Erratum: "On the number of prime divisors of the order of elliptic curves modulo p "

(Acta Arith. 117 (2005), 341-352)
by
Jörn Steuding (Madrid) and Annegret Weng (Essen)

There is a serious error in the sieve-theoretical part of the abovementioned paper: in equation (14), the parameter r has to be chosen as

$$
r=[u+1 / \lambda]
$$

(as follows from the previous inequality). In the non-CM case, the choice $u=$ $5.1, v=20, \lambda=1.25, \alpha=1 / 5.05$ then yields a positive value for $f(u, v, \lambda, \alpha)$, and $r=6$ instead of $r=5$; similar changes have to be made for the other cases (when counting distinct prime divisors in the non-CM case resp. the CM case). The main theorem has to be corrected to:

Theorem 1. Let E be an elliptic curve over \mathbb{Q} such that the finitely many elliptic curves E^{\prime}, \mathbb{Q}-isogenous to E, have trivial \mathbb{Q}-torsion group. Assume GRH. Then:
(i) If E does not have $C M$, then

$$
\sharp\left\{p \leq N: \nu\left(N_{p}\right) \leq 6\right\} \geq C_{1} \frac{N}{(\log N)^{2}},
$$

where C_{1} is a positive computable constant depending on E; the inequality for $\nu\left(N_{p}\right)$ can be replaced by $\Omega\left(N_{p}\right) \leq 9$.
(ii) If E has $C M$ by an order \mathcal{O} in an imaginary quadratic field and χ is the corresponding quadratic character, then

$$
\sharp\left\{p \leq N: \chi(p)=1, \Omega\left(N_{p}\right) \leq 4\right\} \geq C_{2} \frac{N}{(\log N)^{2}},
$$

where C_{2} is a positive computable constant depending on E.
The authors would like to thank Henryk Iwaniec and Jorge Jimenez for pointing out this error.

[^0]Departamento de Matemáticas
Universidad Autónoma de Madrid
C. Universitaria de Cantoblanco

28049 Madrid, Spain
E-mail: jorn.steuding@uam.es

Institute for Experimental Mathematics
Universität GH Essen
Ellernstr. 29
D-45326 Essen, Germany
E-mail: weng@exp-math.uni-essen.de

[^0]: 2000 Mathematics Subject Classification: 11N36, 14H42.

