < €, — 2.
In particular
(10, 2) > &, — 2|2 > (Koi7,)Y/? > Koo,
and from (6.2) it follows that

Yo (70, )| = [0y (10, 90 (7, 2)) 7Y = (& — 2712,
‘yUII Ty, T )‘ - ’ xl’yy(TwyU(Tl/’m))xVy(TV’yl/ Ty, T )) 3‘ = ‘5 ‘73/27
Yvaae (v, 2)| = |= (@uyyy (Tv, Yo (0, 2))Zuy (T, Y0 (T, 2))

= 32y (o, Y (70, ) )0y (T, 4 (70, 7)) 2| =16 — | 75/2,

Partial summation gives, for £ < ¢ < &,(7,.),

Axlf/dugl/(TV)
(6.3) R= X (All,/dVyl,(Tl,,T,,x) — 1) da

A/ tve
+ (A M) AY Py, (1., €)
AY e, ()
—I—O(l) + S yuz(TuaTuaj)dJ(x) dx
Ay Mg
N Z (A Py (1, ).

AY W e<a<AY e, (1)
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As in the proof of Proposition 5.2 it follows by partial integration that the
second integral in (6.3) is

A]l//d,, (gr/*KﬂTu)

= Yo (T, Tw )1 ()

AY e
AL (&, —KonTy)
- S ToYvaa (Ty, Tox) Y1 () d
AL e
A/ e, (1)
+ | Yo (T, T )1 () daz

Alll/dy (gV7K217—1/)

Ai/du (gw*KZlTV)

< (Knm) Y241, | & — x|~ da
Ai/dug
Ai/dV€V(TV)
+ S [ —T,,:C|_1/2 dz
AL/ v (gy/*Kzﬂ'u)
< 7,71/2.
Let J:=[log A], My:= A3 %) Np=[AY % (€, — €], B:=(M,M; )Y,

M; = MyB’ for 0 < j < J. Then B = By + o(1) Wlth some constant
By > 1. For z € [MJ — Mj_l,Q(Mj — Mj—l)] define

filx) == AY @y, (1, ([AY % &) — [2M; 1 — Mj] — 1))
Then
(@) = AV E, — AN (ALY E, — 2M g+ M — 2+ O(1))] 72
= A, 1/d"(A Vo ;)73 =< T(My — M) ™8
" (@) = T(Mj — Mj—1)™"

)

with T := A,l/(2d")M;’121. Furthermore T63/146(log T)93/292 < (M; — M;_,)
< T'/2. From Theorem 18.2.2 of [2] it follows that the lattice remainder in
(6.3) is

J
Z > W(f;(n) + O(J)

LMy —M;_y <n<min{2(M;—M;_1),AL/ % (&, —¢&)—2M; _1+M,}
+ O(A§6/(73d"))
< A§6/(73d,/)(logAV)315/146' .
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7. Combinatorial composition of the results. R is handled first.
Choose Z C R, |Z| < oo, with the properties:

(Z71)  The zeros of g7y} in [0, gj] are contained in Z for j =1, 2.

The zeros of x’ ! ;’ !

(272)

(ZT?)) oy vy &, X, T2 € 2.
(Zt4) If y;(0) = 0 # 37 (0) for j = 1 or j = 2 then the value i) which comes
from the apphcatlon of Proposition 6.1 with x and y interchanged
is contained in y;(Z).

in [0,7;] are contained in y;(Z) for j =1, 2.

Choose 0 = (g < ... < (, with the properties:

(Z'5)  Z C{Co,-o G}
(Z'6)  For each ¢, € Z with ¢ < (¢’ there is some 1 < v < n with
(< ¢ <.
The next two lemmas combine the results of Sections 4 to 6.
LEMMA 7.1. Let j € {1,2} and 1 < v < n with {, < EJ There are
constants k, K >0 so that for ¢ € ((y—1 +7f,(, —7f) and A; > K,
(1) Ri=#{(x,y) € 22| A" Hle

0<y<A

o1 <o<A
d;
i iy mi)}
¢
d; d;
= A\ gyl ey de = SAYY(C— Gon) + T(Ay) + U (A))
CV 1
d; d; d, d;
+ (A} ) AN By (75 Con) = (AT P QAL By (75 )
46 73d,;
+O(A /( )(1 g14]'):),15/146)_
The representation
1/d;)(1—1/ (u+2 1/d;
(7.2) T(Aj):AS./ )A-1/(p ))H(Aj/ )
+ O(A§l/dj)(1*1/(u+2)*1/(u+2)2) log A;)
holds with some constant p € N and some periodic function H which is
given by an absolutely convergent Fourier series. T(A;) can only occur if

Y7 has a zero of order p at ¢, 1 and y;(¢,—1) € Q.
Furthermore

(7.3) U(Aj) = Oé(Ag_l/dj)(l*l/uH))
for each § > 0 and this function can only occur if ?j;’ has a zero of order y
at Gy—1 and ¥;(¢—1) ¢ Q.

Proof. From the choice of the (, it follows that y7y" has zeros in
[Cv—1,Cy] at most at (,—1 or {, but not at both points.
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Cask 1: gy ((v—1) # 0 and ¥y} (¢,) # 0. Partial summation gives

1/dJC
(7.4) R= | (A Yy (7, 7jz) — §) da
Ajl/dJCu 1
l/d ic
+ S Yja (75, Tj2) Y () d
Al/d]Cu 1

J

+ (A Cn) (A (75, Gor) — B)
—Y(A l/djg)( l/d Tyi(75,C) — %)
_ Z ¢(A1/d yi(7j,15T)).

AV, <a<al e

The lattice remainder is O(Ajﬁ/ (1345 (10 g A;)315/146) a5 follows from Lemma
4.3. Partial integration gives the bound O(1) for the second integral.

CASE 2: yj/ has at ¢, a zero of order i € N. Then (,,0 € Z and by (Z'6)
it follows ¢, —1 € Z, i.e. v > 2. Therefore g (x) # 0 for x € [(,—1,(,]. Choose
0 < Kk < Ao :=20/(83u+103). By Lemma 4.4 the lattice remainder in (7.4) is

1 d
= 3 (A Yy 7y, —7y))
1/df( CoAr0)<a<—A] Vi
1/d;
- 3 (A Yy (rj, —1j2)) + O(1)

1/dJ( Co+T; 20y cp<— A "g
< A;%6/(73d )(log Aj)315/146.
CaSE 3: yj has at (,—1 a zero of order p € N.

Cast 3.1: ¥7(¢y—1) € Q. Apply Proposition 5.2. Choose £ > 0 smaller
than the value A\ which is given by this proposition.

Cast 3.2: ¥7(Cy—1) € Q. Then y}((,—1) is algebraic over Q by Lemma
4.2. Apply Proposition 4.5 to the lattice remainder in (7.4) and choose 0 <
Kk < 20/(83u+ 103).

CASE 4: There is some v' € {v—1,v} with y7'(¢,) = 0 and y7 (1) # 0
We have

(7.5)  R=#{(x,y) € Z2 | A Vy;(;,¢) <y < AV y;(r5, Comn),
0<$§A1/dj(£j(7'j,7'jy)}
+ AV QLAY Yy, O — (A Y G [AY Yy (g, G-



A lattice point problem 35

-~ ///

#/3)" has 10 zer0s in (§(C,), 5 (Co1)- O [§5(G0), §5(Go-1)) we have

ae  BWSBEGT T = 5@ @),
D ) = @) GGG W) - 50

CASE 4.1: v > 2. Then 0 < (,_1 < () < E] and (7.6) is valid also in
Y;j(Cy—1). From (7.6) and the assumption of Case 4 it follows that
277 (y;(Cr)) # 0. If 272" had a zero in [y;((,),y;(Cv—1)] then this zero
would be of the form y](C) (e Z. Then ¢, 1 < (<, (#Cr, (€ Z.
Then there would be some (,~» between ( and (,» and consequently be-
tween (,_1 and (,, which is a contradiction. Therefore z//z” has no zeros
in [y;(¢v),y;(Cv—1)]. Applying partial summation and Lemma 4.3 to (7.5)
gives

¢
R=AYY | yi(rj,x)de —p(AY 5 0O)AY Y y;(7;,0)
Co—1

+¢( l/dJCu 1) 1/ ]yj(T]7CV 1) 1A;/dj(C_Cu71)

Case 4.2: v =1, y;(0) # 0. Then ¢,—1 = (o = 0 and
SO - ~ ~ ~d;—1
0 # =F(0)33, (0. 55(0)) = 312 (0. 5;(0)) = al’), 7
and consequently ’L(] ) =1 and z; € C*°[0,7;]. The proof is exactly the same
as in Case 4.1.

Case 4.3: v = 1, 53(0) = 0. Now the argument of Cases 4.1 and 4.2
is no longer valid because 7; is not C*° at 7;. We have 77 (0) # 0 because
otherwise v/ = 1 and g}y’ would have zeros at (,_1 and (,, which is
impossible. Apply Proposfmon 6.1 for z and y interchanged. If 0 < 77 < 7);
is the value which corresponds to £ in Proposition 6.1 then 77 € y;(Z) by
(ZT4). Furthermore there is some 1 < v” < n with ¢y < (v < 7,;(7).
Consequently, 1 < z;(7) and y;(¢1) > 7. Therefore for sufficiently large A;
we have 77 < y;(7;,¢) =:n < n;(7;). Proposition 6.1 gives

Ajl'/d n;(75)
1/d; ALy AL/ ds
R= | A Ya(m ) dy+ oA ) A Y ()
A;/djn
1/d; 46/(73d;
_ lA-/ (nj(Tj) _ 77) + O(Aj /( )(log Aj)315/146)

+ 14 ”d TAY Y yi(m7,€)).
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Substituting y = A%y, 7;,2) and partial integration give
gY j y] J

¢
R= A7 Yy (.0 de — AT = w(A) 1 QA My (7;.0)
0
+ (A} P 0) ATy (75,0) + O(AF T (log 4;)P17/140) . w

LEMMA 7.2. Let j € {1,2} and 1 < v <n with , < Ej There is some
constant K > 0 so that for A; > K, ¢ € ((y—1,(] with | — (| < 75 the
asymptotics (7.1) hold. T(A;) is of the form (7.2) and can only appear if y
has a zero of order p at (,—1 or (, and y; is rational at this point. U(A;)
is of the form (7.3) and can only appear if g;’ has a zero of order p at (,_1
or ¢, and ﬂ; 18 trrational at this point.

Proof. It is quite similar to that of Lemma 7.1.

CASE 1: 'gj;’ has a zero of order u at (,—1. Apply the reasoning of Case 3
of Lemma 7.1.

CASE 2: g} has a zero of order p at ¢,. From (Z'1) it follows that
G, € Z. From (o = 0 € Z it follows that v > 2 because there is some (,/
between (y and ¢,. Therefore 0 < (,—1 < (, < &;. It follows from (7.6) and

25 (;(Cv)) # 0 that
125 () = |55 (@ )] =< 175(y) = Gl = Ty = 5;(G)I"
as y — Y;(¢y). Therefore 7/ has a zero of order p at y;(¢,). Furthermore

7(y;(¢)) € Q if and only if ¥7(¢,) € Q. From the construction of the ¢, it

follows that z7/z7" has no zero in (¥;(¢v), ¥j(Cv—1)]. From the assumptions

it follows that
Yj (ij C) = gj (C) +O(T]) = gj (CV) +O(Tj)a Yj (ij Cufl) = gj (Cufl) +O(Tj)-
Applying Proposition 5.2 or Proposition 4.5 to (7.5) gives the desired result.

Case 3: 55 (Cv-1) # 0 # 45 (C)-

Case 3.1: ¥/ (Co-1) # 0 # y;"(¢,). Use the reasoning of Case 1 of
Lemma 7.1.

Case 3.2: There is some v' € {v — 1,v} with y;'((,) = 0. Use the
reasoning of Case 4 of Lemma 7.1. =

The following lemma is used in the construction of the decomposition of
[C1,Cs]. For 1 < ¢ < r define [a},b),] := k,'((—o0,x¢]) if the right hand
side is nonempty.

LEMMA 7.3. For each 8 € R, k > 0, 1 < o < r, there is a decomposition
a, = C5 < ... < Cy, = b, and constants €, K > 0 with the property: If
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A, A > K, C = AgAl_d2/d1 € [a’g,b/g], |C—C;j| > A7F foreach 0 < p <m,
then
|ko(C) — 6] > 7f,  |C™V %k, (C) — 6] > 75

Proof. The function %g s lal, b)) = C, C — C~VoE,(C), is injective

and continuous: If C' € [a},, b}], z := C~1/42k,(C), then

Go(z, O~V (O 20)) = C7 R(CHY %2 0) = 1

and consequently 0 < x < §~2, 7, (CY42x) = CY/277,(x). The left hand side

of the last equation is strictly decreasing in C' whereas the right hand side is

strictly increasing. Therefore the value x is assumed at no other argument C'.
If 6 is not in the range of values of EQ then

|C VA2, (C) =0 > 1 for C € [d),b].

o ’e
In the opposite case § = k,(C*) for some C* € [a},, b},]. Then k,(C*) €
[0, 20] N [€o—1,&p]- The function h is holomorphic in some neighbourhood of

[0, ZL‘()] .

If W' (k,(C*)) # 0 then h has a holomorphic inverse in some neighbour-
hood of k,(C*) and therefore k, and EQ are holomorphic in some neighbour-
hood of C*. The function Fk:l, is nonconstant. Consequently, there are p € N
and § > 0 with |k,(C) — 0] < |C — C*|P for C € [d,, b)), |C — C*| < 4.
Choosing 0 < ¢ < k/(d1p) gives |k,(C) — 0] > A7P¢ > 15 for C € [al,, b)) in
the case A]° < |C — C*| <. In the case |C — C*| > § we have

ko (C) — 6] > i ko(C") — 0] = > 0.
|ko(C) 9|_C’e[a;,bgﬁguwgzs’k@(c) 0| = const. > 0

If b/ (ko(C*)) = 0 it follows from Lemma 2.1 that there are p € N\ {1} and
some neighbourhood U of k,(C*) with

|h(xz) — h(ko(C™))| < |x — ko(C™)|P for xz € U.
Consequently, there are constants ¢, K; > 0 with
[ko(C) = 0] = [(C™) "M ky(C) = (C7) 2k, (C7)]
+O(C Y —(C7) 7% ko(O)))
> K3ko(C) = ko(CF)| = Ku|C = C7|
> Ks|h(ko(C)) = h(ko(C)[VP = Ku|C = C|
= K;|C — C*[V/P — K4|C — C*| > Ko|C — C*|/P

for C' € [al, V)], |C' — C*| < 6. The remainder of the argument is as above.
The function k,, is injective on [a},, bj,]. If 0 & k,([a,, b,,]) then |k, (C) — 0|
> 1 for C € [a,b)]. In the opposite case there is some C* € [a,, b,] with
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0 = ko(C*) € [0,20]. From h € C*°[0, z¢] it follows that
€ = C7| = |h(ko(C)) = h(k,o(C7))] < [ko(C) = ko(CT)]

for C' € [ay, b}]. The remainder of the argument is as above. =

Now use Lemma 7.3 and the injectivity of k, and EQ to construct a
decomposition €7 = Cj < ... < C}, = C and some € > 0 with the
properties:

(C'1)  If a), € [C1,C5] for some 1 < o < r then a}, € {C§,...,C},}. The
same holds for a,, b, b,.

(CT2) For1<o<r, 1<pu<m,0<v<n,with [C; |, Cr] C [a),b)]:
For Ay, As > K, C := Ay Ay ™" € (Cr_| + A75,C5 — ATF) we
have

ko(C) = Gl = 78, OV % ky(C) = G| = 75

(C'3) For1<pu<m,1<v <n,0<v<nForA,A >K,C:=
A AT/ € (O +AT®, O — AT®) we have | O/, —(, | > 15

(C'4) For1<p<r,1<u<m,1<v <n,0<v<n wehave

G & ko((Cro1, Ch) N ag: b)), G & ko((Cro1, CF) N [ag, b)),
(o #C7Y%E,  for C e (Ch_y,Co).

With this decomposition the following lemma holds which contains one
half of Theorem 1.1.

LEMMA 74. Let 1 < p <m, 1 < o < r with {,.1 < xo9. Then for
A Ay > K, O = Ay AT/ M € (O + AT5,C — AT®) we have

A" min{€,,z0}

(7.7) Ri(A1, As) = | fay.a,(x) de
Ai/dl 5071

— LAY (min{&,, w0} — Eor) + T4 (A))
+ TQT(MHQ) (As) + Uf(“’g)(Al) + sz(u,g) (As)
— (A" min{€, w0}) fa, 4, (47" min{,, wo})
(A Ep) faraa (AT )
n O(A?G/(mdl)(log Ap)315/146)
The functions TJT(”’Q) and U;(”’Q) are of the form described in Theorem 1.1.

Proof. Several cases have to be distinguished in order to apply Lem-
ma 3.1.
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Cask 1: [Ch_1,C] C [al,b,]. From (Z73), (Z15) and (C'4) it follows

p—1 70
that zg is not contained in the interval k,((C};_1,C})).

CaSE 1.1: ky((C;,_1,C})) € (=00, ). Then §,1 < ky(C) < mo.

p—1
Lemma 3.1 gives the decomposition in the following two cases.

CASE 1.1.1: If h[[€,—1,&,] is increasing then
Ry =#{(z.y) € 2 | 4/ 6o <o < A/ k().
O<y< Ai/dlyl(ﬁ,ﬁx)}
+#{(2.) € 27 | A ko(C) <o < A" min{E. o),
0<y< Aé/dzyg(Tg,TQCC)}
+O(A4116/(73d1))‘
CASE 1.1.2: If h[[€,—1,&,] is decreasing then
R =#{(z.y) € 2| 4/ 61 <2 < A/ ky(C),
0<y< Aé/dzyg(Tg,TQCC)}
+ #{(z,y) € Z* | Ai/dl ko(C) <z < A}/dl min{&,, zo},
0<y< A}/dlyl(ﬁ,ﬁx)}
+ O(A/ T3y

CASE 1.2: k,((C;_1,C2)) C (20,00). Then &, 1 < mg < ko(C) < &,

Lemma 3.1 gives the decomposition in the following two cases.
CASE 1.2.1: If h[[€,—1,&,] is increasing then
R;f, = #{(x,y) € Z* | A}/dlﬁg,l <z< Ai/dlxo, D<y< Ai/dlyl(ﬁ,ﬁx)}
n O(Aéll6/(73d1)).
CASE 1.2.2: If h[[€,—1,&,] is decreasing then
RL = #{(x,y) € Z* | A}/dlﬁg_l <z < Ai/dlajo, 0<y< Aé/dez(Tz,TQZE)}

+ (A% (73d0)y
Casg 2: [C},_1,C}] C [ag, ap] or [C)_1,Cri] C [V, b,]. Then C € [ay, b,]

and k,(C) > xo. For R}, the same holds as in Case 1.2.
CASE 3: C’; < a,. Then by Lemma 3.1

Rl = #{(w,y) € 22 | A/ "¢p 1 < 2 < AY " min{&,, 20},
O<y< Aé/d2y2(7'2,’7'2113)}.
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CASE 4: C},_y > b,. Then by Lemma 3.1
Ry = #{(,y) € 2° | A" 61 <2 < A" min{&y, 20},

0<y< A}/dlyl(ﬁ?ﬁ?ﬁ)}-

In the following the proof of (7.7) is given only in Cases 1.1.1 and 1.1.2.
The other cases are similar but somewhat easier.

In Case 1.1.1 use (C'4), (2.7) and (Z'3) and choose 1 < v; < n with the
properties

kg(( :—I’C;)) g (Cuoflvguo) g (fg,l,min{fg,xo}), 5971 = Culfla

min{&gal‘()} = Cl/2a V1 S o S v, kg(( ;—1502)) g (CV3717<V3)a

CV¢, € (Chy1,Cy) Cl0,20]  for C e (C:_,,CF), w3 <uy.

p=1~p
Then
1/071
Ri= > #{(xy) €22 | A/ ¢y <2 < AYG,,
V=

0<y< Ai/dlyl(ﬁ,ﬁx)}
+#{(2,y) € 2% | A7V o1 < < AV, (C),
O<y< A}/dlyl(ﬁ,ﬁa})}
— #{(z,y) € 22 | A (1 < a0 < A/ ROV, (0),
vt 0<y< Aé/(byg(TQ,Tng)}
+ 3 #(zy) € 22| AY B¢ <w < AP,

V=vs3

0<y< A;/d2y2(’f2,7’2$)}
+ (@) € 7| ARG, 0 <w < 4O,
0<y< A;/deQ(TQ,TQ.%')}
" O(A?G/(mdl)).
It follows from (C72) and (C73) that the endpoints of the respective intervals

of # when renormalized with the corresponding Aj_l/ % have a distance >Tf
from all ¢, with 0 < v < n, or are equal to one of these (,. Furthermore
Cuo < &1, Cuy < &. Application of Lemmas 7.1 and 7.2 to each of the sum-
mands gives

ko (C) oV,
(7.8) RL = A%/dl S y1(71,z)dx + Ag/dQ S y2(72, x) dz
Cuy—1 C=1/d2k,(C)

AV e,
+ TIT(M’Q) (A7) + TJ(M,Q)(Az)
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+ (A G ) AV T (1, G )
— (A M g (C)AY My (71, Ko ()
+ Ay O, () Ay Py (ra, CH 28y ()
+ UlT(#’Q)(Aﬂ + UQT(“’Q)(AQ)
— (A PO, ) AY Py (r2, €V BG,)
+ O(A;lﬁ/m’dl)(log A1)315/146).

Lemma 2.2, (3.3) and (3.5) give for the first integral

ko (C)—ri/™

J T1far a0 (AY ) do

5971
ko(C)

+ o mfaea @A) 0™ de,
ba(C) -3/

for the second integral

ko(C)+77%/ 7™
Vil (mafay (A M) + O ) da
ko(C)
CUQ
+ O~ S Tngl’AQ(A%/dlac) dz
ko(€) 473/

and
1 (71, ko(C)) = 11 fay a5 (A1 T Eo(C)) + O™,

ya(12, O %1y () = afay. s (AT ko(C)) + O(r" ™).
Substituting into (7.8) gives (7.7).
In Case 1.1.2 choose 1 < v; < n with the properties
ko((Crm1,Cp)) € (Cuo—1,Cu) € (§o—1, min{&p, zo}),
o1 =Com1, min{€, a0} =Gy M < <1a, G <&,
ko((Crio1:C)) € (Guom15Gus) € [0m2)s G < o
CH%(, 1 € (Guum1,Gu) 00 =Gy (if0=1)
for C € (Cp_1,C}), va <vs.
Then
Ry = —#{(z,y) € 2| AP Cr < w0 < A/ RCTV%G,

O<y< Aé/dzyg(Tg,TQ.’L‘)}
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113—1

+ 3 #{(wy) € 22| AY B¢ <2 < 4%,

V=V4y

O<y< A;/dZyQ(TQ,TQZL‘)}
+#{(z,y) € 2 | AY ¢,y < x < AYPCVEE,(0),

O<y< Aé/dzyg(Tg,TzlL‘)}
— #{(x,y) € Z2 | A" Gy < 2 < A E,(C),

0<y<AYMy (r, )}

V2

+ 3 #{(wy) €22 | AV NG <2 < AV,

V=L

0 <y < A"y (r,ma)}
+ O(A;LG/(mdl)).
The remainder of the proof is as above. m
Summing over 1 < p < r gives

COROLLARY 7.5. Let 1 < u < m. Then for A1, Ay > K, C := AQAl—dz/dl
€ (Cr_ + A5, C — A7) we have

iz iz
Ai/dl zo
RY (A, As) = | fay (@) do — A7 T + T{% (Ay) + T9 (As)
0
+UT™ (A1) + USW (43) = L £a,,4,(0)

— (A P o) fay 4, (AY P o)
1 O(A;-lﬁ/(73d1)(logA1)3l5/146).

Now R# is handled similarly to ]f but with the roles of z and y in-
terchanged. The analogue of h : [0,&] — R is 1 : [0,71] — RT with
l(y) := g2(71(y),y). Let 0 = o < ... < m = 11 be the decomposition
which is analogous to 0 = & < ... < & = & and m, = (Inr—1,m-]) "1 -
[crydr] = [Nr—1,m-] for 1 <7 <t

The situations for Rt and R# are not completely symmetric because
Yo = Y0,A,,4, depends on A; and Ay whereas z is constant. Therefore some
additional lemmas are needed.

LEMMA 7.6. For y,x > 0 there is a decomposition Ch1 = Cj < ... <
Cr, = Cy and constants €, K > 0 so that for 1 < p < m the following holds:
(1) Uniformly for all Ay, Ay > K with C := AQA;d2/dl €(Ch1+ATS,

Cp — A®), one of the two cases Yo,a,,4, <Y 0T Yo,4,,4, > Y is valid.
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(2) Uniformly for all Ay, Ay > K with C := A, A7 /M € (Cr_y + AT,

C,— A; %) one of the two estimates [yo,a,,4, —Y| > 71 0T [Yo,4,,4, = Y| < 71

1s valid.

Proof. Choose g2(z0,7) as point of decomposition if it lies in [Cy, Co].

CasE 1: C}; < ga(70,7). Then C < ga(7o,y) — Ay ° and consequently

§2<Cfl/d2mo7cfl/d2y) > 1+ C*lAl—e
> Go(C™ V%200, Go(C™H %200)) + C5 T AT,

Therefore C~/ %5 > 7, (C~ /%2 24) and

| g — g (C M 2|

> [G2(C7 Y %y, O™V Eg) - Go(C g, 2 (O~ %0) )| > A7

It follows that i > CV/ 4275, (C /%2 20) 4+ K30 A} € with some constant K3o > 0.
From the definition of yg 4, a, it follows that

Yo.4, Ay < CYyy (1o, O~V e200) < V2 (CV200) <7 — K3g AL S

Choosing 0 < € < k/d; it follows that in (1) and (2) always the first cases
are valid.

Case 2: Cj_; > g2(z0,y). The same reasoning as above gives
CH 2 (C 2 30) > 7 4 K39 A] € with some constant Kz > 0.
CASE 2.1: y1(x0) > 3. Then with some constant K3y > 0,
Yo, 45,4, = min{y1 (11, 20), CY 2 ya (2, C7 1 %22)}
> min{71(zo) — K317, CV/®25(C~ % 20) — K311}
> 7+ K30A[ /2

and so if 0 < € < min{1/dy,x/d;} is chosen then in (1) always the second
case is valid and in (2) always the first case.

CASE 2.2: y1(z9) = 7. Then with some constant K3s > 0 we have
Cl/dzyz(Tz, C_l/d2$0) > 01/d2§2(0—1/d2$0) — K321
> y1(zo) — Ko + K30A7° > y1(71, 20)

and so yo = y1(71, o). Consequently, yo < y1(zo) =y and |yo,4,,4, — Y| =
ly1(71,20) — Y1(xo)| < 71. So in (1) always the first case and in (2) always
the second case is valid.

CastE 2.3: y1(x0) < 7. Then yo a,,4, < y1(11,20) < y1(x0) < 7 and
|Y0,4,,4, — Y| > ¥ — y1(xo) = const. > 0. So in (1) and (2) always the first
cases are valid. =m
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LEMMA 7.7. Fory,x > 0 there is a decomposition C; = C; < ... < CF,
= Cy and K,e > 0 so that for 1 < p < m and uniformly for A1, Ay > K

with C = AgAIdQ/dl € (Ch_1 + A5, C — A[F) one of the two cases
C_l/deo,Al,Az >y+T7 or C_l/d2y07Al7A2 <y -7 is valid.
Proof. CASE 1: 5 > 75. Then
T—C Y%y 4, 4, >0 — yo(12, O™ %200) > 7 — Go(CH/ %22)
> — ﬂg(C’;l/d%o) = const. > 0
and therefore always the second case is valid.

CASE 2: 3 < 7jp. Choose (/%2 (7))% and (71 (o) /7)? as division points
if they lie in [Cy, Cy].

CasE 2.1: C < (x0/T2(¥))%. Then C < (20/Z2(y))" — A7° and by

Taylor’s theorem C~/% > 7, (¥)/xo+Ki0A] © with some constant K49 > 0.
Applying Taylor’s theorem again gives

Jo(C™H %2 20) < §o(T2(7) + 20 Ka0A; %) < T — K A7
with some constant K41 > 0 and so
U—C V%0 4,8, 27— y2(r2, C 1V Pag) > 5 — 52(C~ 1 %2a0)
> KpAj® >
if 0 < € < k/d;. Therefore always the second case is valid.
CASE 2.2: C | > (x0/Z2(7))*.
Case 2.2.1: C%_; > (71(x0)/7)™. Then C > (71 (z0)/y)™ + A7 and
by Taylor’s theorem C'/92 > ¥, () /7 + Ki9A; ©. Consequently,
T—C Y%y 4,0, 27— CH2yi (11, 0) > 7 — C 5 (x0)
> GOV Ky ATS > f
if 0 < € < k/d;. Therefore always the second case is valid.
Case 2.2.2: Ci < (1(z0)/y)®. Then (x0/Z2(y))* + A7° < C <
(71(w0)/7)% — AL ¢ and by Taylor’s theorem

c~Vdz < xi—(oy) — K40A; 5, ol < # — KA.

Applying Taylor’s theorem again gives
Jo(C7V%230) > 4o (T2(7) — KaowoA;®) > G+ K AT°.
With further constants K45, K43 > 0 it follows that
C™Vyo 4y 4, = min{C ™2y (11, m0), y2 (12, C V2 20) }
> min{C~ Y% (g1 (x0) — Ka2m), §2(C~%220) — Koo}
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> min{@4—@6'_1/‘12!(40141_5 —C VR,
Y+ K4 AT — Kyomo}
>y + Ki3A* >y + 17

if 0 < e <min{l/dy,x/d1} and so always the first case is valid. =

LEMMA 7.8. There is a decomposition C1 = C§ < ... < Cr, = Cy and
constants €, K > 0 with the property: For 1 < up < m, 1 < 17 <t we
have

(Cp-1,CL) N er, dor] =0 or [CX C,l C ler, dr].

pn—1» pn—1

In the latter case uniformly for A1, As > K with C = A2A1*d2/d1

c
(02—1 +A7¢, C;—A;€)7 one of the two cases m,(C) < yo. 4, 4, 0r m.(C) >
Y0,A,,A, s valid.

Proof. As decomposition points the following points are chosen if they
lie in [C1, Cs):

(1) h(zo) and ¢, d, for 1 <7 < t.

(2) The decomposition points arising from Lemma 7.6 applied to y = 7,
1 <7<t

Let 1 <p<m,1 <7<t Then (C;_,,Ch)N[cr,d-]=0or [Cr_,,Cr] C
[¢r,d;]. Assume the latter case. Then uniformly for A;, Ay > K with
C:= AQA;d2/dl € (C;_1 + A%, C — A[F) one of the three cases yo 4,4,
< Nr_1, Yo,4,,4, € (Mr—1,M7) O Yo,4,.4, > 7y is valid. In the first case
Y0,4;,4, < m-(C). In the last case yo,4,,4, > m,(C). For the remainder of
the proof assume that the second case is valid. From the definition of m. it

follows that

C< l(y07A17A2)? ”[777'717 777'] increasing,
(7.9) m-(C) < yo.4,,4, & {C’ > 1(y0,4,,4,)s U[nr—1,n+] decreasing.
From (2.10) it follows that
(7.10) |71 (20) — CH = (C~ V% a0)| > |h(zo) — C| > AT,

CasE 1: C;;_y > h(xo). Then 71(zo) < CY%5(C~%m) by (2.16),
and with (7.10) this gives 71 (z¢) < CY %95 (C /% 20) — K50 A7 with some
constant Ksp > 0. If 0 < & < 1/d; this gives

y1(71,20) = Y1 (w0) + O(71)
< Oy (ry, O M 2mg) = CM %05 (C~ 1 %200) + O(11)

and consequently yo = y1 (71, 20) = y1(z0) + O(711). Therefore
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l(yo) = g2(Z1(¥0), Y0) = G2(zo + O(71), y1(z0) + O(11))
= g2(%0,Y1(x0)) + O(71)
= h(wg) + O(m1) < C,_; + O(71)
<C—-A"+0(m) <C.
CaAsE 2: O, < h(zo). From (2.16) and (7.10) it follows that
(7.11) 71 (z0) > CY gy (C~ Y 200) + Kso Ay ®
Just as above,
Y0,A,,Ar = OV A2y (19, O~V B2 30) = OV 2355(C~ Y %220) + O(1y).

Taylor’s theorem gives z1(y1(zo) — Ks0A;°) > w0 + K51 A7 ° with some
constant K5, > 0. From (7.11) it follows that

1(yo) = g2(T1(v0), o)

= G2 (F1(CY 2 (C V%2 20)) + O(11), CY 2 (C™ Y %2 24) + O(71))
> o (@1 (71 (z0) — K50A47 ), CH%70(C~ Y %2 50)) + O(1)

> ga(xo + K51 A7 © Cl/d2§2(0_1/d2$0)) + O(m1)

> Ga(0, OV 25 (C™V%200)) + alp(wo + K51 A7T%)% —

+ O(m)
>C+ a(z) d2$gzilK51A1_€ + O(Tl) > C.

(7.9) shows in Cases 1 and 2 that uniformly throughout the given range
of (A1, A2) one of the two cases m.(C) < yo or m,(C) > yo is valid. m

Choose Z C Ry, |Z| < oo with the properties:

Z#1)  The zeros of Z/Z" in [0,7;] are contained in Z for j = 1,2.

The zeros of y7/y;" in [0 ,EJ] are contained in z;(Z) for j =1,2.

(

(272)

(Z#?)) 7707"‘777t7y17y27h( )EZ
(z#4) If T(0) = 0 # &/(0) for j = 1 or j = 2, then the value of £
which comes from the application of Proposition 6.1 is contained
in fj(Z)

Choose 0 = {y < ... < (,, with the properties:

(Z#5)  Z C{Co,--+Cn}
(Z#6)  For each (,(’ € Z with ¢ < ¢’ there is some 1 < v < n with
(<G <(.
For 1 < 7 <t define [¢},d"] := m ' ((—o0,31]) and . (C) := C~V%m, (O)
n [c,d.]. Now choose a decomposition C; = C§ < ... < Ck = Cy and
constant € > 0 with the properties:
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(C#1) If ¢, € [C1,Cs] for some 1 < 7 < t then ¢ € {Cg,...,C}. The
same holds for ¢, d. and d,.

(C*2) For1 <7<t 1<pu<m,0<v<nwith[C}_

For Ay, Ay > K with C := Ao A, /™ € (C_y + A75,C5 — AT9)

we have

1, Gl € e, d7]:

CryCr

m.(C) =Gl =1, |[m(C) =G| > 75
(C#3) Forl<pu<m,1<v <n 0<v<n:For A, Ay > K with
C = A AT ™/ € (C;_y + AT%,C — AT®) we have
OV =l 275
(C#*4) For1<7<t,1<pu<m,1<v <n,0<v<n wehave

G &m-((Chy, Co) N e, dr]), G & m-((Ch_y, Ch) N[y, dr)),
G # CTHRG, for Ce (€)1, Cp).
(C#5)  All the decomposition points which arise from the application of

Lemmas 7.6 and 7.7 toy = (3,...,(, and from Lemma 7.8 are
contained in {C§,...,C},}.

The following lemma is the analogue of Lemma 7.4.

LEMMA 7.9. Let 1 < pu <m, 1 <7 <t. Then uniformly for Ay, Ay > K
with C := AQA;dZ/dI € (Ch_1+A %, C;— A7) one of the two cases is valid:

(1) y07A17A2 S 777——1 G/fld RZ_%(A17A2) g 0
(2> yO,Al,AQ Z nT—l and

AY min{yo,n,}

Rf(Ah AZ) = S f,le,AQ (y) dy - %A}/dl (min{n77 yU} - 777'71)
Ai/dln

T—1

+ T#(“’Q)(Al) + TQ#(mg) (A ) + UI#(M,Q)(AI) + UQ#(MQ)(AQ)
+ (A M) fal 4y (AY )

— (AY " min{n., yo}) fal 4, (A" min{n., yo})
4 O(A?G/(73d1)(lOgA1)315/146)'

Proof. Again several cases have to be distinguished. From Lemma 7.6
for g = n,_1 (in case 7 > 2) it follows that always yo < n,_1 or yo > n,_1.
Assume the latter case.

Case 1: [C};_4,C] C [}, d;]. From Lemma 7.6 for § = 7, and Lemma
7.8 it follows that umformly in the given range of (A1, A) one of the two
cases Yo < 1, or yo > 1, and one of the two cases m,(C) < yo or m.(C) > yo

is valid.
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CaseE 1.1: m-(C) < yo < n,. Applying Lemma 3.1 with z,y inter-
changed gives the decomposition in the following two cases.

Casg 1.1.1: If I[[¢r, d,] increases then
RY = #{(2,y) € 2% | A"y <y < AV MmO,
0 <z < Ay ay(r, my)}
22| A" m (0) <y < A
+ #{(z,y) € 27 | H(0)<y< Yo,
0<zx< Aé/d2$2(7'2,7'2y)}
46/(73d
+0(A] /( 1)).
Casg 1.1.2: If I[[¢;, d,]| decreases then
RE = #{(z,y) € 22 | AY/ "', 1 <y < AT (O),
O0<ax< Al/dz.Zg(Tg,TQy)}
Z2 Al/dl C <A1/d1
+3#{(z,y) € 27 [ A7 m, (C) <y
0<z< Ai/dlxl(ﬁ,ﬁy)}
46/(73d;
+O(AP/ 0y,
CASE 1.2: yog <m,(C) < n,.
Cask 1.2.1: If I[[¢r, d,] increases then
RY = #{(a,y) € 22 | A "oy <y < AV o, 0 <o < AV (m1,may))
n O(A46/(73d1))
CASE 1.2.2: If I][e,, d,]| decreases then
R = #{(e,y) € 2| A" 0oy <y < 40, 0 < 2 < 4 P aa(m2,7ay))
46/(73d;
+O(A/ M),
CASE 1.3: yo > 0, yo = m.(C).
Cask 1.3.1: If I[[¢r, d,] increases then
RF = #{(2,y) € 22 | AY/ "',y <y < AT (O),
0<z< Ai/dlﬁl(Tl,le)}
+#{(@,y) € 22 | A (C) <y < A,
0<x < A;/d2$2(7'2,7'2y)}
46/(73d;
+O(AT )y,
CAsE 1.3.2: If l][e,, d,]| decreases then
RE = #{(a.y) € 22 | A"y <y < AP (),
0 <z < Ay P uy(ra, moy)}
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+#{(z,y) €22 | A" m.(C) <y < A",
0<z< Al/dlxl(ﬁ,ny)}
n O(A46/(73d1))

The fourth combination m,(C) > yo > 71, is not possible because always

m,(C) < 1.
Cask 2: [C)_1,C}] C ler, 7] or € [d7, d-]. Then yo < y1 <m-(C) < ;.

CASE 2.1: If I[[¢r, d,] increases then
R¥ = #{(x,y) € Z* | AY "y <y < AV yo, 0 < 2 < AY Py (my, 1)}
+O(A‘116/(73d1)).
CAsE 2.2: If I[[c;, d,] decreases then
R¥F = #{(z,y) € 2 | AY "1 <y < AY Tyo, 0 < 2 < AY % s (10, 70y) }
" O<A46/(73d1))
Case 3: €}, < ¢;. From Lemma 7.6 for y = 7, it follows that always
Yo < Mr OF Yo > 1)r.
CAsE 3.1: If yg < n, then
R¥ = #{(x, y) €72 | A /dlm 1<y <A} /dlyg 0<x<A, 1/ds x2(T2, T2y) }.
CAsE 3.2: If yg > n, then
R# = #{(x,y) € Z* | Al/dlm 1<y< Al/dlnT, << Aé/dzxg(Tg,Tgy)}.
CASE 4: C;j,l >d,.
CASE 4.1: If yo < n, then
R = #{(x,y) € Z2 | AY/ "y <y < AY Mo, 0 <2 < AY M a (r1, iy}
CAsE 4.2: If yg > n, then
Rf = #{(x,y) € 7’ | A}/dlnﬂ'fl <y< Ai/dlnﬂ 0<z< Ai/dlﬁl(Tlale)}

As in the proof of Lemma 7.4 only Cases 1.1.1 and 1.1.2 are pursued
further. The other cases are similar but somewhat easier.

In Case 1.1.1 use (C#4), (C#5), (2.8) and (Z#3) and choose 1 < v; <n
with the properties

mT(( p—1> )) (CV(J 17CV0) - (777'—17min{777'7y1})7 Clq—l =Nr—1,
Coo = min{nr,y1},  vi <wvo<wve, (o, <7,
TAﬁ’T(( Z—I’C;)) g (CV3*17<113)7

Cil/dzyO,ALAg € (CV4—17 CV4) for Al’A2 > K
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with
Ci= A AL ™M e (O + AT5,CE = AT9), w3 <, Gy <
Then
Uofl
RE =" #{(z,y) € 22| A" ¢ <y < AV,

0<z< A}/dlxl(ﬁ,ny)}
+ #{(z,y) € 22| AV Cr <y < AV T (O),

0<z< Ai/dll‘l(Tl,le)}
—#{(2,y) € 22| 4/ P Cy1 <y < A POV (0),
0<z< A;/d2$2(7'2,7'2y)}

I/4—1

+ Z #{(ZL’,y) YA | Aé/dzgl—l <y< Al/d2CV7

0<z <A, 1/da xo(T2, T2y)}
+ () € 22 | ARG, 1 <y < AYECT Ay,
0<z< Aé/d2$2<72772y)}
n O(Azliﬁ/(73d1))'
In Case 1.1.2 choose 1 < v; < n with the properties
m-((Ch—1,C})) € (Cuo—1,Cu) € (r—1,min{nr,y1}),  Coy—1 = Nr—1,
Cuy, = min{m,yl} v1 <vg <va, Gy <1,
mT((Cu 15 )) (Cus—1,Cus) [0, 2],
Cog <Tl2s C7Y20 1 € (Cum1,Gy) o8 =G (if7=1), v <us,
Y0,4,,4, € (Cus—1,Cps] for A1, Ag > K
with
O = A Ay BN e (Cr_ + A5, 05— A7), wo < us.
Then
RF = —#{(2,y) € Z* | Aé/dQCm—l <y< A;/dch/dzm_h
0<z< A;/d2$2<72772y)}

Ugfl
+ 3 #{(wy) €22 | AY B <y < AV,

V=V4y

0<z< Aé/d2$2<72772y)}
+#{(2,y) € 22 | AY " (o1 <y < 4B OV Em (0),
O0<z< Aé/dzfﬁz(Tz,sz)}
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— #{(z,y) € Z2 | AV ¢y 1 <y < AV (C),
O<z< A1/d1$1<7'1,7'1y)}

11571

+ > #{(wy) €22 | AV MG <y < AV,

V=ro

0<z <AV (r,my)}
+#{(@,y) € 22 [ AY M1 <y < A Py,

0<xz< A"z (r,my)}
+O(A4116/(73d1)).

It follows from (C#2) and (C#3) that in each but the last set the endpoints

of the respective intervals of ¥y when renormalized with the corresponding
Aj_l/ % have a distance > Tj'f‘ from all ¢, with 0 < v < n or are equal to one

of these (. From (C#5) and Lemma 7.6 applied to § = (,, 1 (if v5 > 1) and
Yy = (y, it follows that for the last set the same holds or that |yo — (| < 71
or |yo — Cus—1| < 71 uniformly in (A1, A2). In the last case apply the trivial
estimation to the last set.

The remainder of the proof is as in the proof of Lemma 7.4. m

COROLLARY 7.10. Let 1 < p < m. Then for A1, As > K with C :=
AR AT/ € (O + AT, C — ATF) we have

Ai/dl Yo
_ d
R¥(ArAe) = | fala, ) dy — 34 g0 + T (A1) + TF ) (45)
0

+ U (A1) + UF " (A9) = 1£3) 4,(0)
d _ d
— (A " y0) )4, (A o)
+ O(Aéllﬁ/(mdl)(log A1)315/146),
Corollaries 7.5 and 7.10 and (3.1) together with
Sa1,45(0) = min{ A", Ay B0} + 0(1),
f;11,A2 (O) = 0A1,A; = min{Ai/dlgh Aé/d252} + O(l)
give the asymptotics of Theorem 1.1. The estimation p,,,qu, < d, — 2
follows from
LEMMA 7.11. For each xy € [O,g,,) there is some 2 < k < d, with
yjﬁ’“) (xo) #0. If jéy) =1 then the statement is valid also for xqg = &,.
Proof. Assume y(¥) (xg) = 0 for 2 < k < d,. Then Taylor’s theorem
implies
Yo (x) = G (x0) + ¥, (z0) (z — z0) + O(|& — 20|™ 1)
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in some neighbourhood of z¢ in [0, g,,] Consequently,

1= Zaé”lw 3§, (x0) + T (w0) (@ — x0) + O — wo| 1))
and
1- Za%] W =3(G, (o) + T, (w0) (x — 20)) = O(|z — wo| ™)

for x Close to zg. The left hand polynomial of order < d,, vanishes therefore
at xo with order > d, 41 and is consequently the zero polynomial. Therefore
v (2,9, (x0) + U, (x0)(x — xg)) = 1 on R, which contradicts Lemma 4.1. =
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