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1. Introduction. Let s ≥ 1 be an integer and Is be the s-dimensional
unit cube [0, 1]s. We consider (finite) point sets and (infinite) sequences of
points in Is, where the term “point set” is used in the sense of the combi-
natorial notion of “multiset”, that is, a set in which multiplicity of elements
is allowed and taken into account.

Constructing sequences with good equidistribution properties is an im-
portant problem in number theory and has applications to quasi-Monte
Carlo methods in numerical analysis (see [6], [7], [8], [15]). The precise
formulation of the problem leads to the concept of star discrepancy and
the requirement of constructing low-discrepancy sequences. A very power-
ful method for constructing low-discrepancy sequences is the construction
of (t, s)-sequences using global function fields in [12] and [19] (see also [15,
Chapter 8]). A relevant method for constructing low-discrepancy point sets is
the construction of (t,m, s)-nets and digital nets. The concept of duality was
introduced in [11] and used in [10] for the construction of digital nets from
global function fields. We refer the reader to [8] and [9] for recent surveys
on constructions of (t,m, s)-nets and (t, s)-sequences. Recently Kritzer [2]
improved the star discrepancy bounds for (t,m, s)-nets and (t, s)-sequences.

In this paper we construct low-discrepancy sequences using the concept
of duality and global function fields. For certain parameters these sequences
give asymptotically better star discrepancy bounds than (t, s)-sequences.
An important role in our construction is played by differentials of global
function fields. We note that a completely different construction of low-
discrepancy sequences using differentials of global function fields was re-
cently given in [4].
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The paper is organized as follows. We give some basic definitions in the
remainder of this section. Section 2 contains some preliminaries and aux-
iliary results. In Section 3 we present our construction of low-discrepancy
sequences. In Section 4 we obtain a star discrepancy bound for a class of se-
quences including those constructed in Section 3. We give concrete examples
and illustrate our improvements by numerical results in Section 5.

Now we present some basic definitions. For a subinterval J of Is and for
a point set P of N ≥ 1 points x0,x1, . . . ,xN−1 ∈ Is, we write A(J ;P) for
the number of integers n with 0 ≤ n ≤ N − 1 for which xn ∈ J . We put

R(J ;P) =
A(J ;P)

N
− λs(J),(1.1)

where λs is the s-dimensional Lebesgue measure.

Definition 1.1. The star discrepancy D∗
N (P) of the point set P of

N ≥ 1 elements of Is is defined by

D∗
N (P) = sup

J

|R(J ;P)| ,

where the supremum is extended over all subintervals J of Is with one
vertex at the origin. For a sequence S of points in Is and N ≥ 1, the star

discrepancy D∗
N (S) is meant to be the star discrepancy of the first N terms

of S.

Given an integer b ≥ 2, an interval of the form

J =
s

∏

i=1

[aib
−di , (ai + 1)b−di) ⊆ Is

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s is called an elementary

interval in base b.

Definition 1.2. For integers b ≥ 2, s ≥ 1, and 0 ≤ t ≤ m, a (t,m, s)-net

in base b is a point set P consisting of bm points in Is such that R(J ;P) = 0
for every elementary interval J ⊆ Is in base b with λs(J) = bt−m.

2. Preliminaries. We introduce some notation which will be used in
what follows. Let b ≥ 2 be an integer and Zb = {0, 1, . . . , b− 1} be the least
residue system modulo b. For a real number x ∈ [0, 1], let

x =

∞
∑

j=1

yjb
−j with all yj ∈ Zb(2.1)

be a b-adic expansion of x, where the case in which yj = b − 1 for all but
finitely many j is allowed. Using the expansion of x in (2.1), for an integer
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m ≥ 1 we define the truncation

[x]b,m =

m
∑

j=1

yjb
−j .

Note that the truncation operates on the expansion of x and it may yield
different results depending on which b-adic expansion of x is used. If x =
(x(1), . . . , x(s)) ∈ Is and the x(i), 1 ≤ i ≤ s, are given by prescribed b-adic
expansions, then we define

[x]b,m = ([x(1)]b,m, . . . , [x
(s)]b,m).(2.2)

The concept of a (T, s)-sequence in base b was introduced by Larcher
and Niederreiter [3]. We use a slight variant of this concept which, at the
same time, generalizes the version of the definition of a (t, s)-sequence in
base b used in [12] and [15, Chapter 8]. We write N for the set of positive
integers and N0 for the set of nonnegative integers.

Definition 2.1. Let b ≥ 2 and s ≥ 1 be integers and let T : N → N0

be a function with T(m) ≤ m for all m ∈ N. Then a sequence x0,x1, . . . of
points in Is is a (T, s)-sequence in base b if for all k ∈ N0 and m ∈ N, the
points [xn]b,m with kbm ≤ n < (k+ 1)bm form a (T(m),m, s)-net in base b.

Remark 2.2. The original definition of a (T, s)-sequence in base b in [3]
required that for all k ∈ N0 and m ∈ N, the points xn with kbm ≤ n <
(k + 1)bm form a (T(m),m, s)-net in base b. For this earlier definition, all
points xn need to be in the half-open unit cube [0, 1)s, whereas Definition 2.1
allows points from the closed unit cube Is. The device of truncation in (2.2)
and in Definition 2.1 guarantees that even though all the points xn are in Is,
all the points [xn]b,m are in [0, 1)s. Note that it is a necessary condition for
a (t,m, s)-net P in base b that all points of P be in [0, 1)s.

Remark 2.3. If T is such that T(m) ≤ t for some integer t ≥ 0 and all
integers m > t, then Definition 2.1 yields the concept of a (t, s)-sequence in
base b. The smaller the value of t, the better the equidistribution properties
of a (t, s)-sequence in base b.

Next we recall the digital method for the construction of sequences of
points in Is. This method goes back to [5]. For our purposes, it is convenient
to follow the presentation in [15, Section 8.2]. We fix a base b ≥ 2 and a
dimension s ≥ 1. Let R be a finite commutative ring with identity and
of order b. We set up a map φ∞ : R∞ → [0, 1] by selecting a bijection
η : R→ Zb and putting

φ∞(r1, r2, . . .) =

∞
∑

j=1

η(rj)b
−j for (r1, r2, . . .) ∈ R∞.
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Furthermore, we choose ∞ × ∞ matrices C(1), . . . , C(s) over R which are
called generating matrices. For n = 0, 1, . . . , let

n =

∞
∑

j=0

aj(n)bj

be the digit expansion of n in base b, where aj(n) ∈ Zb for j ≥ 0 and
aj(n) = 0 for all sufficiently large j. Choose a bijection ψ : Zb → R with
ψ(0) = 0 and associate with n the sequence

n = (ψ(a0(n)), ψ(a1(n)), . . .) ∈ R∞.

Now we define the sequence x0,x1, . . . of points in Is by

xn = (φ∞(nC(1)), . . . , φ∞(nC(s))) for n = 0, 1, . . . .(2.3)

Note that the products nC(i) are well defined since n contains only finitely
many nonzero terms.

For each i = 1, . . . , s and m ∈ N, let C
(i)
m be the m×m submatrix of C(i)

obtained from the first m rows and columns of C(i). For j = 1, . . . ,m, let

c
(i)
m,j be the jth column vector of C

(i)
m . For any d = (d1, . . . , ds) ∈ Ns

0 with

di ≤ m for 1 ≤ i ≤ s and d :=
∑s

i=1 di > 0, we define the m× d matrix

Cm,d = [c
(1)
m,1 . . . c

(1)
m,d1

. . . c
(s)
m,1 . . . c

(s)
m,ds

](2.4)

whose columns are obtained from the indicated columns of C
(1)
m , . . . , C

(s)
m .

Proposition 2.4. The sequence (2.3) is a (T, s)-sequence in base b if

and only if for any m ∈ N with T(m) < m and any d = (d1, . . . , ds) ∈ Ns
0

with
∑s

i=1 di = m− T(m) the system of homogeneous linear equations

kCm,d = 0 ∈ Rm−T(m)

has exactly bT(m) solutions k ∈ Rm, where Cm,d is the matrix in (2.4).

Proof. This is shown by the same argument as in the proof of [15, The-
orem 8.2.9]. Note that we need not check the condition in Definition 2.1
when T(m) = m since any point set consisting of bm points in [0, 1)s is an
(m,m, s)-net in base b.

We now consider the special case where the ring R is the finite field Fq of

order q, with q being an arbitrary prime power. As above, let c
(i)
m,1, . . . , c

(i)
m,m

denote the column vectors of the matrix C
(i)
m . For integers 0 < d ≤ m, we

call {c
(i)
m,j ∈ Fm

q : 1 ≤ j ≤ m, 1 ≤ i ≤ s} a (d,m, s)-system over Fq if for any

(d1, . . . , ds) ∈ Ns
0 with

∑s
i=1 di = d the vectors c

(i)
m,j , 1 ≤ j ≤ di, 1 ≤ i ≤ s,

are linearly independent over Fq (see [11, Definition 3]).
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Corollary 2.5. Suppose that for any m ∈ N with T(m) < m, {c
(i)
m,j ∈

Fm
q : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is an (m − T(m),m, s)-system over Fq. Then

(2.3) is a (T, s)-sequence in base q.

Proof. The given hypothesis guarantees that any matrix Cm,d in Propo-
sition 2.4 has rank m − T(m), and so the result follows immediately from
Proposition 2.4.

We need some notation and concepts from the duality theory developed
by Niederreiter and Pirsic [11]. For m ∈ N and a = (a1, . . . , am) ∈ Fm

q , we
put v(a) = 0 if a = 0, and otherwise

v(a) = max{j : aj 6= 0}.

For integers s ≥ 2, we extend this definition to Fms
q by writing a vector

A ∈ Fms
q as the concatenation of s vectors of length m, i.e.,

A = (a(1), . . . ,a(s)) ∈ Fms
q with a(i) ∈ Fm

q for 1 ≤ i ≤ s,

and putting

Vm(A) =
s

∑

i=1

v(a(i)).

Definition 2.6. For any nonzero Fq-linear subspace N of Fms
q , we define

the minimum distance

δm(N ) = min
A∈N\{0}

Vm(A).

For any Fq-linear subspace M of Fms
q , we define its dual space M⊥ by

M⊥ = {A ∈ Fms
q : A · M = 0 for all M ∈ M},

where “·” denotes the standard inner product on Fms
q . Note that

dim(M⊥) = ms− dim(M),(2.5)

where here and subsequently we write dim(W) for the Fq-dimension of a
finite-dimensional vector space W over Fq.

Let C(1), . . . , C(s) again be the generating matrices over Fq in (2.3). For

each i = 1, . . . , s and m ∈ N, let C
(i)
m be the m×m submatrix of C(i) defined

above. Then we set up the m×ms matrix

Cm = [C(1)
m |C(2)

m | . . . |C(s)
m ](2.6)

over Fq and let Cm be the row space of Cm. It is trivial that dim(Cm) ≤ m,
and so (2.5) shows that C⊥

m has positive dimension whenever s ≥ 2. Therefore
the minimum distance δm(C⊥

m) is defined in this case.

Proposition 2.7. Let s ≥ 2 and suppose that for any m ∈ N with

T(m) < m, the dual space C⊥
m of Cm satisfies

δm(C⊥
m) ≥ m− T(m) + 1.
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Then the sequence (2.3) with generating matrices C(1), . . . , C(s) over Fq is

a (T, s)-sequence in base q.

Proof. For any m ∈ N with T(m) < m, consider the system {c
(i)
m,j ∈

Fm
q : 1 ≤ j ≤ m, 1 ≤ i ≤ s} of column vectors of the matrix Cm in (2.6). In

view of [11, Theorem 1 and Definition 3], the given hypothesis implies that

{c
(i)
m,j ∈ Fm

q : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is an (m− T(m),m, s)-system over Fq.
The desired result now follows from Corollary 2.5.

3. A construction from global function fields. Throughout this
section we assume the existence of a global function field F satisfying the
following assumption.

Assumption 3.1. Let s ≥ 2 and g ≥ 0 be integers and let q be a prime
power. Assume that there exists a global function field F with full constant
field Fq and with the following properties: (i) the genus of F is g; (ii) there
exist s distinct places P1, . . . , Ps of F of degree 1; (iii) there exists a place
Q of F of degree 2.

Using places of F of sufficiently large degree, we can find a divisor G of
F of degree g−1 such that the support of G is disjoint from {Q,P1, . . . , Ps}.
For even integers 2m ≥ g, let A2m, G2m, and G2m+1 be the divisors of F
given by

A2m := G−mQ,

G2m := G−mQ+ 2m(P1 + · · · + Ps),

G2m+1 := G−mQ+ (2m+ 1)(P1 + · · · + Ps).

For a divisor A of F , let Ω(A) denote the Fq-linear subspace of the space
Ω of differentials of F given by

Ω(A) = {ω ∈ Ω∗ : (ω) ≥ A} ∪ {0}.

We refer to the book of Stichtenoth [18] for the theory of differentials of
global function fields and for other background on global function fields.

Lemma 3.2. For all even integers 2m ≥ g, we have Ω(A2m) ⊆ Ω(A2m+2)
and

dim(Ω(A2m)) = 2m.

Proof. As A2m+2 ≤ A2m, it is clear that Ω(A2m) ⊆ Ω(A2m+2). Note
that deg(A2m) = g − 1 − 2m < 0 since 2m ≥ g. Then we have

dim(Ω(A2m)) = −deg(A2m) + g − 1 = 2m,

and the proof is complete.
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Using Lemma 3.2, let ω1, ω2, . . . be a sequence of differentials of F such
that for all integers 2m ≥ g we have

〈ω1, . . . , ω2m〉 = Ω(A2m).

For a divisor A of F , let L(A) denote the Riemann–Roch space

L(A) = {x ∈ F ∗ : (x) ≥ −A} ∪ {0}.

Lemma 3.3. For all even integers 2m ≥ g we have the following :

(i) If ω ∈ Ω(A2m) and x ∈ L(G2m) are nonzero, then

(xω) ≥ −2m(P1 + · · · + Ps).

(ii) If ω ∈ Ω(A2m) and x ∈ L(G2m+1) are nonzero, then

(xω) ≥ −(2m+ 1)(P1 + · · · + Ps).

Proof. Note that

A2m −G2m = −2m(P1 + · · · + Ps).

For nonzero ω ∈ Ω(A2m) and x ∈ L(G2m), we have (ω) ≥ A2m and (x) ≥
−G2m. Using also the fact that (xω) = (x) + (ω), we complete the proof
of (i). The proof of (ii) is similar.

For a differential δ ∈ Ω and a place P of F of degree 1, let resP (δ) ∈ Fq

denote the residue of the differential δ at P . For i = 1, . . . , s, let ti be a local
parameter of F at Pi.

We will construct our low-discrepancy sequences in Theorem 3.7 below
by using the images of Fq-linear spaces 〈ω1, . . . , ωm〉 of differentials under
suitable Fq-linear maps formed from residues of some differentials at the
places P1, . . . , Ps for m ≥ g + 1. If m = 2m ≥ g + 1, then 〈ω1, . . . , ωm〉 =
Ω(A2m) and the image will be the image of Ω(A2m) under a suitable Fq-
linear map depending on m. If m = 2m + 1 ≥ g + 1, then 〈ω1, . . . , ωm〉
( Ω(A2m+2) and the image will be the image of the proper subspace
〈ω1, . . . , ω2m+1〉 of Ω(A2m+2) under a suitable Fq-linear map depending
on m.

Now we define these Fq-linear maps form ≥ g+1. The definitions depend
heavily on the parity of m. For even integers 2m ≥ g+1 and for i = 1, . . . , s,
let ϕ2m,i and ϕ2m+1,i be the Fq-linear maps defined by

ϕ2m,i : Ω(A2m) → F2m
q ,

ω 7→ (resPi
(t−1

i ω), resPi
(t−2

i ω), . . . , resPi
(t−2m

i ω)),

and
ϕ2m+1,i : Ω(A2m+2) → F2m+1

q ,

ω 7→ (resPi
(t−1

i ω), resPi
(t−2

i ω), . . . , resPi
(t−2m−1

i ω)).
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Moreover, let Φ2m and Φ2m+1 be the Fq-linear maps

Φ2m : Ω(A2m) → F2ms
q ,(3.1)

ω 7→ (ϕ2m,1(ω), ϕ2m,2(ω), . . . , ϕ2m,s(ω)),

and

Φ2m+1 : Ω(A2m+2) → F(2m+1)s
q ,(3.2)

ω 7→ (ϕ2m+1,1(ω), ϕ2m+1,2(ω), . . . , ϕ2m+1,s(ω)).

Furthermore, we put

M2m := Φ2m(Ω(A2m)), M2m+1 := Φ2m+1(〈ω1, . . . , ω2m+1〉).

Lemma 3.4. For even integers 2m ≥ g+1, the Fq-linear maps Φ2m and

Φ2m+1 are injective and

dim(M2m) = 2m, dim(M2m+1) = 2m+ 1.

Proof. It is well known that for a divisor A of F with deg(A) ≥ 2g−1 we
have dim(Ω(A)) = 0. Moreover, for i = 1, . . . , s and l ∈ N, if νPi

((ω)) ≥ 0
and

resPi
(t−1

i ω) = resPi
(t−2

i ω) = · · · = resPi
(t−l

i ω) = 0,

then νPi
((ω)) ≥ l. Assume that ω ∈ Ω(A2m) is nonzero and Φ2m(ω) = 0

∈ F2ms
q . Then

(ω) ≥ A2m + 2m(P1 + · · · + Ps) = G−mQ+ 2m(P1 + · · · + Ps).

Thus, ω ∈ Ω(A2m +2m(P1 + · · ·+Ps)) and deg(A2m +2m(P1 + · · ·+Ps)) =
g − 1 + 2m(s − 1) ≥ g − 1 + 2m ≥ 2g, where we have used the facts that
s ≥ 2 and 2m ≥ g + 1. Hence dim(Ω(A2m + 2m(P1 + · · · + Ps))) = 0, a
contradiction. This shows that Φ2m is injective, and so dim(M2m) = 2m by
Lemma 3.2. Similarly, the injectivity of Φ2m+1 follows from the observation
that

deg(A2m+2 + (2m+ 1)(P1 + · · · + Ps)) = g − 1 + (s− 2) + 2m(s− 1) ≥ 2g.

It is then obvious that dim(M2m+1) = 2m+ 1.

For even integers 2m ≥ g + 1, we define further Fq-linear maps. For

i = 1, . . . , s and x ∈ L(G2m), let x
(−1)
i , x

(−2)
i , . . . , x

(−2m)
i be the elements

of Fq which are the coefficients in the local expansion

x = x
(−2m)
i t−2m

i + x
(−2m+1)
i t−2m+1

i + · · ·

of x at Pi. Similarly, for i = 1, . . . , s and x∈L(G2m+1), we define x
(−1)
i , x

(−2)
i ,

. . . , x
(−2m−1)
i ∈ Fq. Let

ψ2m,i : L(G2m) → F2m
q , x 7→ (x

(−1)
i , x

(−2)
i , . . . , x

(−2m)
i ),

ψ2m+1,i : L(G2m+1) → F2m+1
q , x 7→ (x

(−1)
i , x

(−2)
i , . . . , x

(−2m−1)
i ).
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Moreover, let Ψ2m and Ψ2m+1 be the Fq-linear maps

Ψ2m : L(G2m) → F2ms
q ,

x 7→ (ψ2m,1(x), ψ2m,2(x), . . . , ψ2m,s(x)),

and
Ψ2m+1 : L(G2m+1) → F(2m+1)s

q ,

x 7→ (ψ2m+1,1(x), ψ2m+1,2(x), . . . , ψ2m+1,s(x)).

Furthermore, we put

N2m := Ψ2m(L(G2m)), N2m+1 := Ψ2m+1(L(G2m+1)).

Lemma 3.5. For even integers 2m ≥ g+1, the Fq-linear maps Ψ2m and

Ψ2m+1 are injective and

dim(N2m) = 2ms− 2m, dim(N2m+1) = (2m+ 1)s− 2m.

Proof. Assume that x ∈ L(G2m) and Ψ2m(x) = 0 ∈ F2ms
q . Then νPi

(x)
≥ 0 for 1 ≤ i ≤ s and hence x ∈ L(G2m − 2m(P1 + · · · + Ps)). Note that
deg(G2m − 2m(P1 + · · · + Ps)) = g − 1 − 2m < 0 as 2m ≥ g + 1. Hence
x = 0 and Ψ2m is injective. We also have deg(G2m) = g − 1 − 2m+ 2ms >
2g − 1 as 2m ≥ g + 1 and s ≥ 2. Therefore by the Riemann–Roch theorem,
dim(N2m) = dim(L(G2m)) = deg(G2m) + 1 − g = 2ms− 2m.

Next assume that x ∈ L(G2m+1) and Ψ2m+1(x) = 0 ∈ F
(2m+1)s
q . Simi-

larly, we have x ∈ L(G2m+1 − (2m+ 1)(P1 + · · ·+Ps)) and hence x = 0 and
Ψ2m+1 is injective. Also deg(G2m+1) = g−1−2m+(2m+1)s ≥ s+2g−1 >
2g − 1 and then dim(N2m+1) = dim(L(G2m+1)) = deg(G2m+1) + 1 − g =
(2m+ 1)s− 2m.

Proposition 3.6. For even integers 2m ≥ g + 1 we have:

(i) M⊥
2m = N2m.

(ii) M⊥
2m+1 ⊆ N2m+1.

Proof. First we prove (i). We will show that for ω ∈ Ω(A2m) and x ∈
L(G2m), we have Φ2m(ω) · Ψ2m(x) = 0, where the inner product is the
standard inner product on F2ms

q . This implies that M2m ⊥ N2m in F2ms
q .

Moreover, by Lemmas 3.4 and 3.5, dim(M2m)+dim(N2m) = 2ms and hence
we get M⊥

2m = N2m by (2.5).
Now we prove that for ω ∈ Ω(A2m) and x ∈ L(G2m), we have Φ2m(ω) ·

Ψ2m(x) = 0. For i = 1, . . . , s, the local expansion of x ∈ L(G2m) at Pi is

x = x
(−2m)
i t−2m

i + x
(−2m+1)
i t−2m+1

i + · · · + x
(−1)
i t−1

i + yi,(3.3)

where νPi
(yi) ≥ 0. For ω ∈ Ω(A2m), using the Fq-linearity of the residue

map resPi
we get

resPi
(xω) = x

(−2m)
i resPi

(t−2m
i ω) + · · · + x

(−1)
i resPi

(t
(−1)
i ω) + resPi

(yiω).
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As νPi
(yi) ≥ 0 and νPi

(ω) ≥ νPi
(A2m) = 0, we have resPi

(yiω) = 0 and
hence

resPi
(xω) = ϕ2m,i(ω) · ψ2m,i(x),(3.4)

where the inner product is the standard inner product on F2m
q . Using the

Residue Theorem (cf. [1, Section III.5, Theorems 2 and 3]), Lemma 3.3(i),
and (3.4), we obtain

0 =
∑

P

resP (xω) =
s

∑

i=1

ϕ2m,i(ω) · ψ2m,i(x) = Φ2m(ω) · Ψ2m(x),

where the first sum is over all places P of F . This finishes the proof of (i).

Now we consider (ii). Let W be the Fq-linear subspace of F
(2m+1)s
q

given by

W = Φ2m+1(Ω(A2m)).

By Lemmas 3.2 and 3.4, we have dim(W) = 2m and M2m+1 ⊇ W . It
suffices to prove that W⊥ = N2m+1. Indeed, this implies that M⊥

2m+1 ⊆

W⊥ = N2m+1. Using Lemma 3.5, we deduce that dim(W) + dim(N2m+1) =
2m + (2m + 1)s − 2m = (2m + 1)s. Therefore it remains to show that if
ω ∈ Ω(A2m) and x ∈ L(G2m+1), then Φ2m+1(ω) ·Ψ2m+1(x) = 0, where the

inner product is the standard inner product on F
(2m+1)s
q . We follow similar

arguments to those in the proof of (i). For i = 1, . . . , s, for x ∈ L(G2m+1)
and ω ∈ Ω(A2m), using the local expansion of x at Pi, we obtain

resPi
(xω) = ϕ2m+1,i(ω) · ψ2m+1,i(x),(3.5)

where the inner product is the standard inner product on F2m+1
q . Note that

in the local expansion of x ∈ L(G2m+1) at Pi, we have the extra term

x
(−2m−1)
i t−2m−1

i , in addition to the terms in (3.3). Then, similarly to the
case (i), using the Residue Theorem, Lemma 3.3(ii), and (3.5), we complete
the proof of (ii).

For an integer m ≥ g+1, let Cm be the m×ms matrix over Fq given by

Cm =













Φm(ω1)

Φm(ω2)
...

Φm(ωm)













.(3.6)

Note that for an integer m ≥ g + 1, if m is even (resp. odd), then Φm is

defined by (3.1) (resp. (3.2)). Let C
(1)
m , C

(2)
m , . . . , C

(s)
m be the m×m matrices

over Fq defined by

Cm = [C(1)
m |C(2)

m | . . . |C(s)
m ].(3.7)
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We observe that for each i = 1, . . . , s, C
(i)
m is the m ×m submatrix of the

(m+ 1) × (m+ 1) matrix C
(i)
m+1 formed from the first m rows and columns

of C
(i)
m+1. Hence, for each i = 1, . . . , s, we can build an ∞×∞ matrix C(i)

over Fq such that for any integer m ≥ g + 1 the m ×m submatrix of C(i)

formed from the first m rows and columns of C(i) is equal to C
(i)
m .

Our construction of low-discrepancy sequences now proceeds by the digi-
tal method described in Section 2. We use the matrices C(1), . . . , C(s) over Fq

defined in the previous paragraph as the generating matrices in (2.3). The
resulting sequence is a (T, s)-sequence in base q in the sense of Definition 2.1,
with the function T : N → N0 given in the following theorem.

Theorem 3.7. Under Assumption 3.1, let S be the sequence of points

in Is which is constructed in (2.3) using the generating matrices C(1), . . . ,C(s)

over Fq defined after (3.7). Then S is a (T, s)-sequence in base q with

T(m) = m for 1 ≤ m ≤ g, T(m) = g for even m ≥ g+1, and T(m) = g+1
for odd m ≥ g + 1.

Proof. We proceed by Proposition 2.7. First let m = 2m be even. We
can assume that m = 2m ≥ g + 1. Then by construction, the row space
Cm of the matrix Cm in (3.6) is given by Cm = M2m. Hence it follows
from Proposition 3.6 that C⊥

m = N2m. Now we apply [10, Theorem 3.1] with
N = Cm(P1, . . . , Ps;G2m) in the notation of that theorem and we observe
that N = N2m. This yields, again in the notation of [10, Theorem 3.1],

δm(C⊥
m) = δm(N2m) ≥ δ∗m(1, . . . , 1;ms−m+ g − 1).

Next we use [10, Lemma 2.1] to obtain

δ∗m(1, . . . , 1;ms−m+ g − 1) ≥ m− g + 1,

and so

δm(C⊥
m) ≥ m− g + 1.

Now let m = 2m+ 1 be odd. We can assume that m = 2m+ 1 ≥ g + 2.
So we have Cm = M2m+1, and hence Proposition 3.6 yields C⊥

m ⊆ N2m+1.
We apply [10, Theorem 3.1] with N = Cm(P1, . . . , Ps;G2m+1) = N2m+1 and
obtain

δm(C⊥
m) ≥ δm(N2m+1) ≥ δ∗m(1, . . . , 1;ms−m+ g).

By [10, Lemma 2.1] we get

δ∗m(1, . . . , 1;ms−m+ g) ≥ m− g,

and so

δm(C⊥
m) ≥ m− (g + 1) + 1.

Thus, the theorem is proved in all cases.
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Remark 3.8. Previous constructions of low-discrepancy sequences us-
ing global function fields over Fq led to (t, s)-sequences in base q (see Re-
mark 2.3). For fixed q and s ≥ 2, the best previous constructions of this
type using a global function field F satisfying Assumption 3.1 yield (t, s)-
sequences in base q with t = g + 1 (see [4], [15, Theorem 8.4.1], [19]).
Theorem 3.7 improves on these constructions under Assumption 3.1. This
improvement is also reflected in better bounds on the star discrepancy of
the new sequences, as will be shown in Section 4. There are combinations
of values of q and s for which the global function fields satisfying Assump-
tion 3.1 have given the best previous constructions of (t, s)-sequences in
base q, for instance when s = q+ 1. Examples of this type will be presented
in Section 5.

Remark 3.9. Our construction of low-discrepancy sequences starts from
sequences of certain Fq-linear spaces of differentials of F . In order to con-
struct such low-discrepancy sequences, it is possible to use a dual approach
starting from sequences of certain Riemann–Roch spaces of F . Since we
start from differentials of F , in the proof of Theorem 3.7 we can estimate
the T-parameters of the low-discrepancy sequences by using results of [10],
which would not have been possible in a dual approach. Thus, the essential
points of our approach are using the Residue Theorem and reducing the
estimation of T-parameters to the results of [10].

4. Bounds on the star discrepancy. In this section we obtain bounds
on the star discrepancy of a class of sequences of points in Is, including those
constructed in Theorem 3.7. This will imply that the sequences in Theo-
rem 3.7 have asymptotically better bounds on the star discrepancy than
(t, s)-sequences for certain parameters. We will also illustrate our improve-
ments by some concrete examples in Section 5.

For integers b ≥ 2, m ≥ 1, 0 ≤ t ≤ m, and s ≥ 2, let ∆b(t,m, s) be a
number for which

bmD∗
bm(P) ≤ ∆b(t,m, s)

holds for any (t,m, s)-net P in base b. We quote the following result in [2,
Corollary 4] in a simplified form.

Proposition 4.1. If b is even, then we can take

∆b(t,m, s) =
bt+s

(b+ 1)2s(s− 1)!
ms−1 + O(btms−2),

and if b is odd , then we can take

∆b(t,m, s) =
bt(b− 1)s−1

2s(s− 1)!
ms−1 + O(btms−2).
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In both cases, the implied constants in the Landau symbols depend only on b
and s.

The following lemma allows us to use a star discrepancy bound for the
original concept of (T, s)-sequences in base b (see Remark 2.2) just as well
for the concept of (T, s)-sequences in base b introduced in this paper (see
Definition 2.1).

Lemma 4.2. Let P be the point set consisting of the points yn, n =
0, 1, . . . , bm − 1, in Is. Suppose that the points [yn]b,m, n = 0, 1, . . . , bm − 1,
form a (t,m, s)-net in base b. Then

bmD∗
bm(P) ≤ ∆b(t,m, s).

Proof. For n = 0, 1, . . . , bm − 1, we can write

yn = [yn]b,m + zn with zn ∈ [0, b−m]s.

Let 0 < ε ≤ 1 be given and let P(ε) be the point set consisting of

yn(ε) = [yn]b,m + (1 − ε)zn, n = 0, 1, . . . , bm − 1.

By Definition 1.2 and the assumption that the points [yn]b,m, n = 0, 1, . . . ,
bm − 1, form a (t,m, s)-net in base b, it is clear that P(ε) is a (t,m, s)-net
in base b. Therefore

bmD∗
bm(P(ε)) ≤ ∆b(t,m, s).

Furthermore, for each n = 0, 1, . . . , bm − 1, corresponding coordinates of yn

and yn(ε) differ by at most b−mε. Therefore, by a well-known principle (see
e.g. [6, Lemma 2.5] for the one-dimensional case, which can be immediately
extended to the multidimensional case),

|bmD∗
bm(P) − bmD∗

bm(P(ε))| ≤ sε,

and so

bmD∗
bm(P) ≤ ∆b(t,m, s) + sε.

Letting ε→ 0+, we get the desired result.

Theorem 4.3. Let s ≥ 2, b ≥ 2, and t ≥ 0 be integers. Assume that S
is a (T, s)-sequence in base b with T(m) = m for 1 ≤ m ≤ t, T(m) = t for

even m ≥ t+ 1, and T(m) = t+ 1 for odd m ≥ t+ 1. Then for N ≥ 2, the

star discrepancy D∗
N (S) of the first N terms of S satisfies

D∗
N (S) ≤ Bs(b, t)

(logN)s

N
+ O

(

(logN)s−1

N

)

,

where the implied constant in the Landau symbol does not depend on N .
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Here

Bs(b, t) =















(b− 1)bt+s

2s+2s!(log b)s
if b is even,

(b− 1)s(b+ 1)bt

2s+2s!(log b)s
if b is odd.

Proof. For a given N ≥ 2, let k ∈ N0 be such that bk ≤ N < bk+1

and let r ∈ N0 be maximal such that br divides N . Note that r ≤ k. In
view of Lemma 4.2, we can apply [3, Lemma 2]. Putting T(0) = 0 and
∆b(0, 0, s) = 1, this yields

ND∗
N (S) ≤

b− 1

2

k
∑

m=r

∆b(T(m),m, s)

+
1

2
∆b(T(r), r, s) +

1

2
∆b(T(k + 1), k + 1, s).

Now we use the values of ∆b(t,m, s) in Proposition 4.1. The case k = 0 is
trivial, and so we can assume k ≥ 1. Then we obtain

ND∗
N (S) ≤

b− 1

2

k
∑

m=1

∆b(T(m),m, s) + O(btks−1),

where the implied constant in the Landau symbol depends only on b and s.
If b is even, then we get

ND∗
N (S) ≤

(b− 1)bt+s

(b+ 1)2s+1(s− 1)!

k
∑

m=1
m even

ms−1

+
(b− 1)bt+s+1

(b+ 1)2s+1(s− 1)!

k
∑

m=1
m odd

ms−1 + O(btks−1)

≤
(b− 1)bt+s

(b+ 1)2s+1(s− 1)!
·
ks

2s
+

(b− 1)bt+s+1

(b+ 1)2s+1(s− 1)!
·
ks

2s
+ O(btks−1)

=
(b− 1)bt+s

2s+2s!
ks + O(btks−1).

If b is odd, then we similarly get

ND∗
N (S) ≤

(b− 1)s(b+ 1)bt

2s+2s!
ks + O(btks−1).

Using k ≤ (logN)/(log b), we arrive at the desired result.

Using Theorems 3.7 and 4.3, we obtain the following corollary.

Corollary 4.4. Let s ≥ 2 be an integer and q be a prime power. Sup-

pose that there exists a global function field F of genus g satisfying Assump-
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tion 3.1. Let S be the (T, s)-sequence in base q constructed in Theorem 3.7
using the global function field F . Then, for N ≥ 2, the star discrepancy

D∗
N (S) of the first N terms of S satisfies

D∗
N (S) ≤ Bs(q, g)

(logN)s

N
+ O

(

(logN)s−1

N

)

,

where the implied constant in the Landau symbol does not depend on N .

Here

Bs(q, g) =















(q − 1)qg+s

2s+2s!(log q)s
if q is even,

(q − 1)s(q + 1)qg

2s+2s!(log q)s
if q is odd.

Remark 4.5. According to the currently best bound (see [2, Corol-
lary 11]), the star discrepancy D∗

N (S) of the first N ≥ 2 terms of a (t, s)-
sequence S in base b satisfies

D∗
N (S) ≤ Cs(b, t)

(logN)s

N
+ O

(

(logN)s−1

N

)

,

where the implied constant in the Landau symbol does not depend on N
and where

Cs(b, t) =















(b− 1)bt+s

(b+ 1)2s+1s!(log b)s
if b is even,

(b− 1)sbt

2s+1s!(log b)s
if b is odd.

5. Examples. In this section we give some concrete examples and we
illustrate our improvements by numerical results. First we give some exam-
ples of global function fields satisfying Assumption 3.1. For d = 1, 2, we
write Nd(F ) for the number of places of F of degree d.

Example 5.1. Let q be any prime power, g = 0, s = q + 1, and F =
Fq(x) be the rational function field over Fq. Then F is a function field
with full constant field Fq and the genus of F is 0. Moreover, N1(F ) =
q + 1 and N2(F ) = (q2 − q)/2. Therefore F satisfies Assumption 3.1. By
Corollary 4.4, we obtain the coefficient Bq+1(q, 0) of the leading term in
the star discrepancy bound. On the other hand, for s = q + 1 the smallest
possible t-value of a (t, s)-sequence in base q is t = 1 (see [6, Corollary 4.24]
and Remark 3.8). By Remark 4.5, this yields the coefficient Cq+1(q, 1) of
the leading term in the star discrepancy bound. It is now easily seen that
Bq+1(q, 0) < Cq+1(q, 1) for any prime power q. Thus, for any prime power q
and s = q + 1, we always get an asymptotic improvement on the previously
best star discrepancy bound for a (T, s)-sequence in base q by using the
construction in Theorem 3.7.
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Example 5.2. Let q = 3, g = 2, s = 8, and F = F3(x, y) with

y2 = x6 − x2 + 1

(cf. [13, Example 3.2] and [15, Table 4.2.1, F.13]). Then F is a global function
field with full constant field F3 and the genus of F is 2. Moreover, N1(F ) = 8
and N2(F ) = 2. Therefore F satisfies Assumption 3.1. By Corollary 4.4, we
obtain the coefficient B8(3, 2) of the leading term in the star discrepancy
bound. On the other hand, the smallest known t-value of a (t, 8)-sequence
in base 3 is t = 3 (see [8, Table 1] and [16]). By Remark 4.5, this yields the
coefficient C8(3, 3) of the leading term in the star discrepancy bound. We
have B8(3, 2) < C8(3, 3).

Example 5.3. Let q = 3, g = 4, s = 12, and F = F3(x, y) with

y3 − y =
x3 − x

(x2 + 1)2

(cf. [13, Example 3.4]). Then F is a global function field with full constant
field F3 such that the genus of F is 4 and N1(F ) = 12. Moreover, N2(F ) ≥ 1
since x2+1 is totally ramified in the extension F/F3(x). Therefore F satisfies
Assumption 3.1. By Corollary 4.4, we obtain the coefficient B12(3, 4) of the
leading term in the star discrepancy bound. On the other hand, the smallest
known t-value of a (t, 12)-sequence in base 3 is t = 5 (see [8, Table 1] and
[16]). By Remark 4.5, this yields the coefficient C12(3, 5) of the leading term
in the star discrepancy bound. We have B12(3, 4) < C12(3, 5).

Example 5.4. Let q = 5, g = 1, s = 10, and F = F5(x, y) with

y2 = 3(x4 + 2)

(cf. [13, Example 5.1]). Then F is a global function field with full constant
field F5 such that the genus of F is 1 and N1(F ) = 10. Moreover, N2(F )≥1
since there is a place of F of degree 2 lying over the infinite place of the
rational function field F5(x). Therefore F satisfies Assumption 3.1. By Corol-
lary 4.4, we obtain the coefficient B10(5, 1) of the leading term in the star
discrepancy bound. On the other hand, the smallest known t-value of a
(t, 10)-sequence in base 5 is t = 2 (see [8, Table 1] and [16]). By Remark 4.5,
this yields the coefficient C10(5, 2) of the leading term in the star discrepancy
bound. We have B10(5, 1) < C10(5, 2).

Example 5.5. Let q = 8, g = 3, s = 24. Then it is shown in [14, Example
4.2] that there exists a global function field F with full constant field F8 such
that the genus of F is 3 and N1(F ) = 24. Moreover, N2(F ) ≥ 1 since it is
noted in [14, Example 4.2] that x2 +x+1 is totally ramified in the extension
F/F8(x). Therefore F satisfies Assumption 3.1. By Corollary 4.4, we obtain
the coefficient B24(8, 3) of the leading term in the star discrepancy bound.
On the other hand, the smallest known t-value of a (t, 24)-sequence in base 8
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is t = 4 according to [16]. By Remark 4.5, this yields the coefficient C24(8, 4)
of the leading term in the star discrepancy bound. We have B24(8, 3) <
C24(8, 4).

Example 5.6. Let q = 8, g = 7, s = 34, and F = F8(x, y1, y2) with

y2
1 + y1 =

1

x
+

w(x+ w3)

x2 + w5x+ w
, y2

2 + y2 =
1

x
+

w2(x+ w6)

x2 + w3x+ w2
,

where w ∈ F8 with w3+w+1 = 0 (cf. [17]). Then F is a global function field
with full constant field F8 and the genus of F is 7. Moreover, N1(F ) = 34
and N2(F ) = 14. Therefore F satisfies Assumption 3.1. By Corollary 4.4, we
obtain the coefficient B34(8, 7) of the leading term in the star discrepancy
bound. On the other hand, the smallest known t-value of a (t, 34)-sequence
in base 8 is t = 8 according to [16]. By Remark 4.5, this yields the coeffi-
cient C34(8, 8) of the leading term in the star discrepancy bound. We have
B34(8, 7) < C34(8, 8).

Example 5.7. Let q = 9, g = 5, s = 32, and F = F9(x, y1, y2, y3) with

y2
1 = x(x+ w),

y2
2 = (x+ 1)(x+ w3),

y2
3 = (x+ w6)(x+ w7),

where w ∈ F9 with w2+2w+2 = 0 (cf. [17]). Then F is a global function field
with full constant field F9 and the genus of F is 5. Moreover, N1(F ) = 32
and N2(F ) = 12. Therefore F satisfies Assumption 3.1. By Corollary 4.4, we
obtain the coefficient B32(9, 5) of the leading term in the star discrepancy
bound. On the other hand, the smallest known t-value of a (t, 32)-sequence
in base 9 is t = 6 according to [16]. By Remark 4.5, this yields the coeffi-
cient C32(9, 6) of the leading term in the star discrepancy bound. We have
B32(9, 5) < C32(9, 6).

Table 1. Numerical comparison of our improvements for some values

s q Cs(q) Bs(q)

3 2 0.166821150 0.125115863

4 3 0.0429044370 0.0286029580

5 4 0.0624989462 0.0390618414

6 5 0.0127862185 0.00767173109

8 3 0.000157782061 0.000105188041

12 3 8.20551574× 10−8 5.47034383× 10−8

10 5 3.02485570× 10−5 1.81491342× 10−5

24 8 1.69121346× 10−14 9.51307572× 10−15

34 8 1.00979263× 10−22 5.68008355× 10−23

32 9 2.13890104× 10−22 1.18827836× 10−22
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For a prime power q and an integer s ≥ 2, let Cs(q) = Cs(q, t0) with the
smallest currently known t-value t0 of a (t, s)-sequence in base q according
to [16]. Let Bs(q) = Bs(q, g) with g as in the examples above. In Table 1,
we illustrate our improvements by comparing Cs(q) and Bs(q) numerically
using Examples 5.1– 5.7.
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