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the quaternary quadratic form
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1. Introduction. The quadratic forms

G(m1,m2) := m2
1 +m2

2,

G(m1,m2,m3) := m2
1 +m2

2 +m2
3,

G(m1,m2,m3,m4) := m2
1 +m2

2 +m2
3 +m2

4, . . .

are important in number theory. They have been studied by using different
methods.

Let d(n), Λ(n) and µ(n) stand for the Dirichlet divisor function, the
von Mangoldt function and the Möbius function respectively. In 2000, Gang
Yu [Y] studied the binary quadratic form above and obtained

(1.1)
∑

1≤m1,m2≤x
d(m2

1 +m2
2) = A1x

2 log x+A2x
2 +O(x3/2+ε).

Also in 2000, C. Calderón and M. J. de Velasco [CV] studied the divisors of
the quadratic form m2

1 +m2
2 +m2

3 and proved the asymptotic formula

(1.2)
∑

1≤m1,m2,m3≤x
d(m2

1 +m2
2 +m2

3) =
8ζ(3)

5ζ(4)
x3 log x+O(x3).

The error term in (1.2) was improved to O(x8/3) by Ruting Guo and Weng-
guang Zhai [GZ] with the help of the circle method.

In 2009, Friedlander and Iwaniec [FI] studied the number of prime vectors
among integer lattice points in the 3-dimensional ball. They proved that the
number π3(x) of points (m1,m2,m3) ∈ Z3 with

(1.3) m2
1 +m2

2 +m2
3 = p ≤ x
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satisfies

(1.4) π3(x) ∼ 4π

3

x3/2

log x
,

which can be viewed as a generalization of the prime number theorem. The
asymptotic formula (1.4) is proved by using Gauss’s formula for the function
r3(p) and the properties of L(1, χp), where r3(p) denotes the number of ways
p can be written as a sum of three squares, and L(1, χp) is the Dirichlet

L-function with the Kronecker symbol χp(n) =
(−4p

n

)
.

In this paper, we study the quaternary quadratic form

G(m1,m2,m3,m4) := m2
1 +m2

2 +m2
3 +m2

4

and give some estimates by generalizing Guo–Zhai’s method. Our main re-
sults are as follows.

Theorem 1.1. Define

S(x) :=
∑

1≤m1,m2,m3,m4≤x
d(m2

1 +m2
2 +m2

3 +m2
4).

Then for x ≥ 2, we have

(1.5) S(x) = 2K1L1x
4 log x+ (K1L2 +K2L1)x

4 +O(x7/2+ε),

where

K1 :=
∞∑
q=1

q−5
∑

0≤a<q
(a,q)=1

G4(a, 0, q), G(a, 0, q) =

q∑
r=1

e(ar2/q),

K2 :=
∞∑
q=1

−2 log q + 2γ

q5

∑
0≤a<q
(a,q)=1

G4(a, 0, q),

L1 :=

∞�

−∞
I1(λ) dλ, L2 :=

∞�

−∞
I2(λ) dλ,

I1(λ) :=
(1�
0

e(u2λ) du
)4 4�

0

e(−uλ) du,

I2(λ) :=
(1�
0

e(u2λ) du
)4 4�

0

e(−uλ) log u du.

Theorem 1.2. Define

πΛ(x) :=
∑

m2
1+m

2
2+m

2
3+m

2
4≤x

Λ(m2
1 +m2

2 +m2
3 +m2

4).
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Then for any fixed constant A > 0, we have

(1.6) πΛ(x) = 16K3L3x
2 +O(x2 log−A x) (x ≥ 2),

where

K3 :=
∞∑
q=1

1

q4ϕ(q)

∑
0≤a<q
(a,q)=1

G4(a, 0, q)Cq(−a),

L3 :=

∞�

−∞
I3(λ) dλ,

I3(λ) :=
(1�
0

e(u2λ) du
)4 1�

0

e(−uλ) du.

Notation. As usual, the letter ε denotes a positive constant which can
be arbitrarily small. Cq(r) denotes the Ramanujan sum. Finally, G(a, b, q)
denotes the quadratic Gauss sum

G(a, b, q) =

q∑
r=1

e

(
ar2 + br

q

)
, where e(t) := e2πit.

2. Outline of the circle method. In this paper, x is a large positive
integer. In order to apply the circle method, we assume

(2.1) log x < P < x, 2P 2 < Q, Q > x1+ε, PQ < x2.

By Dirichlet’s lemma on rational approximation, each α ∈ [−1/Q, 1− 1/Q]
may be written in the form

(2.2) α = a/q + λ, |λ| ≤ 1/qQ,

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by
M(a, q) the set of α satisfying (2.2), and define the major arcsM and minor
arcs C(M) as follows:

(2.3) M =
⋃
q≤P

⋃
0<a<q
(a,q)=1

M(a, q), C(M) = [−1/Q, 1− 1/Q] \M.

Let

(2.4) S1(α; y) :=
∑

1≤m≤y
e(m2α), S2(α; y) :=

∑
1≤n≤y

d(n)e(nα).

By (2.4) and the well-known identity

(2.5)

1�

0

e(uα) dα =

{
1 if u = 0,

0 if u ∈ Z, u 6= 0,
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we have

S(x) :=
∑

1≤m1,m2,m3,m4≤x
d(m2

1 +m2
2 +m2

3 +m2
4)(2.6)

=

1�

0

S4
1(α;x)S2(−α; 4x2) dα = S1(x) + S2(x),

where

S1(x) :=
�

M
S4
1(α;x)S2(−α; 4x2) dα,

S2(x) :=
�

C(M)

S4
1(α;x)S2(−α; 4x2) dα.

The problem is now reduced to evaluating S1(x) and giving an upper
bound of S2(x).

3. Some lemmas. We need some classical results. Lemma 3.1 can be
found in [H] and Lemmas 3.2 and 3.3 in [PP].

Lemma 3.1. Suppose q ∈ N, a, b ∈ Z, q ≥ 3 and (a, q) = 1. Then

G(a, b, q)� √q.

Lemma 3.2. Suppose f(·) is a real-valued continuously differentiable
function on [t1, t2] such that |f ′(t)| � ∆ > 0 for all t ∈ [t1, t2]. Then

t2�

t1

e(f(t)) dt� 1/∆.

Lemma 3.3. Suppose f(·) is a real-valued twice continuously differen-
tiable function on [t1, t2] such that |f ′′(t)| � ∆ > 0 for all t ∈ [t1, t2]. Then

t2�

t1

e(f(t)) dt� 1/
√
∆.

4. Estimating S1(α;x). The estimation of S1(α;x) is similar to that
in [GZ, Lemmas 4.1 and 5.1], and leads to:

Lemma 4.1. Suppose α = a/q + λ ∈ M with 0 ≤ a < q ≤ P , (a, q) =
1, |λ| ≤ 1/PQ and PQ ≤ x2, Q > x1+ε. Then

(4.1) S1(α;x) =
G(a, 0, q)

q
x

1�

0

e(u2x2λ) du+O(
√
q log(q + 1)).
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Lemma 4.2. Suppose α = a/q + λ ∈ C(M) with 1 ≤ a ≤ q, (a, q) = 1,
|λ| ≤ 1/qQ and P < q ≤ Q. Then

(4.2) S1(α;x)� xP−1/2 +Q1/2 log1/2 x.

5. Estimating S2(−α; 4x2) on the major arcs. Suppose α = a/q+ z
∈ M with 0 ≤ a < q ≤ P , (a, q) = 1 and |z| ≤ 1/qQ. Using some results
of [GZ, Section 7], we have∑

1≤n≤4x2
d(n)e(−nα) = J1 + J2,

where

J1 =
2x2 log x

q

4�

0

e(−ux2λ) du+
x2

q

4�

0

e(−ux2λ) log u du

+
−2 log q + 2γ

q
x2

4�

0

e(−ux2λ) du,

J2 � xε(q1/2x2Q−1 + q2/3x2/3).

Thus we get the following lemma.

Lemma 5.1. Suppose α = a/q + λ ∈ M with PQ ≤ x2 and Q > x1+ε.
Then

S2(−α; 4x2) =
2x2 log x

q

4�

0

e(−ux2λ) du+
x2

q

4�

0

e(−ux2λ) log u du

+
−2 log q + 2γ

q
x2

4�

0

e(−ux2λ) du+O(q1/2x2+εQ−1 + q2/3x2/3+ε).

6. Proof of Theorem 1.1. We first treat the integral on the major
arcs. We have

(6.1)
�

M
S4
1(α;x)S2(−α; 4x2) dα

=
∑

1≤q≤P

∑
0≤a<q
(a,q)=1

a/q+1/qQ�

a/q−1/qQ

S4
1(α;x)S2(−α; 4x2) dα.

Suppose α = a/q + λ ∈M. From Lemmas 4.1 and 5.1 we get
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(6.2) S4
1(α;x)S2(−α; 4x2)

= 2x6 log x
G4(a, 0, q)

q5

(1�
0

e(u2x2λ) du
)4 4�

0

e(−ux2λ) du

+ x6
G4(a, 0, q)

q5

(1�
0

e(u2x2λ) du
)4 4�

0

e(−ux2λ) log u du

+ x6
G4(a, 0, q)(−2 log q + 2γ)

q5

(1�
0

e(u2x2λ) du
)4 4�

0

e(−ux2λ) du

+O(x6+εq−3/2Q−1 + x14/3+εq−4/3 + x5+εq−2).

Thus

(6.3)

a/q+1/qQ�

a/q−1/qQ

S4
1(α;x)S2(−α; 4x2) dα

= 2x6 log x
G4(a, 0, q)

q5

1/qQ�

−1/qQ

(1�
0

e(u2x2λ) du
)4 4�

0

e(−ux2λ) du dλ

+ x6
G4(a, 0, q)

q5

1/qQ�

−1/qQ

(1�
0

e(u2x2λ) du
)4 4�

0

e(−ux2λ) log u du dλ

+ x6
G4(a, 0, q)(−2 log q + 2γ)

q5

×
1/qQ�

−1/qQ

(1�
0

e(u2x2λ) du
)4 4�

0

e(−ux2λ) du dλ

+O(x6+εq−5/2Q−2 + x14/3+εq−7/3Q−1 + x5+εq−3Q−1)

= 2x4 log x
G4(a, 0, q)

q5

x2/qQ�

−x2/qQ

(1�
0

e(u2λ) du
)4 4�

0

e(−uλ) du dλ

+ x4
G4(a, 0, q)

q5

x2/qQ�

−x2/qQ

(1�
0

e(u2x2λ) du
)4 4�

0

e(−ux2λ) log u du dλ

+ x4
G4(a, 0, q)(−2 log q + 2γ)

q5

×
x2/qQ�

−x2/qQ

(1�
0

e(u2x2λ) du
)4 4�

0

e(−ux2λ) du dλ

+O(x6+εq−5/2Q−2 + x14/3+εq−7/3Q−1 + x5+εq−3Q−1)
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= 2x4 log x
G4(a, 0, q)

q5

x2/qQ�

−x2/qQ

H1(z) dz + x4
G4(a, 0, q)

q5

x2/qQ�

−x2/qQ

H2(z) dz

+ x4
G4(a, 0, q)(−2 log q + 2γ)

q5

x2/qQ�

−x2/qQ

H1(z) dz

+O(x6+εq−5/2Q−2 + x14/3+εq−7/3Q−1 + x5+εq−3Q−1),

where H1(λ) and H2(λ) were defined in Theorem 1.1.

We can choose P and Q to satisfy x2/PQ > 3. So we first give upper
bounds of H1(λ) and H2(λ) for |λ| > 3. Using Lemmas 3.2 and 3.3, we get

(6.4)

Gλ(y) :=

y�

0

e(−uλ) du� 1/|λ| (y > 0),

1�

0

e(u2λ) du� 1/|λ|1/2.

By partial summation and (6.4) we have

(6.5)

1�

0

e(−uλ) log u du =

1/|λ|�

0

e(−uλ) log u du+

1�

1/|λ|

e(−uλ) log u du

=

1/|λ|�

0

e(−uλ) log u du+

1�

1/|λ|

log u dGλ(u)

=

1/|λ|�

0

e(−uλ) log u du+Gλ(u) log u|11/|λ| −
1�

1/|λ|

Gλ(u)u−1 du

� |λ|−1 log |λ|.
Hence we get

H1(λ)� |λ|−3, H2(λ)� |λ|−3 log |λ| (|λ| ≥ 3),

and for U ≥ 2 we have

(6.6)

�

|λ|>U

H1(λ) dλ�
�

|λ|>U

z−3 dλ� U−2,

�

|λ|>U

H2(λ) dλ�
�

|λ|>U

z−3 log λ dλ� U−2 logU,

which means that the integrals
	∞
−∞H1(λ) dλ and

	∞
−∞H2(λ) dλ converge.

Taking U = x2/qQ in (6.6), we get
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�

|λ|>x2/qQ

H1(λ) dz �
�

|λ|>x2/qQ

λ−3 dλ� x−4q2Q2,

�

|λ|>x2/qQ

H2(λ) dz �
�

|λ|>x2/qQ

λ−3 log λ dλ� x−4(log x)q2Q2.

Inserting the above two estimates into (6.3) we have

(6.7)

a/q+1/qQ�

a/q−1/qQ

S4
1(α;x)S2(−α; 4x2) dα

= 2x4 log x
G4(a, 0, q)

q5

x2/qQ�

−x2/qQ

H1(λ) dz + x4
G4(a, 0, q)

q5

x2/qQ�

−x2/qQ

H2(λ) dz

+ x4
G4(a, 0, q)(−2 log q + 2γ)

q5

x2/qQ�

−x2/qQ

H1(λ) dz

+O(Q2q−1 log x+ x6+εq−5/2Q−2 + x14/3+εq−7/3Q−1 + x5+εq−3Q−1).

Combining (6.1) and (6.7) we get

(6.8)
�

M
S4
1(α;x)S2(−α; 4x2) dα

= 2x4 log x
∑

1≤q≤P
q−5

∑
0≤a<q
(a,q)=1

G4(a, 0, q)

∞�

−∞
H1(λ) dz

+ x4
∑

1≤q≤P
q−5

∑
0≤a<q
(a,q)=1

G4(a, 0, q)

∞�

−∞
H2(λ) dz

+ x4
∑

1≤q≤P

−2 log q + 2γ

q5

∑
0≤a<q
(a,q)=1

G4(a, 0, q)

∞�

−∞
H1(λ) dz

+O(Q2P log x+ x6+εQ−2 + x14/3+εQ−1 + x5+εQ−1)

= 2K1L1x
4 log x+ (K1L2 +K2L1)x

4

+O(x4P−1 logP +Q2P log x+ x6+εQ−2 + x14/3+εQ−1 + x5+εQ−1).

We take P = x1/2/12 and Q = 3x3/2 and insert them into (6.8), to get

(6.9)
�

M
S4
1(α;x)S2(−α; 4x2) dα

= 2K1L1x
4 log x+ (K1L2 +K2L1)x

4 +O(x7/2+ε),

where K1,K2 and L1, L2 were defined in Theorem 1.1.
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Now we study the integral on the minor arcs. We have

(6.10)
�

C(M)

S4
1(α;x)S2(−α; 4x2) dα

� max
α∈C(M)

|S1(α;x)|2
1�

0

|S1(α;x)|2|S2(−α; 4x2)| dα

� max
α∈C(M)

|S1(α;x)|2
(1�
0

|S1(α;x)|4 dα
)1/2(1�

0

|S2(−α; 4x2)|2 dα
)1/2

� max
α∈C(M)

|S1(α;x)|2
( ∑

m2
1+m

2
2=m

2
3+m

2
4

1≤m1,m2,m3,m4≤x

1
)1/2( ∑

1≤n≤4x2
d(n)

)1/2

� max
α∈C(M)

|S1(α;x)|2
( ∑

m2
1−m2

3=m
2
4−m2

2
1≤m1,m2,m3,m4≤x

1
)1/2( ∑

1≤n≤4x2
d(n)

)1/2

� max
α∈C(M)

|S1(α;x)|2
( ∑
n≤2x2

d2(n)
)1/2( ∑

1≤n≤4x2
d(n)

)1/2
� max

α∈C(M)
|S1(α;x)|2x2 log2 x� x7/2+ε,

where we used Lemma 4.2 and the well-known estimates∑
n≤x

d2(n)� x log3 x,
∑
n≤x

d(n)� x log x.

From (2.4), (6.9) and (6.10) the proof of Theorem 1.1 is complete.

7. Proof of Theorem 1.2. The proof of Theorem 1.2 is easier than
the proof of Theorem 1.1.

Suppose P1 and Q1 are two large real numbers to be determined later,
which satisfy

log
√
x < P1 <

√
x, 2P 2

1 < Q1, Q1 > x1/2+ε, P1Q1 < x.

Each α ∈ [−1/Q, 1− 1/Q] may be written in the form

(7.1) α = a/q + λ, |λ| ≤ 1/qQ,

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by
M′(a, q) the set of α satisfying (7.1), and define the major arcs M′ and
minor arcs C(M′) as follows:

M′ :=
⋃

1≤q≤P1

⋃
0≤a<q
(a,q)=1

M′(a, q), C(M′) := [−1/Q1, 1− 1/Q1] \M′.
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Let

(7.2) S3(α; y) :=
∑
|m|≤y

e(m2α), S4(α; y) :=
∑

1≤n≤y
Λ(n)e(nα).

It is easily seen that

(7.3) S3(α; y) = 2S1(α; y) + 1.

By (2.4) and (7.3), we have

πΛ(x) =

1�

0

S4
3(α;
√
x)S4(−α;x) dα(7.4)

= 16

1�

0

S4
1(α;
√
x)S4(−α;x) dα+O(x3/2 log x).

Suppose α = a/q+λ ∈M′ with 0 ≤ a < q ≤ P1, (a, q) = 1, |λ| ≤ 1/P1Q1

and P1Q1 ≤ x, Q1 > x1/2+ε. In much the same way as for Lemma 4.1, but
more easily, we obtain

(7.5) S1(α;
√
x) =

G(a, 0, q)

q

√
x

1�

0

e(u2xλ) du+O
(
(1+x|λ|)√q log(q+1)

)
.

For S4(−α;x), similar to [PP, (6.21)] we have

(7.6) S4(−α;x) = x
Cq(−a)

ϕ(q)

1�

0

e(−uxλ) du+O(xe−c
√
log x),

where c > 0 is an absolute positive constant and Cq(r) is the Ramanujan
sum. From (7.5) and (7.6) we get, as in the proof of Theorem 1.1,

(7.7)
�

M′

S4
1(α;
√
x)S4(−α;x) dα

= x2
∞∑
q=1

1

q4ϕ(q)

∑
0≤a<q
(a,q)=1

G4(a, 0, q)Cq(−a)

×
∞�

−∞

(1�
0

e(u2λ) du
)4 1�

0

e(−uλ) du dz

+O(x2P−11 +Q2
1P1 + x3+εQ−11 e−c

√
log x + x7/2+εQ−21 )

= K3L3x
2 +O(x2P−11 +Q2

1P1 + x3+εQ−11 e−c
√
log x + x7/2+εQ−21 ),

where K3 and L3 were defined in Theorem 1.2.

Now consider the integral on C(M′). According to Dirichlet’s lemma,
each α ∈ C(M′) can be written as α = a/q + λ with 1 ≤ a ≤ q, (a, q) = 1,
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|z| ≤ 1/qQ1 and P1 < q ≤ Q1. Lemma 4.2 still holds. So we have

S1(α;
√
x)�

√
xP
−1/2
1 +Q

1/2
1 log1/2 x�

√
xP
−1/2
1 .

Hence similar to (6.10) we have

(7.8)
�

C(M′)

S4
1(α;
√
x)S4(−α;x) dα

� max
α∈C(M′)

|S1(α;
√
x)|2

1�

0

|S1(α;
√
x)|2|S4(−α;x)| dα

� max
α∈C(M′)

|S1(α;
√
x)|2

(1�
0

|S1(α;
√
x)|4 dα

)1/2(1�
0

|S4(−α;x|2 dα
)1/2

� max
α∈C(M′)

|S1(α;
√
x)|2

(∑
n≤x

d2(n)
)1/2( ∑

1≤n≤x
Λ2(n)

)1/2
� max

α∈C(M′)
|S1(α;

√
x)|2x log2 x� x2P−11 log2 x.

Now take P1 = logA+2 x and Q1 = x log−8A−8 x. Combining (7.4), (7.7) and
(7.8) we have

πΛ(x) =

1�

0

S4
3(α;
√
x)S4(−α;x) dα = 16K3L3x

2 +O(x2 log−A x).

Then the proof of Theorem 1.2 is complete.

8. Remark. Apart from the above results, we can find many similar
results for ∑

m1,m2,m3,m4

f(m2
1 +m2

2 +m2
3 +m2

4)

and ∑
m1,m2,m3,m4

f(m2
1 +m2

2 +m2
3 +m2

4)g1(m1)g2(m2)g3(m3)g4(m4),

where f, g1, g2, g3, g4 are arithmetic functions which have good value distri-
bution in residue classes to large moduli.

Here are some results which can be proved by similar methods:

SN(x;µ) :=
∑

1≤m1,m2,m3,m4≤x
µ(m2

1 +m2
2 +m2

3 +m2
4)� x4 log−A x,

SZ(x;µ) :=
∑

m2
1+m

2
2+m

2
3+m

2
4≤x

µ(m2
1 +m2

2 +m2
3 +m2

4)� x2 log−A x,
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SP(x;µ) :=
∑

1≤p1,p2,p3,p4≤x
µ(p21 + p22 + p23 + p24)� x4 log−A x,

SN(x; d) :=
∑

1≤p1,p2,p3,p4≤x
d(p21 + p22 + p23 + p24) ∼ c0x4 log−3 x,

SN(x; d) :=
∑

1≤m1,m2,m3,m4≤x
d(m2

1 +m2
2 +m2

3 +m2
4)d(m1)d(m2)d(m3)d(m4)

∼ c1x4 log5 x.
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