ACTA ARITHMETICA
119.4 (2005)

Calculation of improper integrals
using uniformly distributed sequences

by

CHRISTOPH BAXA (Wien)

Dedicated to Professor Wolfgang M. Schmidt
on the occasion of his seventieth birthday

1. Introduction

1.1. History of the problem. It is a basic result of the theory of uniformly
distributed sequences that a sequence (wg)r>1 is uniformly distributed in
[0, 1] if and only if

(1.1) Jim % S flwn) = | £() da

O e =

for all Riemann-integrable functions f : [0,1] — R. However, the analogous
equivalence is not true for Lebesgue-integrable functions. (This can be seen
by setting f = ¢ where 2 = {wy, | k € N} and cps denotes the characteristic
function of a set M C R.) It was even pointed out by N. G. de Bruijn and
K. A. Post [2] that if (1.1) holds for all uniformly distributed sequences
(wk)k>1 then f has to be Riemann-integrable.
On the other hand, if « is irrational and f is an L!-function then
N 1
hm —Z {ka+¢&}) = S f(x)dx

= 0
for almost all £ (where {:c} denotes the fractional part of x € R). This
follows from Birkhoff’s ergodic theorem but was also proved by A. Khinchin
[9]. This example shows that it is an interesting problem to find conditions
for relation (1.1) to hold if S(l] f(z)dz exists only as an improper Riemann
integral. (Results of this kind can be applied to the calculation of such
integrals; see, for example, [19], [10] and [7].) For a more complete survey of
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374 C. Baxa

the existing literature we refer the reader to the monographs by L. Kuipers
and H. Niederreiter [12] and M. Drmota and R. F. Tichy [4].

In this paper we study the special case (wg)r>1 = ({ka})r>1 with ir-
rational a. We find relations between certain non-Riemann-integrable func-
tions f : [0,1] — R and irrational « that are necessary or sufficient condi-
tions for the relation

| N 1
(1.2) Jin 5 3 f({he)) = (o) o
to be true. The first results in this direction were obtained by G. H. Hardy
and J. E. Littlewood [6]. Supposing that lim, o4+ f(z) = lim,_1— f(z) =
+oo and that f is Riemann-integrable on [0,1 — 4] for all § € (0,1/2), they
proved that (1.2) holds for almost all « if

‘ 1 1
Sf( )<10g — + log? T) dr < oo
0

and that (1.2) holds if the continued fraction expansion of « is bounded.
Some years earlier A. Khinchin [8] had posed the following question: if E C
(0,1) has Lebesgue measure A(E) is it then true that

lim —ZCE {ka}) = A\(E)

for almost all o? This conjecture was disproved by J. M. Marstrand [14].
K. A. Driver, D. S. Lubinsky, G. Petruska and P. Sarnak [3] constructed
functions for which (1.2) does not hold to study the radius of convergence
of hypergeometric functions. V. A. Oskolkov [15] proved that (1.2) holds if
and only if

lim_— f({gna}) =0

m=00 G,

where f satisfies the same conditions as in [6] and ¢,, denotes the denom-
inator of the mth convergent of the continued fraction expansion of . (In
a follow-up paper [16] he proved a similar result for sequences satisfying
a certain technical condition. In the case of sequences of shape ({ka})y>1
this condition is equivalent to the boundedness of the continued fraction
expansion of «.) In a joint paper with J. Schoilengeier [1] we proved the
following generalization of Oskolkov’s result:

THEOREM 1.1. Let a be an irrational number, F C [0,1] N Q finite,
f:10,1] — R integrable, continuous almost everywhere and locally bounded
in [0, 1]\ F. Assume further that for every 3 € F there is some neighbourhood
U of B such that f is either bounded or monotone in [0, 3)NU and in (5, 1]NU
as well. Then the following are equivalent:
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(1) imy o0 f({Na})/N =0,

(2) limy o N71 Egil f{ka}) exists,

(8) limy oo N™' 3300, f({ha}) = §; f (@) da.

The implication (3)=-(2) is trivial and the implication (2)=-(1) is Lemma
1.2 below. However, it is much harder to prove (1)=(3).

LEMMA 1.2. Let « be irrational and f : [0,1] — R any function. If
By oo N™ES0 L f({ka}) exists then limy oo f({Na})/N = 0.

Proof. This follows from

N-1 1

1 1
~ J({Na}) = Z (trah ~ XL LS ) —

\MZ

as N — oo.

In Theorem 1.1 we assumed that the singularities of the function f are all
at rational points # and we made crucial use of this assumption in the proof
of the implication (1)=-(3). It is the purpose of the present paper to describe
generalizations of Theorem 1.1 without this assumption. Comparison with
the paper’s precursor [1] will show the reader that we have reused many ideas
and Theorem 1.1 is contained in our results as a special case. However, our
generalizations are far from straightforward and finding them required a
careful analysis and further developments of the proofs given in [1].

1.2. Basic assumptions and plan of the paper. For the remainder of the
paper we assume that « is an irrational number with regular continued frac-
tion expansion a = [ag, a1, az, . . .| with convergents p,, /¢ = [ao, a1, .. ., am)
for m > 0. The quantities a,,, p,, and ¢,, depend on « but we will usually
suppress this fact in our notation. However, in Section 4 we will sometimes
write an, (o), pm(a) and ¢, () when there is a danger of confusion.

We will now describe the class of functions we are going to deal with.
Let 3 € (0,1]. We will say the function f : [0,1] — R is in the set ST(3) if
it satisfies the following conditions: f > 0, f|o g) is increasing, lim, 5 f(z)
= +00, flip,1) =0 and S(l) f(z) dr exists.

We define f € S™(B) & —f € ST(B3). For any function f : [0,1] — R
we set f:[0,1] — R, f(z) = f(1—z). Obviously f({k(—a)}) = f({ka}) for
all positive integers k and if S(l) f(x) dx exists then so does Sé f(m) dx and its
value is the same. For 3 € [0,1) we define f € S{(8) & fest(1-p)
and f € S, (8) & f € 8=(1— ). Finally, we call a function f : [0,1] — R
admissible if there exist finite (potentially empty) sets {5 ,..., 5, } C (0,1]
and {8;{,...,8+} € [0,1), a Riemann-integrable function fo : [0,1] — R,
functions f;” € ST(3; )USZ(B;) for 1 < i < r and functions fj+ € Si(ﬂj)u
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S;(B;r) for 1 < j < s such that
(1.3) F=lotfr+ -+l + A+ 41

For the sake of clarity we stress that 8, ,..., 3, are assumed to be r pair-
wise different points and likewise ;. .., 3F are s pairwise different points.
However, it is possible that 3, = ﬂ;f for some ¢ and j. Our definition of an
admissible function may seem clumsy when compared to the assumptions
made about f in Theorem 1.1. Yet, it is more general, which can be seen
from the following example: let f = fo + f; where
—1/n if . = (n —1)/n for some positive integer n,
o) = { .
0 otherwise,
and
o) = {1/\/1 —z ifze0,1),
' 0 if 2= 1.
In fact, Theorem 1.1 remains true if f is assumed to be admissible.

The plan of this paper is the following: in Section 2 we collect auxiliary
results about the distribution of the sequence (ka)i>1 modulo 1. Section 3 is
the core of the paper. In it we establish a number of results about functions
f € 8T(B). The main results are:

o If limy oo f({Na})/N =0 then

N qm 1
lm 3" f(fko}) = Tim Y f({ka}) = | /(o) do.
N—oo sV 31 Im 0

e Theorem 1.1 remains true if any of the following (rather strong) as-
sumptions hold: the continued fraction expansion of « is bounded, 3 is
rational or lim ,,, . [|B¢m] > 0.

e Suppose that limy o, f({Na})/N = 0. Under the (weak) assumption
lim,,, oo ||B@m|| > 0 we prove the existence of certain infinite sets M; C N
that satisfy My C M1 for all positive integers k, Uzozl M =N and

li L
m —
Nemyp N

N 1
3 f({ka}) = | f(2) da.
k=1

0

Under a mild additional assumption M1\ My can be proved to be infinite
for all positive integers k.

In the final Section 4 we transfer the results from Section 3 to admissible
functions. Many of the proofs in this part are straightforward and will only
be sketched.

2. Auxiliary results about the distribution of the sequence
(ka)g>1. We need some more notation: for any positive integer N we will
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use oy € Sy to denote the uniquely determined permutation such that
{on(k)a} <{on(k+ 1)a} for 1 <k < N.

PROPOSITION 2.1. Let m and b be integers, m > 0, 1 < b < apy1 and
N = bq,,.

(1) If m is even then
k(gma — pm) if 1<k<b,

N o e R I C

+ {—qm1 {EJ}) ifb<k<N.
qm b

(2) If m is odd then

{ov®at =0 {_qml HJ }) f1<k<N-b,

1+ (N—k+1)(gmo—pm) if N-b<k<N.
Proof. This is [1, Proposition 1].
COROLLARY 2.2. Letm >0, 1 <b < amy1 and N = bgy,.
(1) If m is even then
kGm if 1<k<b,

() v

(2) If m is odd then

on(k) = qm@{%}*{‘%ﬁ{—%”) if1<k<N-—b,

gm(N —k+1) if N—b<k<N.

Proof. This follows immediately from Proposition 2.1.

COROLLARY 2.3. Let p € (0,1, m > 0, 1 < b < pams1 and N = bqy,.
If0<t<gnm—-1andtb+1<k<(t+1)b then

( t t+u> . .
—_— if m is even,
ton(kjaj € jﬁlim t+1
( M, > if m is odd.
dm dm
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Proof. Let m be even and set r =k —tb € {1,...,b}. If t = 0 then

{JN(k)a} = 74(%710‘ - pm) < b(‘]ma - pm) < Pl (Qma - pm) < N/Qm'

If t > 1 then
t t i
—<{UN(k)a}:—+(qma—pm)<r—l+{—q 1t}>
dm dm dm
t t t+1
< — +b(gma — pm) < . + 141 (gmo — pm) < N

If m is odd the assertion can be proved analogously.

COROLLARY 2.4. Let m > 0, 1 < b < amr1, N = bgm and 0 < t <
gm—1. Then {on(k)a} € (t/qm, (t +1)/qm) if and only if tb+1 < k < tb+D.
Furthermore, we have

#{k‘gkgzv,{ka}e(i,ﬂ)}:b.

dm dm

Proof. Both assertions follow from Corollary 2.3 by setting p = 1.
LEMMA 2.5. Let m > 0.
(1) If 1 < N < qy1 then

{on(j + Do} —{on(i)a} = lgma —pm|  for1<j <N.
(2) If N = gy, then

{on(j +Da} —{on(j)a} > |gm—10 = pm—1| for 1 <j<N.
Proof. (1) If 1 <j < N then |on(j + 1) — on(Jj)| < gm+1 and therefore

{on(G +Da} ={on()a} = {on (i + e} = {on(j)a}|
=[lon(G+1) —on())a—[on(i+Da] + [on()al] = [gma — pm|

where we used the fact that convergents are best approximations [18, Chap-
ter I, §3, Theorem 1].

(2) This is an immediate consequence of (1).
REMARK. Lemma 2.5 can also be derived from stronger results [5].

LEMMA 2.6. Letm>0,1<b<amy1 and N =bgp,. If 0 <t < gm—1
and 1 <r <b-—1 then {on(tb+r+ 1)a} — {on(tb+ r)a} = |gma — pm]|.

Proof. Let m be even. If ¢ = 0 the assertion follows immediately from
Proposition 2.1. If t > 1 then
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{on(tb+r+1)a} —{on(tb+ r)a}

_ qim + (gma —Pm)<r+ {_q;;l t}>

t o
———(qma—pm)<r—1+{—q 1t}> = GmQ — Pm-

dm m

If m is odd the assertion can be proved analogously.

LEMMA 2.7. Let m > 0 be even, 1 < b < any1 and N = bg,. Then
{fon(tb+1)a} —t/gm < |gma —pm|  for 0 <t < gm—1.

Proof. 1If t = 0 the assertion follows immediately from Proposition 2.1.
If ¢t > 1 then

{on(th+1)a} — — = (gma —pm){—q’”l t} < @ — P

t
dm m
LEMMA 2.8. Letm >0, 1 <b<ams1 and 0 <t < g, — 1.
(1) If m is even then
{o@+1)q @0+ 1) + 1)} = {opg,, (tb+1r)a}  for 1 <r <b.
(2) If m is odd then
{0041)q, t(0+ 1) +1)a} = {0, (tb+r—1)a}  for2 <r <b+1.
Proof. (1) If t = 0 then
{o+1)gn (t(0+ 1) + 1)} = 7(gma — pm) = {0bg,, (tb + 7)o}
for 1 <r <b. Ift>1 then

{ot+1)q,, B0+ 1) +7)a} = ty (Gm@ — i) (r —1+ {—qml t})

qm qm

= {O’qu (tb + 7’)0(}
for 1 <r <b.
(2) This can be proved analogously.

3. Results for functions in S*(3). We need some more notation. Let
N be a positive integer. For 3 € (0, 1] we set

ny = max{k |1 <k <N, {on(k)a} < 5}
=#{k| 1<k <N, {ka} < B}
and for 8 € [0,1) we set
nk = min{k |1 <k <N, {ony(k)a} > 3}
=N+1-#{k|1<k<N, {ka} > 8}.
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Both quantities are well defined for sufficiently large N. Both depend on
a and (8 but we usually suppress this in our notation (with the exception
of a few lemmata in Section 4). Obviously the sequence (on(ny))n>1 is
increasing and limy . on(ny) = oo.

LEMMA 3.1. Let f € ST(B). Then

Jim % f({Na})=0 & lim F({on(ny)al) = 0.

—oo on(ny)

Proof. The second condition is necessary because of the remark just
before the lemma. It is also sufficient because oy (ny) < N and f({Na}) <

f{on(ny)al).
LEMMA 3.2. Let f € ST(8), m>0,1<b< apr1 and N = bq,,. Then

f{on(ny)a}).

on(ny)

Proof. Using Lemma 2.5 and the well known inequality
1
Am+1 + 2)Qm o 3am+1qm

’qma _pm’ > (

we can estimate

Y f{ka}) =) f{on(k)a})
k=1 k=1

niil {UN(]‘?SJFI)OC}
f@)dz + f({on(ny)a})
{on(k+ 1)04} {on(k)a} (on(k)a) o
. “1{on (k+1)a}
< m S f(x)dz + f({on(ny)a})

k=1 {on(k)a}
1

< Bams1am | f(z) dz + f({on(ny)a})
0

and therefore

1 al Q41 ; 1 _
N;f({ka})ﬁi% o §f<x>dx+ﬁf({aN<nN>a}>
<38 f(a)de + — f{on(ny)al).
b 0 JN(”N)
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LEMMA 3.3. Let f € ST (), m>0,1<b< apny1 and N = bg,,. Then
(LBam]|—1)b

D f o) -vadkat) = > f({on(k)a})

< Ngf(:r) dzx.
0

Proof. The first identity follows from Corollary 2.4, and
(1Bam]—1)b Bam|—2 b

Z F{on(k Z Zf {on(tb+7)a})

Lﬁqu 2 (t+2)/qm

[Bgm|—2 1
< Y bf(”l) > b | @<V

(t+1)/qm

LEMMA 3.4. Let f € ST (B), m >0, u € (0,1), 1 < b < pams1 and
N = bqy,. If m is even then

N b Bgm |
> F  CUBam 1) am L Bam) fam) ({EO}) = S fHon(k)ad)
k=1 k=b(|Bgm|—1)+1
1
N

0
Proof. The first identity follows from Corollary 2.4. From Corollary 2.3

we know {on(k)a} < (|Bgm] —1+1)/Gm for b(|Bgm|—1)+1 < k < b|Bgm |
and therefore

b \_/Bq'mj

S fon(k)a) < bf({on(blBan))a}) < bf(%%)

k=b(|Bam]—1)+1

bq [Bgm ] /qm N 1
< fe)de < | f(2)da
1—p 1—p
(LBGm ] —1+n)/am 0

LEMMA 3.5. Let f € ST(B), m > 0, p € (0,1), 1 < b < pa,p1 and
N =bgy,. If m is odd and ny > b|B¢m | then

N b\_/BQ'rnJ
3 a0 am e fa kel = Y f({on(k)ad)
k=1 k:b(\_ﬂq"d_l)"l‘l

1
LSfx dr
—p

0
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Proof. The first identity follows from Corollary 2.4. From Corollary 2.3

we get
{O'N(k‘)a} > LﬁQmJ +1 — M

which implies 8 > {onx(ny)a} > (|Bgm] + 1 — 1t)/Gm. This yields

(Bt > Bam]+1 =g Bam] 1 p
B —{on(k)a} > o . .

for b(|Bgm] —1) +1 < k < b[Bgm].

Therefore {on(k)a} < 8 — (1 — u)/qm for b(|Bg¢m| — 1) +1 < k < b|Bqm ]
and

for b|Bqm] +1 <k < b|Bgm] +0b,

b\.ﬂ‘]mj
S° f({on(R)a}) < bf({on (bBan])a}) < (/3 - q—“)
k=b(|Bgm ] —1)+1 "
B
< Mmoo U pa)de < %

T f(x)dx
B—(A—p)/am

=
O ey =

LEMMA 3.6. Let f € ST(B3), m>0,1<b< a1 and N = bg,. If m
is odd and ny = b|5¢y,| then

z

1

f({ka}) < | f(x)dz +

Pt 5 on(ny)

1
N

f{on(ny)a})

for all sufficiently large N.

Proof. Using Lemma 3.3 we get
b(L/quLJ_l) b\_/Bq'rnJ

N
D fkad) = > f(on(k)a}) + > f({on(k)a})
k=1 k=1 k:b(l_ﬁqmj—l)—‘,-l

< N f(@)dz +bf({on(ny)a})
0

and therefore
1 i 1
N Z ({ka}) < Sf (@) dz+ —— f({on(ny)ad).
k=
If p=1thenon(ny) = gm. If B <1thenon(ny) qm{q:;—n:l B4} < dm

for all sufficiently large m. (Here we made use of Corollary 2.2(2) in both
cases.)
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LEMMA 3.7. Let f € ST(B3). Then

1

T (Mg,)

1
—Zf {ka}) <3 f(w)dz + f{oq,.(ng,,)a})
0

for all suﬁiczently large m.

Proof. We first assume § = 1. If m is odd the assertion follows from
Lemma 3.6. If a1 = 1 it follows from Lemma 3.2. If m is even and
Gm+1 > 2 then

1

Zf C(0,1— l/qm)({ka}) <ngf( ) dx

k=1
by Lemma 3.3 and

dm —1 1 1
> (ad) < (1= ) g {10 do < 240, | f(0)d
k=1 m+1 0 0

by Lemma 3.4. These two inequalities imply the assertion.

Now let 5 < 1. For sufficiently large m we have 2/¢,, < 8 <1 —2/gm
and we see from Lemma 2.5(2) that

1 1
o '+ Dat —{o ot 2 |gm—100 — Pm—1| > >
(04 + D} = {74,100} > a1 = prcs| > ———— > 5

for 1 < j < ¢p,. Estimating as in the proof of Lemma 3.2 we infer

nilm

S f({keh) = Y f{oy, (Ka})
k=1

k=1

{ogm (k+1)a}

nq_mfl 1
SN DI o vy e o S A

{UQ77L(k)a}
+ f ({94, (ng,,)0})

(
< 29, | f(2) dx + f({og,.(ng, )a})
0

and the assertion follows as o4, (1, ) < gm.
We are now able to state our first main result.
THEOREM 3.8. Let f € ST(B3). If imn oo f({Na})/N =0 then
q'l'L 1

lim —Zf{ka} hm —Zf {ka}) = S f(z)dz.

N—)OO 0
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Proof. Let € > 0. Choose a § € (0,3) such that Sg—a f(z)dr < /3 and
set fe = f-c—s,p)- Then f. € ST(B), f- < f and Sl fe(x)dx < e/3. As

lim —Zf {ka}) > lim Zf fe)({ka}) = S(f—fe)(x)dw

N—»oo Hook 1
1

> Sf(x)dx—s

0

we can infer
1 N 1
(3.1) lm < ; f({ka}) > §f<a:> dz,

which implies

(3.2) lim —Zf {ka}) > Sf( ) dx.

m—00 Qm

On the other hand,
1

—Zfs {ka}) <3 fola) do + ————

0 o-q’"L (nqm )

<et——— {4, (n7 )ad)

O (M)

f({oyq,, (n;m )at)

by Lemma 3.7. Therefore

T (k) = (ql > (7= ke + -3 etk
m m ™ k=1

1
< Sf(a:)da:+e.
0

Together with (3.2) this proves

qm

(3.3) lim —Zf {ka}) Sf( ) dx

M=% Gy

and (3.1) and (3.3) together imply the first equation in the assertion.

REMARK. The last theorem is an analogue to equation (1.5) in [3]. It is
also interesting to compare Theorem 3.8 with the remark after (1.8) in [3].
Note that what is called « in the present paper is called 5 in [3] and vice
versa.
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LEMMA 3.9. Let f € ST(8), m>0,1<b< apnr1 and N = bq,,. Then

1

1 N
N > Fco,180m) jam) ({Ra}) < 6 f(z) da +
k=1

0 ON (n;/)

f{on(ny)a})

for all sufficiently large N.

Proof. If b > ay,+1/2 this follows from Lemma 3.2. Now let b < ay,41/2
and either let m be even or let m be odd and ny > b| B¢y, |. Then

Zf (0, 1Bam ] /am) {KO}) = Zf C0.(1Bgm]—1)/am) ({k})

1
T NZf'C((Lﬁqu*1)/qm,Lﬁqu/qm)({k0‘})
k=1

< Vf@)de+ 2\ f(z)de =3\ f(2) da
0 0 0

where we used Lemma 3.3 and either Lemma 3.4 or Lemma 3.5.
If b < ami1/2, 2¢m and ny = b 3¢y, | then

LN
Zf (0, 18qm ) /am) {Fa}) = N Z ({ka})
- po

f{on(ny)a})

< V@der o

by Lemma 3.6.

Norations. (1) For f € ST(3) and N € N we set

N
Snf(B) = f - cam)fams) (kD)

k=1

where for given N the nonnegative integer m = m(N) is defined via the
relation ¢, < N < @¢m+1-

(2) Let (an)n>1 be a sequence and A an infinite set of positive integers.
N = {ng | k € N} with ng < ngyq for all £ > 1 we set limpepna, =
limg_, o0 Gy, if this limit exists. The quantities lim, ez ay, and lim , c s Gn
are defined analogously.

B)If JF CNand pe (0,1) weset Ny(J) ={neN|[3ImeJ:um<
n <m}.
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THEOREM 3.10. Let f € Sf(ﬂ).

lim —Zf{k:a} Sf(:c)d:c N J\}iinm%f({Na}):O.

1
N G
(2) ggAl/NZf {ka}) = §) (v)do = lim — Sy f(6) =
Proof. Assertion (1) follows trivially from Lemma 1.2 and is stated for
future reference and the reader’s convenience only. It remains to prove (2).
Obviously we have

— 1 1Y
(34) D = ];f 00, 1B /) ({R0}) < lim ;f({ka})
1
= Sf(x) dx.

Let ¢ > 0. Choose § € (0,53) such that Sgié f(x)dx < € and set f. =

f-c3—s53). Now let N € N be sufficiently large such that | 3¢ ]/q¢m > 5—0.
(We remark that it suffices that g, > 1/6.) Then

%Zf £ C(0,18gm ) /am) ({KO}) = %Z(f fe) - e, 18am) /am) ({K})
k=1 k=1
1 N
= S ) ({ka))
k=1

and therefore

lim _Zf €(0,18gm | /am) ({Fa}) = thiZ(f fo)({ka})

Nenv N
1
= S(f — f)(@)de > | f(x)dz —e.
0 0
This yields
1

(3.5) lim — Z f- C(o, \ﬁqmj/qm)({ka}) > S f(x)dx.

Nen N 0
The assertion follows from (3.4) and (3.5) together.

Note that limy .o Sy f(8)/N = 0 does not imply limy_.o f({Na})/N
= 0 if there are infinitely many N such that there isno k € {1,..., N} with

{ka} € ([Bgml/qm., B)-
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The following result is a partial inversion of Theorem 3.10. Together
with Theorem 3.10 it can be seen as a generalization of Theorem 1.1 for
f € ST(B) and will prove crucial in what follows.

THEOREM 3.11. Let f € ST(B), T C {bgm, | m > 0,1 <b < apy1} be
infinite and p € (0,1). If limy_,o f({Na})/N =0 and limyey Sy f(5)/N

=0 then
1

N
i (J)Nkz ({ka}) = | f(2) da.

0

Proof. Let € > 0. Choose ¢ € (0,3) such that 8275 f(z)dz < epn/6 and

set fo = f-c¢_sp- Then f. € ST(B), f- < f and S(l) fe(z)de < eu/6.
If N € N,(J) then there exists a bg,, € J such that ubg,, < N < bg,.
Employing Lemma 3.9 we get

bgm

N Zfs {Ia}) < —ng {a})

bgm

1
= uqu Zfs €(0,18gm | /am) ({FO}) + . —— Sy, f(B)

IN

6 _ 1 _
. § fe(x) do + f{ovg,, (g, )a}) + o Soand (B):

HObq,, (nl;]m )
By our assumptions this leads to

lim Zfa {ka}) <

c(x)d ;
NEN, (J)N Jel(z)du <e

O ey

Tl

which implies

N
1
I — k
. ;f({ a})
N

1 N
ST SERSIERS S oAty

1
< Sf(x)dm+5
0

and therefore
N 1

Z ({ha) < ] @) o

Ne/\/ ) N -
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On the other hand,
1

({ka}) =\ f(z)da

0

lim Zf {ka}) > lim %

NeNu () N N—oo
by Theorem 3.8.

In the following corollary we will use the notations Q = {g,, | m > 0}
and A, =N, (Q)={NeN|3Im>0:pugm <N <gn}

COROLLARY 3.12. Let f€ST(B) and pe (0,1). If limy_.oo f({Na})/N
=0 then

?Mz

Proof. Theorem 3.8 states that

lim 1 Zf({ka}) = Sf(:c) dzx.

NeQ N £

By Theorem 3.10(2) this implies limyeco Sy f(3)/N = 0 and the assertion
follows from Theorem 3.11.

COROLLARY 3.13. Let f € ST f(B). If a has bounded continued fraction
expansion the following are equivalent:
1

) i DSk =Sy, @) iy T(Nap =0

0

Proof. Ounly the implication (2)=-(1) remains to be proved. Let A =
maxy>1 a, and set y = (A + 1)t Then pgm < ¢n_1 for all m > 1, that is,
we have 4, = N. The assertion follows from Corollary 3.12.

NOTATION. Let J be an infinite set of nonnegative integers. We set
MIT)={NeN|ImeT :qn <N < Gmns1}
COROLLARY 3.14. Let f € ST(B).

(1) If
fim LS (ko) = | f(o) ds
N—ooo N — 0
then
Jim SN =0 and | xS, S(6) =0
(2) If

z\}iinoo%f({Na}):O and lim  max ! S, f(B)=0

meJ 1<b<am+1 bq qu
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then N
NeMmeZ f({ka}) Sf( ) da.

Proof. (1) This follows from Theorem 3.10.
(2) Let J = {bgm | m € J,1 < b < ams1}. We see from the second
assumption that limy 7 Sy f ( ) /N = 0 and therefore

lim Zf {ka}) S f(z)dx

N€N1/2(s7) N
by Theorem 3.11. Furthermore,

N
NeM/z(Q)NkZ I ({ka}) = Sf()x

in view of Corollary 3.12. It is not difficult to check that M(J) C N'l/g(j) U
Ni/2(Q), which completes the proof.

NOTATION. Let f € ST(B8), m>0and 1 <b < a,,1. We set
{obam (Mg, )}
Iy, (8) = max {o, | f()da},
{GbQ7n (b|_,8qu+1)a}
{0bam (Mg, )}
I;qu(ﬁ) = max{O, S f(z) d:v}.
qu'l'LJ /q'l'L
REMARKS. (1) We will not use I to establish any results in the re-
mainder of this paper. However, we beheve that it will prove useful in the
follow-up research. For this reason we include several of its properties and

sketch their proofs.
(2) The quantity I b | (8) depends on v which usually need not be noted.

Only in Section 4 we will occasionally write I (@) f(B) to avoid confusion.

LeEMMA 3.15. Let f € ST(B3), m >0 and 1 <b < apmyr. Then

R )

|Qma - pm| ba

g ] (B) + F({0vg,. (ry, )}).

o ‘Qma _pm| bgm
If m s even then

1 _
Ly, F(B) < Sy, f(B)

|gma — P
1

= [gme — pml Ly F(B) + f({0bg,, (14, )})-
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Proof. If there is no k € {1,...,bgy} such that |B¢m|/qm < {ka} <
then S, f(B8) = 1L, f(B) = fl;qu(ﬁ) = 0 and the first assertion is true.
Therefore, we may assume from now on that |5¢n]|/gm < {ka} < [ for
some k € {1,...,b¢m}. Then ny = b|Bgm] +r for an r € {1,...,b} by

Corollary 2.4 and

bgm
S (B) = D €((pam fam iy ({Ra}) = Zf {obq,, (0 Bam] + j)a}).

k=1

In order to make the remainder of the proof easier to read we introduce the
shorthand notation w; = {04, (0| B¢m | + j)a} for 1 < j <r. Using Lemma
2.6 we see that

Wj+1

| f@)de > (i1 —w)) f(w)) = lgma — pmlf(wy)  for 1<j<r,

Wi

S fz)de < (wj —wj—1)f(w)) = [gme — pm|f(w;)  for1<j <.

wWi—1

This implies

= Jlen) + - a_pm|Z§ v)dr < f(wi) + ) flw;)

J=2wj— j=2
r—1
= Spo f(8) =D flw;) + flwr)
j=1
r—1wjit+1
z)d ,
e pmrJZMS Jdr e

W

1
= o=l S f(x)dz + f(w,)

L f8)+ flwn).

" [gna = ol

The first assertion follows from f(w;) > 0. The right-hand inequality of the
second assertion follows from [, f(8) < I, f(3). Using Lemma 2.7 we see
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that

w1

| fydr< (wl - qu—mJ)ﬂwl) < 1 — Pl (1)
LB ] /am "
and the left-hand inequality follows from
\  f@)de+ 1, f(8) =1, f5)
LBam]/am

LEMMA 3.16. Let f € ST(B) and J be an infinite set of nonnegative
integers. The following conditions are equivalent:

1 .
(1) Jim & f({Na}) =0 and v}tlgfﬂs?%%ilm_m

Spgnd(B) =0,
. 1 o . Am+4+1 ,— _
(2) Jim = f({Na})=0 and lim jopmax Ly, f(B) =0.
If J contains only even integers the following condition is equivalent to (1)

and (2):

(3) lim %f({Na})zO and lim  max L]~ f(B)=0.

N—oo0 meJ 1<b<amsi b  0im

Proof. For m € J we can employ Lemma 3.15 to get

Um+1 ,— 1 — 1 —
il < < —

1 -~ 1 -
S vantama —po foan B+ o F{ 0001 (Mg, Jor})

I F(8) + ———— F({ouq,. (ni, o).

Obgm (anm )

a
§3 m—+1

It is routine to deduce the equivalence of (1) and (2) from this chain of
inequalities. The equivalence of (1) and (3) can be proved analogously with
the help of the second half of Lemma 3.15.

COROLLARY 3.17. Let f € ST(p).
(1) If
1 N 1
lim =" f({ka}) = | f(2) dz
k=1

N—oo N 0
then imy_,oo f({Na})/N =0 and

1 Gm+1 - : ao2m+1 7
lim max —1 =0 lim max 1 =0.
m—00 1<b<am+1 b quf(ﬂ) ’ m—00 1<b<agm41 b b%mf(ﬁ)
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(2) Let J be an infinite set of nonnegative integers. If

. 1 o . Am4+1 ,— _
iy SN =0 and Ty, g T TS =0

then

lim Zf{k:a} Sf()

NeM(T) N

(3) Let J be an infinite set of even nonnegative integers. If

. . Am+1 7 _
A}Enoo f({Na}) 0 and ilgljlgl?%%}iﬂ b Ly f(B) =0

then
N

lim Z f{ka}) = Sf( ) dz.

Nem(g) N —

Proof. All assertions can be deduced immediately from Corollary 3.14
and Lemma 3.16.

LEMMA 3.18. Let m > 0 be sufficiently large, 1 < b < a1 and 8 €
(0,1). Furthermore, assume the existence of a k € {1,...,bqm} such that

{ka} € (1Bam]/am, B).-

If m is even the following two conditions are equivalent:

(1) {obg,, (b Bam] + b)a} < B,

(2) b < {Bgm}lam+1,amt2,...] + 1 = {=Bgm-1} + O where 0, =
I.{_ﬁQm—l} + %{ﬁQm}J € {07 1}

If m is odd the following two conditions are equivalent:

(1) {obg,, (0] Bam] + L)a} < B,

(2) b > [am+1,ame2, - J(1 = {Bgm}) + 1 = {Bgm-1} + 0 where 6y, =
{Bam—1} + =1 = {Bam})] € {0,1}.

Proof. As 8 € (0,1) we can assume 2/¢,, < < 1 —2/¢;,. Let m be
even. By Proposition 2.1(1) we find the following:

{004, (018gm] + D)o} < 5
o W] | (qma—pm)<b— 1+ {—qm‘l mm}) < fam

m m m

m
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{Bam}
@ (Gm — pm)

= (lam+1; @m+2, .- ] +[0,am, . .., a1]){Bagm}
< b <l|am+1,ame2, .- H{Bam} +1 = {=Bam-1} + 0.
The assertion for odd m can be proved analogously.
LEMMA 3.19. Let f € ST(B) and m > 0 even. Set
By ={b[1<b< amy1, {0bg,, (b Bgm] + b)a} < 5}

Then the two maps B,, — R given by b — b*1]@7nf(ﬁ) and b — bilfbfqu(ﬁ)
are both increasing for sufficiently large m.

< b—1+ {_ﬂqul} + [Ovamv cee 7a1]{ﬂQm} - 5m <

Proof. We see from Corollary 2.4 and Lemma 2.8 that

qumJ < A{og, (1Bgm] + 1)} < {024, (2 8gm ]| +2)a} < ---
< {Uam+1qm(am+1 {/quj + am+1)a} < %

and therefore B, = 0 if and only if 3 < {0y, ([3gm] + 1)a}. If, on the
other hand, B,, # 0 there exists a bg(m) € {1,...,am,+1} such that B, =
{1,...,bo(m)}. Our aim is to prove that

1 1

Similar to the proof of Lemma 3.15 we will use the shorthand notations
wj = {0vq,, (b Bagm] + j)a}
= {00114, (0 + DB ] +j)a}  for 1< <b

(where we used Lemma 2.8(1)) and

w1 = {0 (b+1)g,, (0 + 1) [Bam] + b+ 1)a}.

Then
1 __ |
i S S 5 T S6)
< (b+1) Sbf(:c)dm <b S f(z)dx
< b S f(z)dz + S flz)dz <b S f(x)dz+b S f(z)dx
b—1 wj41 Wh4-1

& Z S flx)dx <b S f(x)dx

j=1 Wi Wp
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and the assertion follows as wj1 —wj = ¢ma—py, for 1 < j < b (by Lemma
2.6). The second assertion’s proof is largely analogous. The only additional
ingredient we need is the fact that

w1 Wh41

| f@de< | fla)de,
I_/B‘ImJ /‘Im Wh
which follows from Lemma 2.7.

LEMMA 3.20. Let f € ST(3) and m > 0.
(1) If Bgm € N then

Om+1 ,—
ma; — 1 =0
1§b§a§+1 b quf(ﬁ)

and

Am+4+1 7— . .
max I =0 if m s even.
L ban | (B) f

(2) If Bqm ¢ N then

Am+1 ,_ 2 g
L L, FB) < L,quSJ/qu(x) dzx
and
max Gmi1 I, f(B) < max be_ f(B)
1<b<am41 b qm 1<b<ami1 b qm
9 B
< Bl S f(x)dx if m is even.
LBam]/am

Proof. (1) If Bgm € N then I f(8) = 0 (and flzlmf(ﬁ) =0 if m is
even) for 1 < b < appq1-
(2) Let m be even. The left-hand inequality follows from I, f(8) <

I:t;]mf(ﬂ) for 1 < b < apqq. If there is no k € {1,...,amt1gm} such that

{ka} € (|Bgm]/qm, ) then fl;sz(ﬁ) =0 for 1 <b < ayy1 and the right-
hand inequality is trivial. So we may assume from now on that such a k
exist. Lemma 3.19 implies

Am+41 7— _ Am+1 7
IS?%%}:L-H b Iquf(ﬁ) N bO (m) IbO(m)qu(ﬂ).

(Here bo(m) has the same meaning as in the proof of Lemma 3.19.) Note that

qum(nb_qm) = Jbo(m)qm(nb_o(m)qm) and therefore I_l;lmf(ﬁ) = I:b_o(m)qu(ﬁ) for
b > bo(m). On account of Lemma 3.18,

bo(m) < {Bgm}tam+1,am+2,-- ] + 1= {=Bam-1} + 6m < bo(m) + 1
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and thus by(m) > amy1{B¢n} — 1. This implies am+1{Bam} < 2bo(m).
Therefore, we have

Am+41 77— 2
ey f(8) < | f@)da.
b bO (m)qTIL m
o(m) {Bam} [Bam |/ am
We now assume that m is odd. If there isno k € {1, ..., am+1¢m} such that

{ka} € (15gm]/qm, B) then Ib;mf(ﬁ) = 0for 1 <b < a1 and the assertion
is trivial. If there is such a k € {1,...,bgy,} then {oy,,, (b|Bgm] +1)a} < 5

and
b> [am—i—la Am+2, - - ](1 - {QQm}) + 1- {QQm—l} + 5m

> amt1(1 = {Bgm}).
(If, on the other hand,
b S [am+17 Am+2, - - ](1 - {BQm}) + 1— {ﬁmel} + 5m
then I, f(B) = 0.) Therefore, we get

B
Am+41 1
max I, ff)<—F7—7— flx)dx.
1<b<amis b  0dm ) 1= {Bgm} [Bq SJ/q .

THEOREM 3.21. Let f € STf(8). If lim,, ... |Bgml|| > 0 or f € Q the
following two conditions are equivalent:
1

N
(1) ]\;iinw%kzlf({ka}) = gf(:c) dz,  (2) Nlignoo%f({Na}) =0.

Proof. Only the implication (2)=-(1) needs to be proved. Assume that
p=1lm,, o |Bgm| > 0. Then ||Bgm| > w/2 for all sufficiently large m and

1 7 2 7
T | fl)ydz < . | f@dz—o
" LBgm ] /am [Bam]/am

as m — oo. The assertion follows from Lemma 3.20 and Corollary 3.17(2).
Now let € Q. Let J1 = {m >0 8¢», € N} and Jo = {m >0 | B¢, ¢ N}.
If m € J; then Il;lmf(ﬁ) =0 for 1 <b < a1 and trivially

Imtl 1 1(8) =0.

li — I
m1€I%1 1S£I§1%§L+l b bgm

Assume that § = p/q where p,q are positive, coprime integers. If m € 7

then ||3g. || > 1/q, which leads to

1 Am+1 ,—
lim max I -0
mEJ2 1<b<ami1 b quf<ﬁ)

just as in the case lim,, . ||Bgm| > 0. As J1 U Jo = NU {0} the assertion
follows from Corollary 3.17(2).
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THEOREM 3.22. Let 3 ¢ Q, f € ST(B), limn oo f({Na})/N =0 and
p = limy, oo [|Bqm|| > 0. For all positive integers k we set J, = {m €
NU {0} | [|Bgm|| > w/(k+ 1)} and My = M(TJx). The sets My are all
infinite and have the following properties:

(1) My C Mk+]_ for all k > 1.

(2) Uk 1 My, =

(3) limyerq, N1 Zk L f{ka}) = S f(x)dx for all k > 1.

(4) If (Bgm)m>0 is uniformly distributed modulo 1 then M1 \ My, is
infinite for all k > 1.

Proof. 1t is trivial that My is infinite for all £ > 1.

(1) Obviously Jx € Jk+1, which implies My C M1 for k > 1.

(2) For N € N choose m > 0 such that ¢, < N < ¢p+1. There is a
positive integer k such that ||Bgm| > p/(k + 1), which means that m € J
and N € M,.

(3) If m € Ji then

B
Am41 kE+1
jomax =, f(8) < ) Sj/ f(w)dx
qdm]/49m

by Lemma 3.20, and the assertion follows from Corollary 3.17(2).
(4) For any positive integer k there are infinitely many nonnegative m

such that

W
<—
k+2 <ABam} = IBam| < 1

or equivalently m € Ji41 \ Jk. For each such m we choose a positive integer
N with ¢, < N < gpmy1. Then N € M1 \ M.

REMARK. For fixed irrational a the sequence (8¢ )m>0 is uniformly
distributed modulo 1 for almost all § [12, Chapter 1, Theorem 4.1]. This
implies that lim,, . |8¢m | = 0 and limy,—.c || B¢m|| = 1/2 for almost all 3.
As a consequence we see that Theorem 3.22 is a result about the average
case. The only exceptional case we had to exclude is limy,, . ||Bgm| = 0.
The set of all 8 with this property has Lebesgue measure zero and was
studied in detail in [13, 11].

4. Results for admissible functions. In this final section we will
transfer the results from Section 3 to admissible functions. We remind the
reader that such functions have a representation

f=fotfi+tfi+ i+ 4 ]
with fo Riemann-integrable, f;” € ST(8;)US=(8;) for 1 <i < r and f;r €
Si(ﬁ;“) UusSy, (6;“) for 1 < j <s. We will keep these notations throughout
this section.
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PROPOSITION 4.1. If « € R\ Q has continued fraction expansion a =

[ag, a1, az,...] then —a has continued fraction expansion
_a_{[—ao—l,l,a1—1,a2,a3,...] if ap > 1,
[—(10—1,(124-1,&3,&4,...] if ap = 1.

Proof. This fact can be found, for example, in O. Perron’s well known
textbook [17].

COROLLARY 4.2. For irrational o we have
gm—-1(a) forallm>1 ifa;(a) > 1,
4m(=) = {qm+1(a) for allm >0 if a1 (a) =1,
and
—pm—1(a)  for allm > 1 if ay(a) > 1,
Pm{=a) = { —Pm+1(a)  for allm >0 if ay(a) = 1.
Proof. This follows from Proposition 4.1 by induction.

REMARK. As a consequence of Proposition 4.1 and Corollary 4.2 we have

(@) = {am+2(—a) for all m > 1 if a1(a) > 1 (& ai(—a) = 1),
amy1(Q) = am (—a) for all m > 2 if a1(a) =1 (& ay(—a) > 1),
and

o gm+1(—a) forallm >0if a1(a) > 1 (& a1(—a) = 1),
m(2) = {qm_l(—a) forallm > 1if a;(a) =1 (& a1(—a) > 1).

We will usually apply Proposition 4.1 and Corollary 4.2 in this form and
will simply write g, () = ¢m+1(—a) without repeating that

L {+1 if aq(a) > 1,
-1 ifai(a) =1.

LEMMA 4.3. Let [ be admissible. If imy_. f({Na})/N = 0 then
limy oo f; ({Na})/N =0 for 1 <i < r and limy_o f;"({Na})/N =0
for1<j <s.

Proof. Let 1 <4 <r. There is an € > 0 such that fi,..., fi_, fi 1, -
cfi f1+, ..., f& are all bounded on the interval (8, —e,3;) and f; is
bounded on [0,3; —e]U[5;,1]. Let Ny ={N e N|{Na} e (8, —¢,5,)}
and My = N\ NV;. As the sequence (f; ({Na}))nen, is bounded we get
limyen, f;i {Na})/N = 0.
On the other hand, the sequence ((f—f; ) ({Na}))nen, is bounded and
therefore

lim %f{({]\fa}) = Jim, <% f{Na}) - % (f - fi)({Na})) =0.

NeN:

The second assertion can be proved analogously.
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THEOREM 4.4. Let f be admissible.
(1) If imy_—oo f({Na})/N =0 then

qm 1
i 3 f({ka)) = | £(2) da,
qm ;. — 0
(2) If in addition f; € ST(8;) for 1 <i < r and fjJr € Si(ﬂ;r) for
1 <5 < s then

lim —Zf {ka}) Sf( ) dz.
Alternatively, if f; € SZ(B8; ) for1 <i <r and f;r € S_;(ﬂ;r) for1 <j<s
then

Proof. (1) This has been proved in Theorem 3.8 for f € ST (/3) for some
B e (0,1]. If f € SZ(B) then —f € ST(B). As limy_oo(—f({Na}))/N =0

Theorem 3.8 implies

qm

im LS f(fkad) = — lim 3 (< f({ka})

Let now f € Sf(B) or f € S ( ) for some 3 € [0,1). Then f € S*(1—3)

or feS” (1-7) and limy 00 f({ (—a)})/N =limy_o f({Na})/N =0.
Therefore

( Qm:tl(

ity 8 o = S

k=

= S fz)ds = Sf(x) dx.
0
Let now f be admissible. Then
]\;lm —f ({Na})=0 for1<i<r,

+ _ .
Jm L fF({(Na}) =0 for1<j<s



Calculation of improper integrals 399

by Lemma 4.3. Using the special cases we proved so far we find

qm

dm ™ qm
= gim = fo({kal) + Y lm — 3 57 ({ka})
M dm = T dm

S ) 1 dm
+ Z lim — Zf;“({ka})
= m—00 (@, e

= {fo@)de+> V7 (@) do + >\ (@) do = | f(2) da
0 =10 j=10 0

(2) This can be proved as (1) with minimal changes, that is, starting from
Theorem 3.8 we first transfer the result to f € SZ (), then to functions in
ST (B) and 87 (B), and finally to general admissible functions.

REMARK. The method of proof we employed in Theorem 4.4, that is, to
transfer a result about f € ST(3) to a result about admissible functions,
will be used several times in the remainder of Section 4. As this is a rather
mechanical process we will usually not give all the details.

THEOREM 4.5. Let f be admissible such that imy_.oc f({Na})/N =0,
€ (0,1) and A, as in Corollary 3.12. Then

lim —Zf{k:a} g flx)dx

NeA,

Proof. This can be proved by the procedure described in the proof of
Theorem 4.4 starting from Corollary 3.12. Note that A, = {N € N|3Im >

0 : pgm(a) SNS(]m(a)}andifwesetﬂu ={NeN|3Im>0:
pgm(—a) < N < gp(—a)} then 4, = A,,.

THEOREM 4.6. Let [ be admissible. If a has bounded continued fraction
expansion the following two conditions are equivalent:

1

(1) Jim —Z ({(ka}) =\ f(2)dz,  (2) A}iinoo%f({]\fa}):().

0

Proof. By Proposition 4.1 the continued fraction expansion of —« is
bounded if and only if the continued fraction expansion of « is bounded.
Using this fact we can deduce the implication (2)=-(1) from Corollary 3.13
by the procedure described in the proof of Theorem 4.4.
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THEOREM 4.7. Let f be admissible. If im,, . ||8; gm|| >0 or 8; € Q
for 1 <i <, and lim,,_, . ||B]+qm|| > 0 or ﬁ;L €Q for1 <j <s, the
following two conditions are equivalent:

N 1
) i DSk =Sy, @) i T(Nap =0

im [[(1=B)gm(=a)ll = Im [|Bgm+1(a)l| = Lm ||Bgm ()] > 0.

Using this and the trivial fact that 1 — 8 € Q if and only if 8 € Q we can
deduce the implication (2)=-(1) from Theorem 3.21, again by the procedure
described in the proof of Theorem 4.4.

NOTATION. As a counterpart to the permutation oy € Sy introduced in
Section 2 we now define 7y € Sy to be the uniquely determined permutation
such that {7n(k)(—a)} < {7n(k+1)(—a)} for 1 <k < N.

LEMMA 4.8. Let N be a positive integer. Then

(1) 7n(k) =on(N —k+1) for1 <k <N,

(2) {tn(k)(—a)} =1—={on(N —k+1)a} for1 <k <N,

(3) ny(—a,1=8) =N +1-nk(a,8) and nj(—a,1 =) = N +1—
ny (e, 8).

Proof. All three properties can be deduced from the various definitions

within a few lines. We remind the reader that the definitions of ny and n};
can be found at the beginning of Section 3.

NOTATION. Letm > 0and 1 < b < ay+1- We now extend the definitions

of I, f(B) and I,, f(B).If f € ST(B) or f € SZ(B) for some 3 € (0,1]
then

{Ume, (nl:qm )Oé}

Iy, f(8) = max {0, | (@) da},
{obqm (bl Bgm | +1)a}
{obam (Mg, )}

Ly fB) = max{o, | |f(x)|dz}.
[Bam ]/ am

If f€S7(B)or feS;(B) for some B € [0,1) we define
{obam (b[Bam1)a}
I, 1@ = max{o. | |f(@)|de},

{obgm (nify,, o}
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[Bam]1/qm
I f@=max{o, | |f(@)ds}.

{0bam (1, )}

If it is necessary to stress the dependence on o we write I (@) f(B), etc.

LEMMA 4.9. (1) Let m >0 and 1 < b < apy1. If f € ST f(B) for some
Be(0,1] then I, F(8)=1, (—£)(B) and Iy, F(8) = I, (—)(B).

(2) Let m>2 and 1 <b < am41. If f € S+(ﬁ) or f € S (B) for some
B €[0,1) then I+ (a)f(ﬁ) quil( a)f( — ) and jzj;m(a)f(ﬁ) =
L, . afl ﬂ)-

Proof. (1) This follows trivially from the definition.
(2) It follows from Lemma 4.8(2), (3) that

(A1) {Togr iy, (01— B))(—a)}
=1- {O-qu(a) (n;rqm(a) (Cl, ﬂ))()[}
Using Lemma 4.8(2) one can deduce within a few lines that

(42)  ATbgprs(—a)(OL(1 = B)gmar1(—a)] + 1) ()}

=1 = {04, (a) ([ Bam () ])x}.
In addition one can check that
(4.3) (1 = B)ama1(—a) ] /gme1(—a) =1 = [Bgm(a)]/qm(a).

Note that (4.2) and (4.3) are correct both if 8¢, € N and 3¢,, ¢ N. By using
(4.1)—(4.3) the two equations in (2) can be deduced from the definitions given
just before Lemma 4.9.

NOTATION. Let [T ={i|1<i<r f; €eSY(B )}, I ={i|1<i<r,
freSZB)L It ={il1<j<s ffeSiB ) and S ={j|1<j

THEOREM 4.10. Let f be admissible.

(1) If
(4.4) 1@@2(2 7+ 1) ({kad) = §(Z [T+ S ) @) de
k=1 4eIt jeJ+ 0 dert jeJ+
and
(4.5) NIE%O—Z(Z fT+Y 1) ({kad) = i(z [y I ) @) da
k=1 iel—- jeJ~ 0 4eI- jeJ—



402 C. Baxa

then
1
lim N fi {Na})=0 for1<i<r,
. + _ .
Nh_Igoij {Na})=0 forl1<j<s,
. Am+41 ,— — — .
. ~(37) = <i<
(4.7) Tr}l_rgo 1S£2%}fn+1 b Ly fi(B7)=0 for1<i<r,
. am+1 + < i<
(4.8) A max Ly, £ (B7) =0 for1<j<s,
. A2m4+1 57— — e .
' ~(37) = <i<
(4.9) W}gﬂ)o 19232};“ b Lyoo 1 (B;7)=0 for1<i<r,
. a2m 7 .
(4.10) lim max — Ili]gm,lff(ﬁj) =0 forl<j<s.

m—00 1<b<azm, b

(2) Let limy_oo f({Na})/N = 0. If J is an infinite set of nonnegative
even integers and

. Am+1
lim max
meJ 1<b<amy41 b

. am+1 + n n '
lim max I . ) =0 orl1 <j<s
meJ 1<b<amsi b bamds (B5) for1<j<s,

Ly, fr(B7) =0 for1<i<nm,

then

lim Zf{k:a} S()

NeM(T) N

(3) Let limy oo f({Na})/N = 0. If J is an infinite set of nonnegative
even integers and

. am+1 F_ _ _
lim max I ; =0
meJ 1<b<ami1 b qufl (57)

then 1

N
1
li — ~({k =\f (x)d
v, 7 2o 4 (k) = {7 (@) o
for 1 <i<r.If J is an infinite set of odd positive integers and
: Am+1l 7+ o4/ g4y _
’nlllél\l7 1<i23§+1 b Ty, £ (B)) =0

NGM(J)NZf+{ka} S [ (@) du

then

for1<j <s.
Proof. (1) It follows from (4 4) and (4.5) that

lim —Zf{k:a} g f(z) dx

N—oo N
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This implies limy_. f({Na})/N = 0 from which we get (4.6) by Lemma
4.3. Assertion (4.7) has been proved for f € ST(3) in Corollary 3.17(1).
Using Lemma 4.9(1) it can be proved for f € S” (/) and with the help of
Corollary 4.9(2) we get (4.8) for f € S{(B) and f € S; (). Let now f be
admissible. By Theorem 4.4,

lim —Zf ({ka}) =

forie T,
i 53 I () da

fj+( z)dx for j e JT.

lim — Zf+ {ka})

N—>oo

Ol = O ey

By (4.4) the last two identities yield

1

ngnooNZf ({ka}) = (S)fl (z)dz forie I,
N 1

Jim = ff({ka}) = [ [ (2)dz forj e J*,
k=1 0

which imply (4.7) for ¢ € I'™ and (4.8) for j € J*. (The last but one step
is the reason we made assumptions (4.4) and (4.5), which are stronger than
what one might expect.) It requires only minimal changes to prove (4.7) for
i € I” and (4.8) for j € J~. The identities (4.9) and (4.10) can be proved
along the same lines.

(2, 3) Both can be deduced from Corollary 3.17 by the standard proce-
dure we first employed in the proof of Theorem 4.4. Note that if we set

~ _[{m+1[me T} ifa(a)>1,
j_{miumej}_{{m—uméj} if ay(a) = 1,
then M(J) = M(J).

LEMMA 4.11. (1) Let f € ST(B) or f € S_(B) for some 3 € (0,1] and
m > 0. If 8¢, € N then

Um+1 ,— o
X T D) =0

and

1 57—
max Gt Ib
1§b§am+1 b qm

If Bgm ¢ N then

f(B)=0 if m is even.

B

| @) de

[Bam |/ am

Am+1 ;- 2
I <
1§b§%m+1 b quf(ﬁ) ~ [1Bqm||
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and
Am41 o Am+1 57—
E— < _mro
1§l€2am+1 b Iquf(’B) — 1S£I§1%)7(n+1 b Iquf(/B)
9 B
< S |f(x)|dx if m is even.
| Bl
\./Bqﬂ‘LJ/qﬂ'L

(2) Let f € S{(B) or f € S (B) for some B € [0,1) and m > 2. If
Bqm € N then

Am+1 74
max I =0
1§b§am+1 b qu (5)

and

Um+1 74 i . .
13?%%};“ 2 Iy, f(B)=0 if mis odd.

If Bqm € N then

Qs 1 9 [Bam]1/am
m—+ + <
1§%%§L+1 b Iquf(/B) —= Hﬂqu ; |f($)’ dzx
and
1§£2%}i+1 b Lyq,, J(8) < 1§£I%?1}7{n+1 b Iy, f(5)
[B9m1/qm
2
<tz |f(x)|dx  if m is odd.
| B¢m| S

B

Proof. (1) This has been proved in Lemma 3.20 for f € S*(3) and
follows from Lemma 4.9(1) for f € S~ (/).
(2) This can be reduced to (1) with the help of Lemma 4.9(2). Note that

1(1 = B)gm1(—)|| = ||Bgm ()], L(1 = B)gm+1(—a)] [BGm ()]

=1 L
Qm:l:l(_a) qm(a)
NOTATION. Let f be admissible. We set
By =min({[|8; gmll | 1 < i <7, ;7 ¢ QRU{|IB) gmll | 1 < j < s, B ¢ Q).

THEOREM 4.12. Let f be admissible, {31 ,...,087,08{,..., 851\ Q # 0,
and

. 1 —
Jim o~ f({Na}) =0, p= lim B, >0.

For all positive integers k we set Jp, = {m € NU{0} | By, > p/(k+ 1)}
and My, = M(Jy). The sets My, are all infinite and have the following
properties:

(1) My C Myyq forallk > 1.

(2) Uz My =N.
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(3) limyert, NP0, f({ka}) = §, f(x) dz for all k> 1.

(4) Let {i1,...,ipo} ={i |1 <i<r B ¢ Q} and {j1,...,Jo} = {j |
1 S .7 S S, ﬁj g Q} If (/B;QWH o 76;QM716;QM7 e 75;;(]m)m20 18
uniformly distributed modulo 1 in ReT7 then My 1\ My is infinite
forall k> 1.

Proof. There are hardly any changes compared with the proof of Theo-
rem 3.22 in the proofs of (1) and (2). Theorems 4.7 and 4.10(2) are used to
prove (3). For the proof of (4) note that there are infinitely many m such
that

oto
- - + + I o
({/611Qm}7 LA ] {ﬂzQQm}7 {/8]1Qm}7 L] {/BJUQm}) E (k + 27 k + 1:| b
which implies B, € (1/(k+ 2), 1/ (k + 1)]. From this point on the proof is
analogous to that of Theorem 3.22(4).

REMARKS. (1) For fixed irrational « the sequence (81Gm, - - ., Brqm)m>0
is uniformly distributed modulo 1 for almost all (51, .., 3;) [12, Chapter 1,
Exercise 6.12]. This shows that Theorem 4.12 again describes the average
case.

(2) If B1,...,0; € [0,1]\ Q and (B1¢m,- - -+ BrGm)m>0 is uniformly dis-
tributed modulo 1 then lim,, o min{||Bigm||,---, |Bram|} = 1/2.

(3) A very interesting question we do not answer in this paper is whether
an analogue of Theorem 1.1 is true for arbitrary F' or whether Theorems 3.22
and 4.12 are best possible. We believe that it is unlikely that the complete
analogue is true but so far we have not been successful in constructing a
counterexample. However, we hope to return to this question in a future

paper.
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