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The spt-crank for overpartitions
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1. Introduction. Here we consider Ramanujan type congruences for
various spt type functions and combinatorial interpretations of them in
terms of rank and crank type functions. We recall the spt function began
with Andrews in [2] defining spt(n) as the number of smallest parts in the
partitions of n. In the same paper he proved the following congruences.

Theorem 1.1. For n ≥ 0 we have

spt(5n+ 4) ≡ 0 (mod 5),(1.1)

spt(7n+ 5) ≡ 0 (mod 7),(1.2)

spt(13n+ 6) ≡ 0 (mod 13).(1.3)

These congruences are reminiscent of the Ramanujan congruences for
the partition function. The proof of Theorem 1.1 relied on relating the spt
function to the second moment of the rank function for partitions. With
this, spt(n) could be expressed in terms of rank differences. Formulas for
the required rank differences are found in [9] and [25].

We recall an overpartition of n is a partition of n in which the first
occurrence of a part may be overlined. In [14] Bringmann, Lovejoy, and
Osburn defined spt(n) as the number of smallest parts in the overpartitions
of n. Additionally they defined spt1(n) to be the number of smallest parts in
the overpartitions of n with smallest part odd, and spt2(n) to be the number
of smallest parts in the overpartitions of n with smallest even. We alter these
definitions to only include the overpartitions of n where the smallest part
is not overlined. This simply means the count of smallest parts here is half
of the count of smallest parts in [14] and in other articles. This does not
have any effect on congruences unless the modulus is even. We illustrate
this change with an example.
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The overpartitions of 4 are 4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2,
2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1,
and so spt(4) = 13, spt1(4) = 10, and spt2(4) = 3.

Bringmann, Lovejoy, and Osburn [14] proved the following congruences
for their new spt functions.

Theorem 1.2. For n ≥ 0 we have

spt(3n) ≡ 0 (mod 3),(1.4)

spt1(3n) ≡ 0 (mod 3),(1.5)

spt1(5n) ≡ 0 (mod 5),(1.6)

spt2(3n) ≡ 0 (mod 3),(1.7)

spt2(3n+ 1) ≡ 0 (mod 3),(1.8)

spt2(5n+ 3) ≡ 0 (mod 5).(1.9)

The proof of these congruences relied on expressing these functions in
terms of the second moments of certain rank and crank functions which
relate to quasi-modular forms. We will give another proof of these congru-
ences, which gives their new combinatorial interpretations. We describe this
method shortly.

In [1] Ahlgren, Bringmann, and Lovejoy defined M2spt(n) to be the
number of smallest parts in the partitions of n without repeated odd parts
and with smallest part even. One congruence they proved for M2spt(n) is
that for any prime ` ≥ 3, any integer m ≥ 1, and n such that

(−n
`

)
= 1, we

have

M2spt

(
`2mn+ 1

8

)
≡ 0 (mod `m).

However none of the current known congruences for M2spt(n) appear to be
of the form of the congruences we have mentioned for spt(n) and spt(n),
rather they are congruences related to certain Hecke operators. One of the
results of this paper will be to prove such congruences by giving combina-
torial refinements.

We will prove the following congruences for M2spt(n).

Theorem 1.3. For n ≥ 0 we have

M2spt(3n+ 1) ≡ 0 (mod 3),(1.10)

M2spt(5n+ 1) ≡ 0 (mod 5),(1.11)

M2spt(5n+ 3) ≡ 0 (mod 5).(1.12)

Also we will determine the parity of spt(n), spt1(n), and spt2(n).

Theorem 1.4. For n ≥ 1 we have spt(n) ≡ 1 (mod 2) if and only if n
is a square or twice a square, spt1(n) ≡ 1 (mod 2) if and only if n is an odd
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square, and spt2(n) ≡ 1 (mod 2) if and only if n is an even square or twice
a square.

In Theorem 1.4 it is important to note that we are using the conven-
tion of not counting the smallest parts of overpartitions when the smallest
part is overlined. Otherwise spt(n), spt1(n), and spt2(n) are trivially always
even and instead these congruences tell when they are 0 or 2 modulo 4. The
method we use to prove these parity results gives a combinatorial explana-
tion as well; however, if one works modulo 2 just with the single variable
generating functions listed below, the parity follows immediately upon notic-
ing the generating functions reduce to certain sum of divisors generating
functions.

The generating functions for the spt functions are given as follows; these
are special cases of a general SPT function due to Bringmann, Lovejoy, and
Osburn [15, Section 7],

SPT(d, e; q) =
(−dq; q)∞(−eq; q)∞

(deq; q)∞(q; q)∞

∞∑
n=1

qn(q; q)n(deq; q)n
(1− qn)2(−dq; q)n(−eq; q)n

.

The case d = 0, e = 0 gives a generating function for spt(n),
∞∑
n=1

spt(n)qn =

∞∑
n=1

qn

(1− qn)2(qn+1; q)∞
.

The case d = 1, e = 0 gives a generating function for spt(n),
∞∑
n=1

spt(n)qn =
∞∑
n=1

qn(−qn+1; q)∞
(1− qn)2(qn+1; q)∞

.(1.13)

The case d = 1, e = 1/q, q = q2 gives a generating function for spt2(n),
∞∑
n=1

spt2(n)qn =

∞∑
n=1

q2n(−q2n+1; q)∞
(1− q2n)2(q2n+1; q)∞

.(1.14)

Similar to the spt(n) and spt2(n) we see a generating function for spt1(n) is
∞∑
n=1

spt1(n)qn =

∞∑
n=0

q2n+1(−q2n+2; q)∞
(1− q2n+1)2(q2n+2; q)∞

.(1.15)

The case d = 0, e = 1/q, q = q2 gives a generating function for M2spt(n),
∞∑
n=1

M2spt(n)qn =
∞∑
n=1

q2n(−q2n+1; q2)∞
(1− q2n)2(q2n+2; q2)∞

.(1.16)

Here we are using the product notation,

(a; q)∞ =
∞∏
k=0

(1− aqk), (a1, . . . , aj ; q)∞ = (a1; q)∞ · · · (aj ; q)∞,
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(a; q)n =
(a; q)∞

(aqn; q)∞
, (a1, . . . , aj ; q)n = (a1; q)n · · · (aj ; q)n.

We note that the three special cases of SPT(d, e; q) described above are
quasimock theta functions (see [15, p. 240] for a definition).

Andrews, Garvan, and Liang [7] found combinatorial interpretations of
the congruences modulo 5 and 7 in Theorem 1.1 in terms of weighted counts
of special vector partitions called S-partitions. This was done by adding an
extra variable to the generating function of the spt function. In particular
they defined

S(z, q) =
∞∑
n=1

qn(qn+1; q)∞
(zqn; q)∞(z−1qn; q)∞

=
∞∑
n=1

∞∑
m=−∞

NS(m,n)zmqn.

One then finds the congruences in (1.1) and (1.2) follow by showing the
coefficients of q5n+4 in S(ζ5, q) and q7n+5 in S(ζ7, q) are zero, where ζ5 is
a primitive fifth root of unity and ζ7 is a primitive seventh root of unity.
This is the approach we take to prove the congruences for spt(n), spt1(n),
spt2(n), and M2spt(n), and their combinatorial refinements.

In the next section we give two-variable generalizations of the generat-
ing functions (1.13)–(1.16), introduce various ranks and cranks, and state
numerous identities for these functions. At the end of the next section we
describe the plan for the remainder of the paper.

2. Statement of results and preliminaries. In this paper we give al-
ternate proofs of the congruences in Theorem 1.2 and prove the congruences
of Theorems 1.3 and 1.4 as well as giving combinatorial interpretations. We
consider two-variable generalizations of the generating functions from the
introduction. We set

S(z, q) =
∞∑
n=1

qn(−qn+1; q)∞(qn+1; q)∞
(zqn; q)∞(z−1qn; q)∞

=
∞∑
n=1

∞∑
m=−∞

NS(m,n)zmqn,

S2(z, q) =

∞∑
n=1

q2n(−q2n+1; q)∞(q2n+1; q)∞
(zq2n; q)∞(z−1q2n; q)∞

=

∞∑
n=1

∞∑
m=−∞

NS2
(m,n)zmqn,

S1(z, q) =

∞∑
n=0

q2n+1(−q2n+2; q)∞(q2n+2; q)∞
(zq2n+1; q)∞(z−1q2n+1; q)∞

=

∞∑
n=1

∞∑
m=−∞

NS1
(m,n)zmqn,

S2(z, q) =
∞∑
n=1

q2n(q2n+2; q2)∞(−q2n+1; q2)∞
(zq2n; q2)∞(z−1q2n; q2)∞

=
∞∑
n=1

∞∑
m=−∞

NS2(m,n)zmqn.

In each two-variable generating function we set z = 1 to recover the gen-
erating functions from the introduction. We see that S(1, q) is the generating
function for spt(n), S2(1, q) is the generating function for spt2(n), S1(1, q) is
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the generating function for spt1(n), and S2(1, q) is the generating function
for M2spt(n).

Furthermore we define

NS(k, t, n) =
∑

m≡k (mod t)

NS(m,n)

so

spt(n) =

∞∑
m=−∞

NS(m,n) =

r−1∑
k=0

NS(k, r, n)

for any positive integer r. We similarly define

NS2
(k, t, n) =

∑
m≡k (mod t)

NS2
(m,n),

NS1
(k, t, n) =

∑
m≡k (mod t)

NS1
(m,n),

NS2(k, t, n) =
∑

m≡k (mod t)

NS2(m,n).

We use these series to give another proof of the spt congruences.
First we consider the congruence in (1.4) of Theorem 1.2. With ζ3 a

primitive third root of unity, we have

S(ζ3, q) =

∞∑
n=1

(
NS(0, 3, n) +NS(1, 3, n)ζ3 +NS(2, 3, n)ζ23

)
qn.

The minimal polynomial for ζ3 is 1 + x+ x2, and so if

NS(0, 3, n) +NS(1, 3, n)ζ3 +NS(2, 3, n)ζ23 = 0

then

NS(0, 3, 3n) = NS(1, 3, 3n) = NS(2, 3, 3n).(2.1)

But if (2.1) holds, then

spt(3n) = 3NS(k, 3, 3n) for k = 0, 1, 2

and so clearly spt(3n) ≡ 0 (mod 3). That is, if we show the coefficient
of q3n in S(ζ3, q) to be zero, then we have proved the first congruence in
Theorem 1.2, and the stronger result (2.1).

In the same fashion, the congruences (1.5) and (1.6) will follow by show-
ing the coefficients of q3n in S1(ζ3, q) and the coefficients of q5n in S1(ζ5, q)
are zero. The congruences (1.7)–(1.9) will follow by showing the coefficients
of q3n and q3n+1 in S2(ζ3, q) and the coefficients of q5n+3 in S2(ζ5, q) are
zero. The congruences in Theorem 1.3 will follow by showing the coefficients
of q3n+1 in S2(ζ3, q) and the coefficients of q5n+1 and q5n+3 in S2(ζ5, q) are
zero.
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To this end, we will express the series S(z, q), S1(z, q), S2(z, q), S2(z, q) as
the difference of the generating functions for certain ranks and cranks. In [7]
Andrews, the first author, and Liang found that S(z, q) could be expressed
in terms of the difference of the rank and crank of a partition. We recall that
the rank of a partition is the largest part minus the number of parts. The
crank of a partition is the largest part if there are no ones and otherwise is
the number of parts larger than the number of ones minus the number of
ones.

As in [14], for an overpartition π of n we define the residual crank of π
to be the crank of the subpartition of π consisting of the nonoverlined parts
of π. We let M(m,n) denote the number of overpartitions of n with this
residual crank equal to m. The generating function for M(m,n) is then
given by

∞∑
n=0

∞∑
m=−∞

M(m,n)zmqn =
(−q; q)∞(q; q)∞

(zq; q)∞(z−1q; q)∞
.

Of course this interpretation is not quite correct, as (q; q)∞/(zq, z
−1q; q)∞

does not agree at q1 for the crank of the partition consisting of a single
one. Thus the interpretation of this residual crank is not quite correct for
overpartitions whose nonoverlined parts consist of a single one.

As in [14] and elsewhere, for an overpartition π of n we define the Dyson
rank of π to be the largest part minus the number of parts of π. Let N(m,n)
denote the number of overpartitions of n with Dyson rank equal to m. As in
[22, Proposition 1.1 and proof of Proposition 3.2], the generating function
for N(m,n) is given by

∞∑
n=0

∞∑
m=−∞

N(m,n)zmqn =

∞∑
n=0

(−1; q)nq
n(n+1)/2

(zq; q)n(z−1q; q)n

=
(−q; q)∞
(q; q)∞

(
1 + 2

∞∑
n=1

(1− z)(1− z−1)(−1)nqn
2+n

(1− zqn)(1− z−1qn)

)
.

The second equality is obtained by Watson’s transformation.

We define another residual crank as follows. For a partition π of n with
distinct odd parts we take the crank of the partition πe/2 obtained by taking
the subpartition πe, of the even parts of π, and halving each part of πe. We
let M2(m,n) denote the number of partitions π of n with distinct odd parts
and such that the partition πe/2 has crank m. Then the generating function
for M2(m,n) is given by

∞∑
n=0

∞∑
m=−∞

M2(m,n)zmqn =
(−q; q2)∞(q2; q2)∞

(zq2; q2)∞(z−1q2; q2)∞
.
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Again this interpretation is not quite correct, here it fails for partitions with
distinct odd parts whose only even parts are a single two.

We recall the M2-rank of a partition π without repeated odd parts is
given by

M2-rank(π) =

⌈
l(π)

2

⌉
−#(π),

where l(π) is the largest part of π and #(π) is the number of parts of π.
The M2-rank was introduced by Berkovich and the first author [10]. We
let N2(m,n) denote the number of partitions of n with distinct odd parts
and M2-rank m. By Lovejoy and Osburn [24] the generating function for
N2(m,n) is given by

∞∑
n=0

∞∑
m=−∞

N2(m,n)zmqn =
∞∑
n=0

qn
2 (−q; q2)n
(zq2; q2)n(z−1q2; q2)n

.

We set

N(k, t, n) =
∑

m≡k (mod t)

N(m,n), N2(k, t, n) =
∑

m≡k (mod t)

N2(m,n),

M(k, t, n) =
∑

m≡k (mod t)

M(m,n), M2(k, t, n) =
∑

m≡k (mod t)

M2(m,n).

We see N(−m,n) = N(m,n) and so N(k, t, n) = N(t − k, t, n). Simi-
larly we have M(k, t, n) = M(t − k, t, n), N2(k, t, n) = N2(t − k, t, n), and
M2(k, t, n) = M2(t− k, t, n).

We will show the following:

Theorem 2.1.

(1− z)(1− z−1)S(z, q) =

∞∑
n=0

∞∑
m=−∞

(N(m,n)−M(m,n))zmqn.

Theorem 2.2.

(1− z)(1− z−1)S2(z, q) =

∞∑
n=0

∞∑
m=−∞

(N2(m,n)−M2(m,n))zmqn.

Theorem 2.3.

(1− z)(1− z−1)S2(z, q) =

∞∑
n=0

∞∑
m=−∞

(
N(m,n)

2
−M(m,n)

)
zmqn

+
(−q; q)∞
(q; q)∞

(
1

2
+
∞∑
n=1

(1− z)(1− z−1)(−1)nqn

(1− zqn)(1− z−1qn)

)
.
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Theorem 2.4.

(1− z)(1− z−1)S1(z, q) =

∞∑
n=0

∞∑
m=−∞

N(m,n)

2
zmqn

− (−q; q)∞
(q; q)∞

(
1

2
+
∞∑
n=1

(1− z)(1− z−1)(−1)nqn

(1− zqn)(1− z−1qn)

)
.

In [23] Lovejoy and Osburn determined formulas for the differences of
N(s, `, `n+ d) for ` = 3, 5 and in [24] they did the same for N2(s, `, `n+ d).
From these difference formulas, we know the 3-dissection and 5-dissection
for the generating functions of N(m,n) and N2(m,n). In particular, we will
have the following.

Theorem 2.5.
∞∑
n=0

∞∑
m=−∞

N(m,n)ζm3 q
n = N0,3(q

3) + qN1,3(q
3) + q2N2,3(q

3)

where

N0,3(q) =
(q3; q3)4∞(q2; q2)∞
(q; q)2∞(q6; q6)2∞

,(2.2)

N1,3(q) = 2
(q3; q3)∞(q6; q6)∞

(q; q)∞
.(2.3)

Theorem 2.6.

∞∑
n=0

∞∑
m=−∞

N(m,n)ζm5 q
n

= N0,5(q
5) + qN1,5(q

5) + q2N2,5(q
5) + q3N3,5(q

5) + q4N4,5(q
5)

where

N0,5(q) =
(q4, q6; q10)∞(q5; q5)2∞
(q2, q3; q5)2∞(q10; q10)∞

+2(ζ5+ζ−15 )q
(q10; q10)∞

(q3, q4, q6, q7; q10)∞
,(2.4)

N3,5(q) =
2(1−ζ5−ζ−15 )(q10; q10)∞

(q2, q3; q5)∞
.(2.5)

Theorem 2.7.
∞∑
n=0

∞∑
m=−∞

N2(m,n)ζm3 q
n = N20,3(q

3) + qN21,3(q
3) + q2N22,3(q

3)

where

N21,3(q) =
(q6; q6)4∞

(q2; q2)∞(q3; q3)∞(q12; q12)∞
.(2.6)
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Theorem 2.8.
∞∑
n=0

∞∑
m=−∞

N2(m,n)ζm5 q
n = N20,5(q

5) + qN21,5(q
5) + q2N22,5(q

5)

+ q3N23,5(q
5) + q4N24,5(q

5)

where

N21,5(q) =
(−q5, q10; q10)∞

(q2, q8; q10)∞
,(2.7)

N23,5(q) = (ζ5 + ζ45 )
(−q5, q10; q10)∞

(q4, q6; q10)∞
.(2.8)

The terms N2,3(q), N1,5(q), N2,5(q), N4,5(q), N20,3(q), N22,3(q),
N20,5(q), N22,5(q), and N24,5(q) are also products and series in q and follow
from the difference formulas of Lovejoy and Obsurn [23], [24]. However, we
will not need them here.

We will determine dissections for the cranks and other series. In partic-
ular, we will prove the following.

Theorem 2.9.
∞∑
n=0

∞∑
m=−∞

M(m,n)ζm3 q
n = M0,3(q

3) + qM1,3(q
3) + q2M2,3(q

3)

where

M0,3(q) =
(q3; q3)4∞(q2; q2)∞
(q; q)2∞(q6; q6)2∞

,(2.9)

M1,3(q) = −(q6; q6)∞(q3; q3)∞
(q; q)∞

,(2.10)

M2,3(q) = −2
(q6; q6)4∞

(q3; q3)2∞(q2; q2)∞
.(2.11)

Theorem 2.10.

∞∑
n=0

∞∑
m=−∞

M(m,n)ζm5 q
n

= M0,5(q
5) + qM1,5(q

5) + q2M2,5(q
5) + q3M3,5(q

5) + q4M4,5(q
5)

where

M0,5(q) =
(q4, q6, q10; q10)∞

(q, q4; q5)∞(q2, q8; q10)∞
(2.12)

− q(ζ5 + ζ45 )
(q2, q8, q10; q10)∞

(q2, q3; q5)∞(q4, q6; q10)∞
,
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M1,5(q) = (ζ5 + ζ45 )
(q4, q6, q10; q10)∞

(q2, q3; q5)∞(q2, q8; q10)∞
,(2.13)

M2,5(q) = − (q10; q10)∞
(q, q4; q5)∞

,(2.14)

M3,5(q) = −(ζ5 + ζ45 )
(q10; q10)∞

(q2, q3; q5)∞
,(2.15)

M4,5(q) = − (q2, q8, q10; q10)∞
(q, q4; q5)∞(q4, q6; q10)∞

.(2.16)

Theorem 2.11.
∞∑
n=0

∞∑
m=−∞

M2(m,n)ζm3 q
n = M0,3(q

3) + qM1,3(q
3) + q2M2,3(q

3)

where

M20,3(q) =
(q6; q6)10∞(q4; q4)∞(q; q)∞

(q12; q12)4∞(q3; q3)4∞(q2; q2)3∞
,(2.17)

M21,3(q) =
(q6; q6)4∞

(q12; q12)∞(q3; q3)∞(q2; q2)∞
,(2.18)

M22,3(q) = −2
(q12; q12)2∞(q3; q3)2∞(q2; q2)∞

(q6; q6)2∞(q4; q4)∞(q; q)∞
.(2.19)

Theorem 2.12.
∞∑
n=0

∞∑
m=−∞

M2(m,n)ζm5 q
n = M20,5(q

5) + qM21,5(q
5) + q2M22,5(q

5)

+ q3M23,5(q
5) + q4M24,5(q

5)

where

M20,5(q) =
(−q3,−q5,−q7, q10; q10)∞

(−q, q4, q6,−q9; q10)∞
,(2.20)

M21,5(q) =
(−q5, q10; q10)∞

(q2, q8; q10)∞
,(2.21)

M22,5(q) = (ζ5 + ζ45 )
(q2,−q3,−q5,−q7, q8, q10; q10)∞

(−q, q4, q4, q6, q6,−q9; q10)∞
(2.22)

− (−q, q4,−q5, q6,−q9, q10; q10)∞
(q2, q2,−q3,−q7, q8, q8; q10)∞

,

M23,5(q) = (ζ5 + ζ45 )
(−q5, q10; q10)∞

(q4, q6; q10)∞
,(2.23)

M24,5(q) = −(ζ5 + ζ45 )
(−q,−q5,−q9, q10; q10)∞
(q2,−q3,−q7, q8; q10)∞

.(2.24)
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Theorem 2.13.

(−q; q)∞
(q; q)∞

(
1

2
+

∞∑
n=1

(1− ζ3)(1− ζ−13 )(−1)nqn

(1− ζ3qn)(1− ζ−13 qn)

)
= A0(q

3) + qA1(q
3) + q2A2(q

3)

where

A0(q) =
(q3; q3)4∞(q2; q2)∞
2(q; q)2∞(q6; q6)2∞

,(2.25)

A1(q) = −2
(q6; q6)∞(q3; q3)∞

(q; q)∞
,(2.26)

A2(q) = 2
(q6; q6)4∞

(q3; q3)2∞(q2; q2)∞
.(2.27)

Theorem 2.14.

(−q; q)∞
(q; q)∞

(
1

2
+
∞∑
n=1

(1− ζ5)(1− ζ−15 )(−1)nqn

(1− ζ5qn)(1− ζ−15 qn)

)
= B0(q

5) + qB1(q
5) + q2B2(q

5) + q3B3(q
5) + q4B4(q

5)

where

B0(q) =
(q5; q5)2∞(q4, q6; q10)∞

2(q10; q10)∞(q2, q3; q5)2∞
+(ζ5 + ζ−15 )

q(q10; q10)∞
(q3, q4, q6, q7; q10)∞

,(2.28)

B1(q) = (ζ5 + ζ−15 − 1)
(q4, q6, q10; q10)∞

(q2, q8; q10)2∞(q3, q7; q10)∞
,(2.29)

B2(q) = (1− 2ζ5 − 2ζ−15 )
(q10; q10)∞

(q, q9; q10)∞(q4, q6; q10)∞
,(2.30)

B3(q) = − (q10; q10)∞
(q2, q3; q5)∞

,(2.31)

B4(q) = (ζ5 + ζ−15 )
(q2, q8, q10; q10)∞

(q, q9; q10)∞(q4, q6; q10)2∞
.(2.32)

With these dissections, we need only match up the appropriate terms for
each congruence. The congruence for spt(3n) of Theorem 1.2 follows from
using (2.2) and (2.9) to get

N0,3 −M0,3 = 0,

which along with Theorem 2.1 shows that the coefficients of q3n in S(ζ3, q)
are zero.

The congruences for spt1(3n) and spt1(5n) follow from using (2.2), (2.25),
(2.4), and (2.28) to get
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N0,3/2−A0 = 0, N0,5/2−B0 = 0,

and then applying Theorem 2.4.

The congruences for spt2(3n), spt2(3n+ 1), and spt2(5n+ 3) follow from
using (2.2), (2.25), (2.9), (2.3), (2.26), (2.10), (2.5), (2.31), and (2.15) to get

N0,3

2
+A0 −M0,3 = 0,

N1,3

2
+A1 −M1,3 = 0,

N3,5

2
+B3 −M3,5 = 0,

and an application of Theorem 2.3.

The congruences for M2spt(3n+ 1), M2spt(5n+ 1), and M2spt(5n+ 3)
follow from using (2.6), (2.18), (2.7), (2.21), (2.8), and (2.23) to get

N21,3 −M21,3 = 0, N21,5 −M21,5 = 0, N23,5 −M23,5 = 0,

and applying Theorem 2.2.

For Theorem 1.4 we have to do a little better. In particular we will prove
the following.

Theorem 2.15.

S(i, q) =
∞∑
n=1

qn
2 −

∞∑
n=1

(−1)nq2n
2
,

S1(i, q) =
∞∑
n=1

q(2n−1)
2
,

S2(i, q) =
∞∑
n=1

q(2n)
2 −

∞∑
n=1

(−1)nq2n
2
.

Considering just spt1(n), we have∑
n=1

q(2n−1)
2

=

∞∑
n=0

∞∑
m=−∞

NS1
(m,n)imqn

=

∞∑
n=0

(
NS1

(0, 4, n)−NS1
(2, 4, n) + i(NS1

(1, 4, n)−NS1
(3, 4, n))

)
qn

=

∞∑
n=0

(NS1
(0, 4, n)−NS1

(2, 4, n))qn.

But

spt1(n) = NS1
(0, 4, n) +NS1

(1, 4, n) +NS1
(2, 4, n) +NS1

(3, 4, n)

= NS1
(0, 4, n) + 2NS1

(1, 4, n) +NS1
(2, 4, n)

and so we see that

spt1(n) ≡ 1 (mod 2)
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if and only if n is an odd square. The parity of spt(n) and spt2(n) follows
in the same fashion.

In [7] Andrews, the first author, and Liang also showed that NS(m,n),
the coefficients in S(z, q), are nonnegative. The same phenomenon occurs
here.

Theorem 2.16. For all m and n the coefficients NS(m,n), NS1
(m,n),

and NS2
(m,n) are nonnegative.

In Section 3 we give combinatorial interpretations of the series S(z, q),
S1(z, q), S2(z, q), and S2(z, q) in terms of weighted vector partitions and then
prove Theorem 2.16. For S(z, q), S1(z, q) and S2(z, q) we define the spt-crank
in terms of marked overpartitions (see (3.9)). In Theorem 3.8 we give a
combinatorial interpretation of each of the spt-overpartition congruences in
Theorem 1.2 in terms of marked overpartitions. In Section 4 we prove the
theorems on expressing S(z, q), S1(z, q), S2(z, q), and S2(z, q) in terms of
the difference between a rank and crank. In Section 5 we prove the various
dissections. In Section 6 we conclude with remarks on the nonnegativity
of the coefficients of S2(z, q); a recent result by Andrews, Chan, Kim, and
Osburn [5] on the first moments for the rank and crank of overpartitions;
and the remaining spt function of [15].

3. Combinatorial interpretations. In this section we provide com-
binatorial interpretations of the coefficients in the series S(z, q), S1(z, q),
S2(z, q), and S2(z, q). For all four series we provide an interpretation in
terms of certain vector partitions with four components. For the three series
S(z, q), S1(z, q), and S2(z, q) we give two additional interpretations—one in
terms of pairs of partitions, and the other in terms of marked overparti-
tions. This latter interpretation will give interpretations of the congruences
for overpartitions directly in terms of the overpartitions themselves.

3.1. Vector partitions and S-partitions. The coefficients in the se-
ries S(z, q), S1(z, q), S2(z, q), and S2(z, q) can be interpreted in terms of
cranks of vector partitions. This can be done with vectors with four compo-
nents, each a partition with certain restrictions.

We let V = D × P × P × D, where P denotes the set of all parti-
tions and D denotes the set of all partitions into distinct parts. For a par-
tition π we let s(π) denote the smallest part of π (with the convention that
the empty partition has smallest part ∞), #(π) the number of parts in π,
and |π| the sum of the parts of π. For ~π = (π1, π2, π3, π4) ∈ V , we define
the weight ω(~π) = (−1)#(π1)−1, the crank(~π) = #(π2) − #(π3), and the
norm |~π| = |π1| + |π2| + |π3| + |π4|. We say ~π is a vector partition of n if
|~π| = n.
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We then let

S = {(π1, π2, π3, π4) ∈ V : 1 ≤ s(π1) <∞, s(π1) ≤ s(π2), s(π1) ≤ s(π3),
s(π1) < s(π4)}.

Also, S1 and S2 denote the subsets of S with s(π1) odd and even, respectively.

We then see that the number of vector partitions of n in S with crank m
counted according to the weight ω is exactly NS(m,n). Similarly the number
of vector partitions of n in S1 with crank m counted according to the weight
ω is NS1

(m,n), and the number of vector partitions of n in S2(m,n) with
crank m counted according to the weight ω is NS2

(m,n).

We let no(π) and ne(π) denote the number of odd and even parts, re-
spectively, of π. We let

S2 = {(π1, π2, π3, π4) ∈ S : no(π1) = 0, no(π2) = 0, no(π3) = 0, ne(π4) = 0}.

Then NS2(m,n) is the number of vector partitions of n from S2 with crank
m counted according to the weight ω.

For each of the four spt functions, we give an example to illustrate a
congruence.

Example 3.1 (n = 3). The four overpartitions of 3 with smallest part
not overlined are 3, 2 + 1, 2 + 1, and 1 + 1 + 1. We then have spt(3) = 6.
There are eight vector partitions of 3 from S. These vector partitions along
with their weights and cranks are given as follows:

S-vector partition Weight Crank mod 3

[1,−,−, 2] 1 0 0

[1,−, 1 + 1,−] 1 −2 1

[1,−, 2,−] 1 −1 2

[1, 1, 1,−] 1 0 0

[1, 1 + 1,−,−] 1 2 2

[1, 2,−,−] 1 1 1

[1 + 2,−,−] −1 0 0

[3,−,−,−] 1 0 0

Here we have used − to indicate the empty partition. We see that

NS(0, 3, 3) = NS(1, 3, 3) = NS(2, 3, 3) = 2 = 1
3spt(3).

We note that the overpartitions of 3 all have smallest part odd, so that
spt1(3) = 6. Moreover, all vector partitions of 3 from S are also from S1.
Thus we also have

NS1
(0, 3, 3) = NS1

(1, 3, 3) = NS1
(2, 3, 3) = 2 = 1

3spt1(3).
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Example 3.2 (n = 4). The two overpartitions of 4 with smallest part
even and not overlined are 4 and 2+2, so spt2(4) = 3. There are three vector
partitions of 4 from S2:

S2-vector partition Weight Crank mod 3

[2, 2,−,−] 1 1 1

[2,−, 2,−] 1 −1 2

[4,−,−,−] 1 0 0

We see that NS2
(0, 3, 4) = NS2

(1, 3, 4) = NS2
(2, 3, 4) = 1 = 1

3spt2(4).

Example 3.3 (n = 6). The three partitions of 6 without repeated odd
parts and with smallest part even are 6, 4+2, 2+2+2, so that M2spt(6) = 5.
There are seven vector partitions of 6 from S2:

S2-vector partition Weight Crank mod 5

[2,−, 4,−] 1 −1 4

[2,−, 2 + 2,−] 1 −2 3

[2, 2, 2,−] 1 0 0

[2, 4,−,−] 1 1 1

[2, 2 + 2,−,−] 1 2 2

[4 + 2,−,−,−] −1 0 0

[6,−,−,−] 1 0 0

We see that

NS2(0, 5, 6) = NS2(1, 5, 6) = NS2(2, 5, 6) = NS2(3, 5, 6) = NS2(4, 5, 6)

= 1 = 1
5 M2spt(6).

3.2. SP-partition pairs. In this section we prove that for all m, n,

(3.1) NS(m,n) ≥ 0,

and provide a combinatorial interpretation in terms of partition pairs.

3.2.1. Proof of nonnegativity. We compute

S(z, q) =

∞∑
n=1

∑
m

NS(m,n)zmqn(3.2)

=

∞∑
n=1

qn(qn+1; q)∞
(zqn; q)∞(z−1qn; q)∞

(−qn+1; q)∞

=

∞∑
n=1

qn(q2n; q)∞
(zqn; q)∞(z−1qn; q)∞

(q2n+2; q2)∞
(q2n; q)∞

=
∞∑
n=1

qn
∞∑
k=0

(z−1qn)k

(zqn+k; q)∞(q)k

1

(1− q2n)

1

(q2n+1; q2)∞
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by [11, Prop. 4.1]. The inequality (3.1) clearly follows. Replacing n by 2n+1
and 2n in the second line of (3.2) gives NS1

(m,n) ≥ 0 and NS2
(m,n) ≥ 0,

respectively.

3.2.2. The sptcrank in terms of partition pairs. We define

SP = {~λ = (λ1, λ2) ∈ P × P : 0 < s(λ1) ≤ s(λ2) and all parts of λ2

that are ≥ 2s(λ1) + 1 are odd}.

First we show that

(3.3) spt(n) =
∑
~λ∈SP

|~λ|=|λ1|+|λ2|=n

1.

Indeed,

∞∑
n=1

spt(n)qn =

∞∑
n=1

qn(−qn+1; q)∞
(1− qn)2(qn+1; q)∞

=
∞∑
n=1

qn

(1− qn)2(qn+1; q)∞

(q2n+2; q2)∞
(qn+1; q)∞

=

∞∑
n=1

qn

(qn; q)∞

1

(1− qn)(1− qn+1) · · · (1− q2n)(q2n+1; q2)∞

=
∞∑
n=1

∑
λ1∈P
s(λ1)=n

q|λ1|
∑
λ2∈P
s(λ2)≥n

all parts inλ2≥2n+1are odd

q|λ2|

=

∞∑
n=1

∑
~λ=(λ1,λ2)∈SP

s(λ1)=n

q|
~λ| =

∑
~λ∈SP

q|
~λ|,

and (3.3) follows.

We let SP1 be the set of ~λ = (λ1, λ2) ∈ SP with s(λ1) odd and let SP2

be the set of ~λ = (λ1, λ2) ∈ SP with s(λ1) even. Then in the same fashion
we have

spt1(n) =
∑
~λ∈SP1

|~λ|=n

1, spt2(n) =
∑
~λ∈SP2

|~λ|=n

1.

Next we define a crank of partition pairs ~λ = (λ1, λ2) ∈ SP by interpret-

ing the coefficient of zmqn in (3.2). For ~λ = (λ1, λ2) ∈ SP let
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k(~λ) = # of parts j in λ2 such that s(λ1) ≤ j ≤ 2s(λ1)− 1,

and

(3.4) crank(~λ) =

{
(# of parts ≥ s(λ1) + k of λ1)− k if k > 0,

(# of parts of λ1)− 1 if k = 0,

where k = k(~λ). We have

Theorem 3.4.

NS(m,n) = # of ~λ = (λ1, λ2) ∈ SP with |~λ| = n and crank(~λ) = m,(3.5)

NS1
(m,n) = # of ~λ = (λ1, λ2) ∈ SP1 with |~λ| = n and crank(~λ) = m,(3.6)

NS2
(m,n) = # of ~λ = (λ1, λ2) ∈ SP2 with |~λ| = n and crank(~λ) = m.(3.7)

Proof. From (3.2) we have

S(z, q) =

∞∑
n=1

∑
m

NS(m,n)zmqn

=
∞∑
n=1

∞∑
k=0

qn

(1− qn) · · · (1− qn+k−1)(zqn+k; q)∞

× z−kqnk
[
n+ k − 1

k

]
1

(1− q2n)

1

(q2n+1; q2)∞

=

∞∑
n=1

qn

(zqn; q)∞

1

(1− q2n)

1

(q2n+1; q2)∞

+
∞∑
n=1

∞∑
k=1

qn

(1− qn) · · · (1− qn+k−1)(zqn+k; q)∞

× z−kqnk
[
n+ k − 1

k

]
1

(1− q2n)
1(q2n+1; q2)∞.

We note that the q-binomial coefficient
[
n+k−1

k

]
is the generating function

for partitions into parts ≤ n−1 with number of parts ≤ k. Thus we see that
qnk
[
n+k−1

k

]
is the generating function for partitions into exactly k parts j,

where n ≤ j ≤ 2n− 1. Hence

S(z, q) =
∞∑
n=1

∑
~λ=(λ1,λ2)∈SP
s(λ1)=n, k(~λ)=0

z#(λ1)−1q|
~λ| +

∞∑
n=1

∞∑
k=1

∑
~λ=(λ1,λ2)∈SP
s(λ1)=n, k(~λ)=k

zcrank(
~λ)q|

~λ|

=
∑
~λ∈SP

zcrank(
~λ)q|

~λ|.
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The result (3.5) follows. The results (3.6) and (3.7) follow in a similar fash-
ion.

3.2.3. Examples. We illustrate our combinatorial interpretation of spt,
spt1, spt2 congruences in terms of the crank of SP-partition pairs.

Example 3.5 (n = 3). The overpartitions of 3 with smallest parts not
overlined are 3, 2 + 1, 2 + 1, 1 + 1 + 1, so that spt(3) = 6. There are six
SP-partition pairs of 3:

SP-partition pair k crank mod 3

[3,−] 0 0 0

[2 + 1,−] 0 1 1

[1 + 1 + 1,−] 0 2 2

[1 + 1, 1] 1 −1 2

[1, 1 + 1] 2 −2 1

[1, 2] 0 0 0

We see that NS(0, 3, 3) = NS(1, 3, 3) = NS(2, 3, 3) = 2 = 1
3spt(3).

Example 3.6 (n = 5). There are ten overpartitions of 5 with smallest
parts odd and not overlined:

5, 4 + 1, 4 + 1, 3 + 1 + 1, 3 + 1 + 1

2 + 2 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1,

so that spt1(5) = 20. There are 20 SP1-partition pairs of 5:

SP1-partition pair k crank mod 5

[1, 1 + 1 + 1 + 1] 4 −4 1

[1, 2 + 1 + 1] 2 −2 3

[1, 2 + 2] 0 0 0

[1, 3 + 1] 1 −1 4

[1 + 1, 1 + 1 + 1] 3 −3 2

[1 + 1, 2 + 1] 1 −1 4

[1 + 1, 3] 0 1 1

[1 + 1 + 1, 1 + 1] 2 −2 3

[1 + 1 + 1, 2] 0 2 2

[2 + 1, 1 + 1] 2 −2 3

[2 + 1, 2] 0 1 1

[1 + 1 + 1 + 1, 1] 1 −1 4

[2 + 1 + 1, 1] 1 0 0

[3 + 1, 1] 1 0 0

[1 + 1 + 1 + 1 + 1,−] 0 4 4
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SP1-partition pair k crank mod 5

[2 + 1 + 1 + 1,−] 0 3 3

[2 + 2 + 1,−] 0 2 2

[3 + 1 + 1,−] 0 2 2

[4 + 1,−] 0 1 1

[5,−] 0 0 0

We see that

NS1
(0, 5, 5) = NS1

(1, 5, 5) = NS1
(2, 5, 5) = NS1

(3, 5, 5) = NS1
(4, 5, 5)

= 4 = 1
5spt1(5).

Example 3.7 (n = 8). There are nine overpartitions of 8 with smallest
parts even and not overlined:

8, 6 + 2, 6 + 2, 3 + 3 + 2, 3 + 3 + 2,

4 + 4, 4 + 2 + 2, 4 + 2 + 2, 2 + 2 + 2 + 2,

so that spt2(8) = 15. There are 15 SP2-partition pairs of 8:

SP2-partition pair k crank mod 5

[2, 2 + 2 + 2] 3 −3 2

[2, 3 + 3] 2 −2 3

[2, 4 + 2] 1 −1 4

[2 + 2, 2 + 2] 2 −2 3

[2 + 2, 4] 0 1 1

[4, 4] 1 −1 4

[3 + 2, 3] 1 0 0

[2 + 2 + 2, 2] 1 −1 4

[4 + 2, 2] 1 0 0

[2 + 2 + 2 + 2,−] 0 3 3

[3 + 3 + 2,−] 0 2 2

[4 + 2 + 2,−] 0 2 2

[4 + 4,−] 0 1 1

[6 + 2,−] 0 1 1

[8,−] 0 0 0

We see that

NS2
(0, 5, 8) = NS2

(1, 5, 8) = NS2
(2, 5, 8) = NS2

(3, 5, 8) = NS2
(4, 5, 8)

= 3 = 1
5spt2(8).

3.3. SPT-crank for marked overpartitions. Andrews, Dyson, and
Rhoades [6] defined a marked partition as a pair (λ, k) where λ is a par-
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tition and k is an integer identifying one of its smallest parts; that is,
k = 1, 2, . . . , ν(λ), where ν(λ) is the number of smallest parts of λ. They
asked for a statistic like the crank which would divide the relevant marked
partitions into t equal classes for t = 5, 7, 13, thus explaining the congruences
(1.1), (1.2), (1.3). This problem was solved by Chan, Ji and Zang [17] for the
cases t = 5, 7. They defined an spt-crank for double-marked partitions and
found a bijection between double-marked partitions and marked partitions.
It is an open problem to define the spt-crank directly in terms of marked
partitions. In this section we solve the analogous problem for overpartitions
by defining a statistic on marked overpartitions.

3.3.1. Definition of sptcrank for marked overpartitions. We define a
marked overpartition of n as a pair (π, j) where π is an overpartition of n in
which the smallest part is not overlined, and j is an integer 1 ≤ j ≤ ν(π),
where as above ν(π) is the number of smallest parts of π. It is clear that

(3.8) spt(n) = # of marked overpartitions (π, j) of n.

For example, there are six marked overpartitions of 3:

(2 + 1, 1), (2 + 1, 1), (3, 1),

(1 + 1 + 1, 1), (1 + 1 + 1, 2), (1 + 1 + 1, 3),

so that spt(3) = 6.
To define the sptcrank of a marked overpartition we first need to define

a function k(m,n). For a positive integer m we write

m = b(m)2j(m),

where b(m) is odd and j(m) ≥ 0. For integers m,n such that m ≥ n+ 1, we
define j0(m,n) to be the smallest nonnegative integer j0 such that

b(m)2j0 ≥ n+ 1.

We define

k(m,n) =


0 if b(m) ≥ 2n,

2j(m)−j0(m,n) if b(m)2j0(m,n) < 2n,

0 if b(m)2j0(m,n) = 2n.

Note that if j0(m,n) ≥ 1 then b(m)2j0(m,n) ≤ 2n, so that the function
k(m,n) is well-defined. For a partition π : m1 +m2 + · · ·+ma into distinct
parts m1 > m2 > · · · > ma ≥ n+ 1 we define the function

k(π, n) =

a∑
j=1

k(mj , n) =
∑
m∈π

k(m,n).

For a marked overpartition (π, j) we let π1 be the partition formed by the
nonoverlined parts of π, and π2 be the partition (into distinct parts) formed
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by the overlined parts of π, so that s(π2) > s(π1). We define a function

k(π, j) = ν(π1)− j + k(π2, s(π1)).

Finally we can now define

(3.9) sptcrank(π, j)

=

{
(# of parts ≥ s(π1) + k of π1)− k if k = k(π, j) > 0,

(# of parts of π1)− 1 if k = k(π, j) = 0.

Here is our main theorem.

Theorem 3.8.

(i) The residue of the sptcrank modulo 3 divides the marked overpar-
titions of 3n into three equal classes.

(ii) The residue of the sptcrank modulo 3 divides the marked overpar-
titions of 3n and of 3n+ 1 with smallest part even into three equal
classes.

(iii) The residue of the sptcrank modulo 5 divides the marked overpar-
titions of 5n+ 3 with smallest part even into five equal classes.

(iv) The residue of the sptcrank modulo 3 divides the marked overpar-
titions of 3n with smallest part odd into three equal classes.

(v) The residue of the sptcrank modulo 5 divides the marked overpar-
titions of 5n with smallest part odd into five equal classes.

(vi) The residue of the sptcrank modulo 4 divides the marked overpar-
titions of n into four classes with two classes of equal size and the
remaining two classes are of equal size unless n is a square or twice
a square in which case the remaining two classes differ in size by
exactly 1.

(vii) The residue of the sptcrank modulo 4 divides the marked overparti-
tions of n with smallest part odd into four classes with two classes
of equal size and the remaining two classes of equal size unless n
is an odd square in which case the remaining two classes differ in
size by exactly 1.

(viii) The residue of the sptcrank modulo 4 divides the marked overparti-
tions of n with smallest part even into four classes with two classes
of equal size and the remaining two classes are of equal size unless
n is an even square or twice a square in which case the remaining
two classes differ in size by exactly 1.

3.3.2. Examples

Example 3.9 (n = 3). There are six marked overpartitions of 3 so that
spt(3) = 6. Here we abbreviate k(π2, s(π1)) to just k.
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(π, j) π1 π2 ν(π1) k k sptcrank mod 3 mod 4

(2 + 1, 1) 1 2 1 0 0 0 0 0

(1 + 1 + 1, 1) 1 + 1 + 1 – 3 0 2 −2 1 2

(1 + 1 + 1, 2) 1 + 1 + 1 – 3 0 1 −1 2 3

(1 + 1 + 1, 3) 1 + 1 + 1 – 3 0 0 2 2 2

(2 + 1, 1) 2 + 1 – 1 0 0 1 1 1

(3, 1) 3 – 1 0 0 0 0 0

We see that the residue of the sptcrank modulo 3 divides the marked over-
partitions of 3 into three equal classes. This illustrates Theorem 3.8(i). We
see that the residue of the sptcrank modulo 4 divides the marked overparti-
tions of 3 into four classes, two of which are both of size 2 and the other two
are both of size 1. This illustrates Theorem 3.8(vi), noting that 3 is neither
a square nor twice a square.

Example 3.10 (n = 5). There are 15 marked overpartitions of 8 with
smallest part even so that spt2(8) = 15. Here we abbreviate ν = ν(π1) and
k = k(π2, s(π1)).

(π, j) π1 π2 ν k k sptcrank mod 4 mod 5

(6 + 2, 1) 2 6 1 2 2 −2 2 3

(4 + 2 + 2, 1) 2 + 2 4 2 0 1 −1 3 4

(4 + 2 + 2, 2) 2 + 2 4 2 0 0 1 1 1

(3 + 3 + 2, 1) 3 + 2 3 1 1 1 0 0 0

(2 + 2 + 2 + 2, 1) 2 + 2 + 2 + 2 – 4 0 3 −3 1 2

(2 + 2 + 2 + 2, 2) 2 + 2 + 2 + 2 – 4 0 2 −2 2 3

(2 + 2 + 2 + 2, 3) 2 + 2 + 2 + 2 – 4 0 1 −1 3 4

(2 + 2 + 2 + 2, 4) 2 + 2 + 2 + 2 – 4 0 0 3 3 3

(3 + 3 + 2, 1) 3 + 3 + 2 – 1 0 0 2 2 2

(4 + 2 + 2, 1) 4 + 2 + 2 – 2 0 1 0 0 0

(4 + 2 + 2, 2) 4 + 2 + 2 – 2 0 0 2 2 2

(6 + 2, 1) 6 + 2 – 1 0 0 1 1 1

(4 + 4, 1) 4 + 4 – 2 0 1 −1 3 4

(4 + 4, 2) 4 + 4 – 2 0 0 1 1 1

(8, 1) 8 – 1 0 0 0 0 0

We see that the residue of the sptcrank modulo 5 divides the marked over-
partitions of 8 with even smallest part into five equal classes. This illustrates
Theorem 3.8(iii). We see that the residue of the sptcrank modulo 4 divides
the marked overpartitions of 8 with even smallest part into four classes, two
of which are both of size 4 and the other two are of sizes 3 and 4. This
illustrates Theorem 3.8(viii), noting that 8 is twice a square.
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Example 3.11 (n = 5). There are 20 marked overpartitions of 5 with
smallest part odd so that spt1(5) = 20. Again we abbreviate ν = ν(π1) and
k = k(π2, s(π1)).

(π, j) π1 π2 ν k k sptcrank mod 5

(4 + 1, 1) 1 4 1 0 0 0 0

(3 + 1 + 1, 1) 1 + 1 3 2 0 1 −1 4

(3 + 1 + 1, 2) 1 + 1 3 2 0 0 1 1

(2 + 1 + 1 + 1, 1) 1 + 1 + 1 2 3 0 2 −2 3

(2 + 1 + 1 + 1, 2) 1 + 1 + 1 2 3 0 1 −1 4

(2 + 1 + 1 + 1, 3) 1 + 1 + 1 2 3 0 0 2 2

(2 + 2 + 1, 1) 2 + 1 2 1 0 0 1 1

(1 + 1 + 1 + 1 + 1, 1) 1 + 1 + 1 + 1 + 1 – 5 0 4 −4 1

(1 + 1 + 1 + 1 + 1, 2) 1 + 1 + 1 + 1 + 1 – 5 0 3 −3 2

(1 + 1 + 1 + 1 + 1, 3) 1 + 1 + 1 + 1 + 1 – 5 0 2 −2 3

(1 + 1 + 1 + 1 + 1, 4) 1 + 1 + 1 + 1 + 1 – 5 0 1 −1 4

(1 + 1 + 1 + 1 + 1, 5) 1 + 1 + 1 + 1 + 1 – 5 0 0 4 4

(2 + 1 + 1 + 1, 1) 2 + 1 + 1 + 1 – 3 0 2 −2 3

(2 + 1 + 1 + 1, 2) 2 + 1 + 1 + 1 – 3 0 1 0 0

(2 + 1 + 1 + 1, 3) 2 + 1 + 1 + 1 – 3 0 0 3 3

(2 + 2 + 1, 1) 2 + 2 + 1 – 1 0 0 2 2

(3 + 1 + 1, 1) 3 + 1 + 1 – 2 0 1 0 0

(3 + 1 + 1, 2) 3 + 1 + 1 – 2 0 0 2 2

(4 + 1, 1) 4 + 1 – 1 0 0 1 1

(5, 1) 5 – 1 0 0 0 0

We see that the residue of the sptcrank modulo 5 divides the marked over-
partitions of 5 with odd smallest part into five equal classes. This illustrates
Theorem 3.8(v).

3.3.3. Proof of the main result

Bijection 3.12. Let M denote the set of marked overpartitions. There
is a weight-preserving bijection Φ :M→ SP such that

k(π, j) = k(~λ),(3.10)

sptcrank(π, j) = crank(~λ),(3.11)

where ~λ = (λ1, λ2) = Φ(π, j).

Once this theorem is proved, the main Theorem 3.8 will follow from
Theorems 2.1, 2.3, 2.4, and 3.4 and the appropriate dissections listed in
Section 2.

Before we can construct the bijection Φ, we need to extend Euler’s Theo-
rem that the number of partitions of n into distinct parts equals the number
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of partitions of n into odd parts. Let n be a nonnegative integer. Let Dn
denote the set of partitions into distinct parts ≥ n + 1. Let Pn denote the
set of partitions into parts ≥ n + 1 in which all parts > 2n are odd. Then
we have

Theorem 3.13. Let n ≥ 0 and ` ≥ 1. Then the number of partitions of
` from Dn equals the number of partitions of ` from Pn.

Remark 3.14. Euler’s Theorem is the case n = 0.

Proof of Theorem 3.13. We compute

1 +
∑
π∈Dn

q|π| =

∞∏
j=n+1

(1 + qj)

=

∞∏
j=n+1

(1 + qj)(1− qj)
1− qj

=

∞∏
j=n+1

1− q2j

1− qj

=
1

(1− qn+1)(1− qn+2) · · · (1− q2n)(q2n+1; q2)∞

= 1 +
∑
π∈Pn

q|π|.

The result follows by considering the coefficient of q` on both sides of this
identity.

We require a bijective proof of this theorem. Glaisher (see [27, p. 23]) has
a well-known straightforward bijective proof of Euler’s Theorem. We extend
this in a natural way to obtain a bijective proof of our theorem.

Bijection 3.15. Let n ≥ 1. There is a weight-preserving bijection

Ψn : Dn → Pn, Ψn(π) = λ,

such that

(3.12) k(π, n) = # of parts ≤ 2n− 1 of λ.

We define Ψn as follows. Let π ∈ Dn. We describe the image of each part
m of π. We note that m ≥ n+ 1 and as before we write

m = b(m)2j(m),

where b(m) is odd and j(m) ≥ 0, we observe j(m) ≥ j0(m,n). Let

(3.13) m 7−→

2j(m)−j0(m,n) times︷ ︸︸ ︷
2j0(m,n)b(m), 2j0(m,n)b(m), . . . , 2j0(m,n)b(m),

which preserves the weight since

m = (2j(m)−j0(m,n))(2j0(m,n)b(m)).
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Recall that j0(m,n) is the smallest nonnegative integer j0 such that

b(m)2j0 ≥ n+ 1;

we see that each image part is ≥ n+1. If an image part 2j0(m,n)b(m) is even
then j0(m,n) ≥ 1 and

2j0(m,n)b(m) ≤ 2n,

as noted before, so that each even image part is ≤ 2n. Also any odd image
part satisfies 2j0(m,n)b(m) = b(m) ≥ n+ 1. This induces a well-defined map

Ψn : Dn → Pn.

We show this map is onto. Let λ be a partition in Pn. Let p be a part of λ
and let µp denote its multiplicity. Then we write

p = b(p)2j0(p,n) ≥ n+ 1,

and note j(p) = j0(p, n) since p is a part of λ and λ ∈ Pn. Now we write µp
in binary form:

µp =
∑
a

2µp(a).

This part p with multiplicity µp arises from a partition in Dn with parts
b(p)2j0(p,n)+µp(a) under the action of Ψn. We see that Ψn is onto and Theorem
3.13 implies that it is a weight-preserving bijection.

Next we prove (3.12). We let
∼
k = # of parts ≤ 2n− 1 of λ.

We note that if m is a part of π then as before

m = b(m)2j(m) ≥ n+ 1,

and j(m) ≥ j0(m,n). Under the map Ψn the image of m is given by (3.13).

This contributes 2j(m)−j0(m,n) to
∼
k provided b(m)2j0(m,n) < 2n, and (3.12)

follows.

Example 3.16 (n = 3). We illustrate the bijection Ψn when n = 3.
There are six partitions of 16 in D3, the set of partitions into distinct parts
≥ 4:

7 + 5 + 4→ 7 · 20, 5 · 20, 1 · 22→ 7 · 20, 5 · 20, 1 · 22 → 7 + 5 + 4,

9 + 7 → 9 · 20, 7 · 20 → 9 · 20, 7 · 20 → 9 + 7,

10 + 6 → 5 · 21, 3 · 21 → 5 · 20, 5 · 20, 3 · 21 → 6 + 5 + 5,

11 + 5 → 11 · 20, 5 · 20 → 11 · 20, 5 · 20 → 11 + 5,

12 + 4 → 3 · 22, 1 · 22 → 3 · 21, 3 · 21, 1 · 22 → 6 + 6 + 4,

16 → 1 · 24 → 1 · 22, 1 · 22, 1 · 22, 1 · 22→ 4 + 4 + 4 + 4.
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Each partition has been mapped into P3, the set of partitions with smallest
part ≥ 4 and all parts > 6 odd.

We can now construct our weight-preserving bijection Φ : M → SP.
Suppose (π, j) is a marked overpartition with 1 ≤ j ≤ ν(π). As described
before, we let π1 be the partition formed by the nonoverlined parts of π,
and π2 be the partition (into distinct parts) formed by the overlined parts
of π, so that

s(π2) > s(π1) = s(π) = n.

We let

π1 = (

ν︷ ︸︸ ︷
n, . . . , n, n2, n3, . . . , na), π2 = (m1,m2, . . . ,mb),

where

n < n2 ≤ n3 ≤ · · · ≤ na, n < m1 < m2 < · · · < mb.

Define

Φ(π, j) = ~λ = (λ1, λ2),

where

(3.14) λ1 = (

j︷ ︸︸ ︷
n, . . . , n, n2, n3, . . . , na), λ2 = (

ν−j︷ ︸︸ ︷
n, . . . , n, Ψn(π2)).

The map Φ is clearly weight-preserving. We see that s(λ1) = n and λ1 ∈ P.
In addition, Ψn(π2) is a partition into parts ≥ n+ 1 with all parts ≥ 2n+ 1
being odd so that λ2 ∈ SP and the map Φ is well-defined. By (3.3) and (3.8)
we need only show that Φ is onto.

Let
~λ = (λ1, λ2) ∈ SP.

Let n = s(λ1) so that λ1, λ2 ∈ P, s(λ2) ≥ s(λ1) = n and all parts ≥ 2n+ 1
of λ2 are odd. Let j = ν(λ1), and let ` denote the number of parts of λ2
that are equal to n, so that j ≥ 1 and ` ≥ 0. Remove any parts of λ2 equal

to n to form the partition
∼
λ2 and add the parts removed from λ2 to λ1 to

form the partition π1. Now let π2 = Ψ−1n (
∼
λ2) so that π2 is a partition into

distinct parts ≥ n + 1. Form the partition π by overlining the parts of π2
and adding them to π1. We see that (π, j) ∈M, 1 ≤ j ≤ ν(π) = j + ` and

Φ(π, j) = ~λ = (λ1, λ2).

The map Φ is onto and hence a bijection.

Now we prove (3.10), (3.11). As before, we let

Φ(π, j) = ~λ = (λ1, λ2),
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where λ1, λ2 are given in (3.14), so that s(λ1) = n, and 1 ≤ j ≤ ν(π) =
ν(π1). Then

k(~λ) = ν − j + (# of parts ≤ 2n− 1 of Ψn(π2))

= ν(π1)− j + k(π2, n) (by (3.12))

= ν(π1)− j + k(π2, s(π1)) = k(π, j),

which proves (3.10). Finally, from (3.4) we have

crank(~λ) =

{
(# of parts ≥ s(π1) + k of π1)− k if k > 0,

(# of parts of π1)− 1 if k = 0,

where k=k(π, j), since k(π, j)=k(~λ), and if k=k(π, j) = 0, then ν(π1) = j
and k(π2, s(π1)) = 0, in which case the number of parts of π1 equals the
number of parts of λ1. Hence we have

crank(~λ) = sptcrank(π, j),

which is (3.11). This completes the proof of our main result.

4. Proofs of Theorems 2.1–2.4. These four proofs all follow the same
method. The generating function for the rank series is rewritten using Wat-
son’s transformation and then the two-variable series matches the difference
of a rank and crank by Bailey’s Lemma.

We recall that a pair of sequences of functions, (αn, βn), forms a Bailey
pair for (a, q) if

βn =
n∑
r=0

αr
(q; q)n−r(aq; q)n+r

.

The limiting case of Bailey’s Lemma shows for a Bailey pair (αn, βn) that

∞∑
n=0

(ρ1, ρ2; q)n

(
aq

ρ1ρ2

)n
βn =

(aq/ρ1, aq/ρ2; q)∞
(aq, aq/ρ1ρ2; q)∞

∞∑
n=0

(ρ1, ρ2; q)n
( aq
ρ1ρ2

)n
αn

(aq/ρ1, aq/ρ2; q)n
.

Proof of Theorem 2.1. We use the Bailey pair E(1) of [30, p. 469] for
(1, q) given by

αn =

{
1, n = 0,

(−1)n2qn
2
, n ≥ 1,

βn =
1

(q2; q2)n
.

Then by Bailey’s Lemma we have
∞∑
n=0

(z, z−1; q)nq
n

(−q, q; q)n
=

(zq, z−1q; q)∞
(q, q; q)∞

(
1 +

∞∑
n=1

(z, z−1; q)n(−1)n2qn
2+n

(zq, z−1q; q)n

)

=
(zq, z−1q; q)∞

(q, q; q)∞

(
1 + 2

∞∑
n=1

(1− z)(1− z−1)(−1)nqn
2+n

(1− zqn)(1− z−1qn)

)
.
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But then

S(z, q) =
∞∑
n=1

qn(−qn+1, qn+1; q)∞
(zqn, z−1qn; q)∞

=
(−q, q; q)∞
(z, z−1; q)∞

∞∑
n=0

(z, z−1; q)nq
n

(−q, q; q)n
− (−q, q; q)∞

(z, z−1; q)∞

=
(−q, q, zq, z−1q; q)∞

(z, z−1, q, q; q)∞

(
1 + 2

∞∑
n=1

(1− z)(1− z−1)(−1)nqn
2+n

(1− zqn)(1− z−1qn)

)
− (−q, q; q)∞

(z, z−1; q)∞

=
(−q; q)∞

(1− z)(1− z−1)(q; q)∞

(
1 + 2

∞∑
n=1

(1− z)(1− z−1)(−1)nqn
2+n

(1− zqn)(1− z−1qn)

)
− (q2; q2)∞

(z, z−1; q)∞

=
1

(1− z)(1− z−1)

×
( ∞∑
n=0

∞∑
m=−∞

N(m,n)zmqn −
∞∑
n=0

∞∑
m=−∞

M(m,n)zmqn
)
.

Proof of Theorem 2.2. Before using a Bailey pair, we will apply a limiting
case of Watson’s transformation to the generating function of N2(m,n). We
recall that Watson’s transformation gives

∞∑
n=0

(aq/bc, d, e; q)n
(aq
de

)n
(q, aq/b, aq/c; q)n

=
(aq/d, aq/e; q)∞
(aq, aq/de; q)∞

∞∑
n=0

(a,
√
aq,−

√
aq, b, c, d, e; q)n(aq)2n(−1)nqn(n−1)/2

(q,
√
a,−
√
a, aq/b, aq/c, aq/d, aq/e; q)n(bcde)n

.

Applying this with q 7→ q2, a = 1, b = z, c = z−1, d = −q and e → ∞ we
get

∞∑
n=0

qn
2 (−q; q2)n
(zq2; q2)n(z−1q2; q2)n

= lim
e→∞

∞∑
n=0

(q2,−q, e; q2)n(−1)ne−nqn

(q2, z−1q2, zq2; q2)n

=
(−q; q2)∞
(q2; q2)∞

(
1 + lim

a→1, e→∞

∞∑
n=1

(1− a)(−q2, z, z−1, e; q2)nqn
2+2n

(1−
√
a)(−1, z−1q2, zq2; q2)nen

)

=
(−q; q2)∞
(q2; q2)∞

(
1 +

∞∑
n=1

(1 + q2n)(1− z)(1− z−1)(−1)nq2n
2+n

(1− zq2n)(1− z−1q2n)

)
.
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Using one of the unlabeled Bailey pairs in [30, p. 468] we have, after
replacing q by q2, a Bailey pair for (1, q2) given by

αn =

{
1, n = 0,

(−1)nq2n
2
(qn + q−n), n ≥ 1,

βn =
1

(−q, q2; q2)n
.

Then by Bailey’s Lemma we deduce that

∞∑
n=0

(z, z−1; q2)nq
2n

(−q, q2; q2)n

=
(zq2, z−1q2; q2)∞

(q2, q2; q2)∞

(
1 +

∞∑
n=1

(z, z−1; q2)n(−1)nq2n
2+2n(qn + q−n)

(zq2, z−1q2; q2)n

)

=
(zq2, z−1q2; q2)∞

(q2, q2; q2)∞

(
1 +

∞∑
n=1

(1− z)(1− z−1)(−1)nq2n
2+2n(qn + q−n)

(1− zq2n)(1− z−1q2n)

)
.

But then

S2(z, q) =
∞∑
n=1

q2n(q2n+2,−q2n+1; q2)∞
(zq2n, z−1q2n; q2)∞

=
(−q, q2; q2)∞
(z, z−1; q2)∞

∞∑
n=0

(z, z−1; q2)nq
2n

(−q, q2; q2)n
− (−q, q2; q2)∞

(z, z−1; q2)∞

=
(−q, q2, zq2, z−1q2; q2)∞

(z, z−1, q2, q2; q2)∞

×
(

1 +

∞∑
n=1

(1− z)(1− z−1)(−1)nq2n
2+2n(qn + q−n)

(1− zq2n)(1− z−1q2n)

)
− (−q, q2; q2)∞

(z, z−1; q2)∞

=
(−q; q2)∞

(1− z)(1− z−1)(q2; q2)∞

×
(

1 +

∞∑
n=1

(1− z)(1− z−1)(−1)nq2n
2+n(q2n + 1)

(1− zq2n)(1− z−1q2n)

)
− (−q, q2; q2)∞

(1− z)(1− z−1)(zq2, z−1q2; q2)∞

=
1

(1− z)(1− z−1)

( ∞∑
n=0

∞∑
m=−∞

N2(m,n)zmqn −M2(m,n)zmqn
)
.
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Proof of Theorem 2.3. We have

S2(z, q) =
∞∑
n=1

q2n(−q2n+1, q2n+1; q)∞
(zq2n, z−1q2n; q)∞

=
(−q, q; q)∞
(z, z−1; q)∞

∞∑
n=1

q2n(z, z−1; q)2n
(−q, q; q)2n

=
(−q, q; q)∞
(z, z−1; q)∞

∞∑
n=0

q2n(z, z−1; q)2n
(−q, q; q)2n

− (−q, q; q)∞
(z, z−1; q)∞

.

Using the Bailey pair in proof of Theorem 2.1 along with the Bailey pair
E(2) for (1, q) given by

αn =

{
1, n = 0,

2(−1)n, n ≥ 1,
βn =

(−1)n

(−q, q; q)n
(see [30, p. 469]), we have the Bailey pair

αn =

{
1, n = 0,

(−1)n(1 + qn
2
), n ≥ 1,

βn =
1

2(q2; q2)n
+

(−1)n

2(q2; q2)n
=

{
1/(q2; q2)n, n ≡ 0 (mod 2),

0, n ≡ 1 (mod 2).

Thus
∞∑
n=0

q2n(z, z−1; q)2n
(−q, q; q)2n

=
∞∑
n=0

(z, z−1; q)nq
nβn =

(zq, z−1q; q)∞
(q, q; q)∞

∞∑
n=0

(z, z−1; q)nq
nαn

(zq, z−1q; q)n

=
(zq, z−1q; q)∞

(q, q; q)∞

(
1 +

∞∑
n=1

(1− z)(1− z−1)(−1)nqn(1 + qn
2
)

(1− zqn)(1− z−1qn)

)
.

And so

S2(z, q)

=
(−q; q)∞

(1− z)(1− z−1)(q; q)∞

(
1 +

∞∑
n=1

(1− z)(1− z−1)(−1)nqn(1 + qn
2
)

(1− zqn)(1− z−1qn)

)
− (q2; q2)∞

(1− z)(1− z−1)(zq, z−1q; q)∞
.

Proof of Theorem 2.4. With S(z, q) and S2(z, q) known, we also know
S1(z, q). However, we can also derive the result from a Bailey pair as we
have for the other series.
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We start from

S1(z, q) =

∞∑
n=0

q2n+1(−q2n+2, q2n+2; q)∞
(zq2n+1, z−1q2n+1; q)∞

=
(−q, q; q)∞
(z, z−1; q)∞

∞∑
n=0

(z, z−1; q)2n+1q
2n+1

(−q, q; q)2n+1
.

By combining Bailey pairs as we did for S2(z, q), we have a Bailey pair for
(1, q) given by

αn =

{
0, n = 0,

(−1)n(qn
2 − 1), n ≥ 1,

βn =
1

2(q2; q2)n
− (−1)n

2(q2; q2)n
=

{
0, n ≡ 0 (mod 2),

1/(q2; q2)n, n ≡ 1 (mod 2).

By Bailey’s Lemma we then see that

∞∑
n=0

(z, z−1; q)2n+1q
2n+1

(−q, q; q)2n+1
=

(zq, z−1; q)∞
(q, q; q)∞

∞∑
n=0

(z, z−1; q)nq
nαn

(zq, z−1q; q)n

=
(zq, z−1; q)∞

(q, q; q)∞

∞∑
n=1

(1− z)(1− z−1)qn(−1)n(qn
2 − 1)

(1− zqn)(1− z−1qn)
.

This gives

S1(z, q) =
(−q; q)∞

(1− z)(1− z−1)(q; q)∞
(4.1)

×
∞∑
n=1

(1− z)(1− z−1)qn(−1)n(qn
2 − 1)

(1− zqn)(1− z−1qn)
.

As pointed out by the referee, it is also possible to deduce these identities
from Watson’s transformation, rather than from Bailey pairs and Bailey’s
Lemma.

5. Dissections

Proofs of Theorems 2.5 and 2.7. We are to show

∞∑
n=0

2∑
r=0

N(r, 3, 3n)ζr3q
n =

(q3; q3)4∞(q2; q2)∞
(q; q)2∞(q6; q6)2∞

,(5.1)

∞∑
n=0

2∑
r=0

N(r, 3, 3n+ 1)ζr3q
n = 2

(q3; q3)∞(q6; q6)∞
(q; q)∞

,(5.2)
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∞∑
n=0

2∑
r=0

N2(r, 3, 3n+ 1)ζr3q
n =

(q6; q6)4∞
(q2; q2)∞(q3; q3)∞(q12; q12)∞

.(5.3)

For (5.1) we have

(5.4)
∞∑
n=0

(
N(0, 3, 3n) +N(1, 3, 3n)ζ3 +N(2, 3, 3n)ζ23

)
qn

=

∞∑
n=0

(N(0, 3, 3n)−N(1, 3, 3n))qn

=
(q3; q3)2∞(−q; q)∞
(q; q)∞(−q3; q3)2∞

=
(q3; q3)4∞(q2; q2)∞
(q; q)2∞(q6; q6)2∞

.

The penultimate equality in (5.4) is the first part of Theorem 1.1 of [23],
although we have omitted their−1 term. The−1 is due to how one interprets
the empty overpartition and its rank. We use the convention that the empty
overpartition has rank 0 and do not adjust the q0 term of the generating
function.

Equations (5.2) and (5.3) are also just restatements of results in [23]
and [24], respectively.

Proofs of Theorems 2.6 and 2.8. We see we have to prove
∞∑
n=0

4∑
k=0

(N(k, 5, 5n)ζk5 )qn =
(q4, q6; q10)∞(q5; q5)2∞
(q2, q3; q5)2∞(q10; q10)∞

(5.5)

+ 2(ζ5 + ζ−15 )q
(q10; q10)∞

(q3, q4, q6, q7; q10)∞
,

∞∑
n=0

4∑
k=0

(N(k, 5, 5n+ 3)ζk5 )qn =
2(1− ζ5 − ζ−15 )(q10; q10)∞

(q2, q3; q5)∞
,(5.6)

∞∑
n=0

4∑
k=0

(N2(k, 5, 5n+ 1)ζk5 )qn =
(−q5, q10; q10)∞

(q2, q8; q10)∞
,(5.7)

∞∑
n=0

4∑
k=0

(N2(k, 5, 5n+ 3)ζk5 )qn = (ζ5 + ζ45 )
(−q5, q10; q10)∞

(q4, q6; q10)∞
.(5.8)

But we observe that

N(0, 5, 5n) +N(1, 5, 5n)ζ5 +N(2, 5, 5n)ζ25 +N(3, 5, 5n)ζ35 +N(4, 5, 5n)ζ45

= N(0, 5, 5n) +N(1, 5, 5n)(ζ5 + ζ45 ) +N(2, 5, 5n)(ζ25 + ζ35 )

= N(0, 5, 5n)−N(2, 5, 5n) + (ζ5 + ζ45 )(N(1, 5, 5n)−N(2, 5, 5n)).

By the difference formulas in [23] we then have
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∞∑
n=0

4∑
k=0

(N(k, 5, 5n)ζk5 )qn

=
(−q2,−q3; q5)∞(q5; q5)∞
(q2, q3; q5)∞(−q5; q5)∞

+
2(ζ5 + ζ45 )q(q10; q10)∞
(q3, q4, q6, q7; q10)∞

=
(q4, q6; q10)∞(q5; q5)2∞
(q2, q3; q5)2∞(q10; q10)∞

+ 2(ζ5 + ζ−15 )q
(q10; q10)∞

(q3, q4, q6, q7; q10)∞
.

Equations (5.6)–(5.8) are also just restatements of results in [23] and [24].

Proof of Theorem 2.9. By definition we have
∞∑
n=0

∞∑
m=−∞

M(m,n)ζm3 q
n =

(q2; q2)∞

(ζ3q; q)∞(ζ−13 q; q)∞
=

(q2; q2)∞(q; q)∞
(q3; q3)∞

.

We see we have to show

(q2; q2)∞(q; q)∞
(q3; q3)∞

=
(q9; q9)4∞(q6; q6)∞

(q3; q3)2∞(q18; q18)2∞
− q (q18; q18)∞(q9; q9)∞

(q3; q3)∞
(5.9)

− 2q2
(q18; q18)4∞

(q9; q9)2∞(q6; q6)∞
.

After replacing q by q1/3 and multiplying by (q;q)∞
(q3;q3)∞(q6;q6)∞

, the proposition

is equivalent to

(q1/3; q1/3)∞(q2/3; q2/3)∞
(q3; q3)∞(q6; q6)∞

=
(q3; q3)3∞(q2; q2)∞
(q; q)∞(q6; q6)3∞

− q1/3(5.10)

− 2q2/3
(q; q)∞(q6; q6)3∞

(q3; q3)3∞(q2; q2)∞
.

If we let v be the infinite continued fraction

v =
q1/3

1 +
q + q2

1 +
q2 + q4

1 +
q3 + q6

1 +
. . .

then by Entry 3.3.1(a) of Ramanujan’s Lost Notebook Part I (see [3]) we
have

v = q1/3
(q; q2)∞
(q3; q6)3∞

.

Thus with x(q) = q−1/3v we get

x(q) =
(q; q2)∞
(q3; q6)3∞

=
(q; q)∞(q6; q6)∞

(q3; q3)3∞(q2; q2)∞
.

But now (5.10) is exactly Theorem 2 of [16].
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Proof of Theorem 2.10. We have
∞∑
n=0

∞∑
m=−∞

M(m,n)ζm5 q
n =

(q2; q2)∞

(ζ5q, ζ
−1
5 q; q)∞

and so we need to find a dissection for this product.
By Lemma 3.9 of [19] we have

1

(ζ5q, ζ
−1
5 q; q)∞

=
1

(q5, q20; q25)∞
+

(ζ5 + ζ−15 )q

(q10, q15; q25)∞
.

Replacing q by q2 in [19, Lemma 3.18] we have

(q2; q2)∞ = (q50; q50)∞

(
(q20, q30; q50)∞
(q10, q40; q50)∞

− q2 − q4 (q10, q40; q50)∞
(q20, q30; q50)∞

)
.

Expanding the product of these two expressions then gives the result.

Proof of Theorem 2.11. We see
∞∑
n=0

∞∑
m=−∞

M2(m,n)ζm3 q
n =

(−q; q2)∞(q2; q2)2∞
(q6; q6)∞

.

We then need to show

(−q; q2)∞(q2; q2)2∞
(q6; q6)∞

=
(q18; q18)10∞(q12; q12)∞(q3; q3)∞
(q36; q36)4∞(q9; q9)4∞(q6; q6)3∞

+ q
(q18; q18)4∞

(q36; q36)∞(q9; q9)∞(q6; q6)∞

− 2q2
(q36; q36)2∞(q9; q9)2∞(q6; q6)∞

(q18; q18)2∞(q12; q12)∞(q3; q3)∞
.

Noting (−q; q2)∞(q2; q2)2∞ = (−q;−q)∞(q2; q2)∞, in equation (5.9) we
replace q by −q and multiply by (−q3;−q3)∞/(q6; q6)∞ to get

(5.11)
(−q; q2)∞(q2; q2)2∞

(q6; q6)∞

=
(−q9;−q9)4∞

(−q3;−q3)∞(q18; q18)2∞
+ q

(q18; q18)∞(−q9;−q9)∞
(q6; q6)∞

− 2q2
(q18; q18)4∞(−q3;−q3)∞
(−q9;−q9)2∞(q6; q6)2∞

.

But we have

(−q3;−q3)∞ =
(q6; q6)3∞

(q12; q12)∞(q3; q3)∞
,(5.12)

(−q9;−q9)∞ =
(q18; q18)3∞

(q36; q36)∞(q9; q9)∞
.(5.13)

Equations (5.12) and (5.13) with (5.11) then give the theorem.
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Proof of Theorem 2.12. We have

∞∑
n=0

∞∑
m=−∞

M2(m,n)ζm5 q
n =

(−q; q2)∞(q2; q2)∞

(ζ5q2, ζ
−1
5 q2; q2)∞

and so we need a dissection for this product.

Replacing q by q2 in Lemma 3.9 of [19] we have

1

(ζ5q2, ζ
−1
5 q2; q2)∞

=
1

(q10, q40; q50)∞
+

(ζ5 + ζ−15 )q2

(q20, q30; q50)∞
.

Next we note that (−q; q2)∞(q2; q2)∞ = (−q;−q)∞ and so replacing q by −q
in Lemma 3.18 in [19] we get

(−q; q2)∞(q2; q2)∞

= (−q25;−q25)∞
(

(q10,−q15;−q25)∞
(−q5, q20;−q25)∞

+ q − q2 (−q5, q20;−q25)∞
(q10,−q15;−q25)∞

)
= (−q25, q50; q50)∞

(
(q10,−q15,−q35, q40; q50)∞
(−q5, q20, q30,−q45; q50)∞

+ q

− q2 (−q5, q20, q30,−q45; q50)∞
(q10,−q15,−q35, q40; q50)∞

)
.

Multiplying out these two 5-dissections then gives

(−q; q2)∞(q2; q2)∞

(ζ5q, ζ
−1
5 q; q)∞

=
(−q15,−q25,−q35, q50; q50)∞

(−q5, q20, q30,−q45; q50)∞
+ q

(−q25, q50; q50)∞
(q10, q40; q50)∞

+ q2(ζ5 + ζ45 )
(q10,−q15,−q25,−q35, q40, q50; q50)∞

(−q5, q20, q20, q30, q30,−q45; q50)∞

− q2 (−q5, q20,−q25, q30,−q45, q50; q50)∞
(q10, q10,−q15,−q35, q40, q40; q50)∞

+ q3(ζ5 + ζ45 )
(−q25, q50; q50)∞
(q20, q30; q50)∞

− q4(ζ5 + ζ45 )
(−q5,−q25,−q45, q50; q50)∞
(q10,−q15,−q35, q40; q50)∞

.

Proof of Theorem 2.13. We will use Ramanujan’s functions

f(a, b) =

∞∑
k=−∞

ak(k+1)/2bk(k−1)/2, φ(q) = f(q, q) =

∞∑
k=−∞

qk
2
.

By Entry 19 in Chapter 16 of [12] we have

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.
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Also,

φ(−q) =
(q; q)∞

(−q; q)∞
=

(q; q)2∞
(q2; q2)∞

.(5.14)

Proposition 1.
∞∑
n=1

(−1)nqn(1− qn)

1− q3n
=
−1

6

(
1− (q; q)6∞(q6; q6)∞

(q2; q2)3∞(q3; q3)2∞

)
(5.15)

=
−1

6

(
1− φ(−q)3

φ(−q3)

)
.(5.16)

Proof. As in [18] we let

Er(N ;m) =
∑
d|N

d≡r (modm)

1−
∑
d|N

d≡−r (modm)

1.

Thus
∞∑
N=1

qNEr(N ;m) =
∞∑
n=1

∞∑
k=0

qkmn+rn − qkmn+(m−r)n =
∞∑
n=1

qrn − q(m−r)n

1− qmn
.

Similarly,
∞∑
N=1

qN (Er(N ;m)− 2Er(N/2;m)) =

∞∑
n=1

(−1)n(qrn − q(m−r)n)

1− qmn
.

Then equality (5.15) is given by equation (32.64) of [18], and (5.16) follows
from (5.14).

With this we then have

(5.17)
(−q; q)∞
(q; q)∞

(
1

2
+
∞∑
n=1

(1− ζ3)(1− ζ−13 )(−1)nqn

(1− ζ3qn)(1− ζ−13 qn)

)

=
(−q; q)∞
(q; q)∞

(
1

2
+ 3

∞∑
n=1

(−1)nqn(1− qn)

(1− q3n)

)
=

(−q; q)∞φ(−q)3

2(q; q)∞φ(−q3)
=

(q; q)2∞(−q3; q3)∞
2(−q; q)2∞(q3; q3)∞

=
(q; q)2∞(q6; q6)∞

2(−q; q)2∞(q3; q3)2∞
.

Proposition 2.

(q; q)2∞
(−q; q)2∞

=
(q9; q9)4∞

(q18; q18)2∞
− 4q

(q18; q18)∞(q9; q9)∞(q3; q3)∞
(q6; q6)∞

+ 4q2
(q18; q18)4∞(q3; q3)2∞
(q9; q9)2∞(q6; q6)2∞

.

Proof. By the Corollary (p. 49) to Entry 31 of [12], we have

φ(q) = φ(q9) + 2qf(q3, q15).
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Replacing q by −q we find that

φ(−q) =
(q9; q9)2∞

(q18; q18)∞
− 2q(q3, q15, q18; q18)∞

=
(q9; q9)2∞

(q18; q18)∞
− 2q

(q18; q18)2∞(q3; q3)∞
(q9; q9)∞(q6; q6)∞

.

Thus

(q; q)2∞
(−q; q)2∞

= φ(−q)2 =
(q9; q9)4∞

(q18; q18)2∞
− 4q

(q18; q18)∞(q9; q9)∞(q3; q3)∞
(q6; q6)∞

+ 4q2
(q18; q18)4∞(q3; q3)2∞
(q9; q9)2∞(q6; q6)2∞

.

With (5.17) and Proposition 2, we have finished the proof of Theorem
2.13.

Proof of Theorem 2.15. We can determine S(i, q), S1(i, q), and S2(i, q)
from formulas involving φ:

φ(q)− φ(−q) = 4

∞∑
n=1

q(2n−1)
2
,(5.18)

φ(q)φ(−q) = φ(−q2)2,(5.19)

φ(−q2)2 = 1 + 4

∞∑
n=1

(−1)nqn
2+n

1 + q2n
,(5.20)

φ(−q)2 = 1 + 4
∞∑
n=1

(−1)nqn

1 + q2n
.(5.21)

These equalities can all be found in Ramanujan’s Notebooks Part III by
Berndt [12]. Equation (5.18) is by Entry 22(i) on p. 36, (5.19) is Entry 25(iii)
on p. 40, (5.20) is Entry 8(v) on p. 114 with q replaced by q2, and (5.21) is
on p. 116 as part of the proof of Entry 8(v).

As in the proof of Theorem 2.1 we have

S(z, q) =
(−q; q)∞

(1− z)(1− z−1)(q; q)∞

(
1 + 2

∞∑
n=1

(1− z)(1− z−1)(−1)nqn
2+n

(1− zqn)(1− z−1qn)

)
− (q2; q2)∞

(z, z−1; q)∞
,

thus

S(i, q) =
(−q; q)∞
2(q; q)∞

(
1 + 4

∞∑
n=1

(−1)nqn
2+n

1 + q2n

)
− (q2; q2)∞

2(−q2; q2)∞

=
φ(−q2)2

2φ(−q)
− φ(−q2)

2
=
φ(q)

2
− φ(−q2)

2
=
∞∑
n=1

qn
2 −

∞∑
n=1

(−1)nq2n
2
.
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By (4.1) we have

S1(i, q) =
1

φ(−q)

∞∑
n=1

(−1)nqn(qn
2 − 1)

1 + q2n
=

1

φ(−q)

(
φ(−q2)2 − φ(−q)2

4

)

=
φ(−q)
φ(−q)

(
φ(q)− φ(−q)

4

)
=

∞∑
n=1

q(2n−1)
2
.

Lastly, since S2(z, q) = S(z, q)− S1(z, q), we get

S2(i, q) =

∞∑
n=1

q(2n)
2 −

∞∑
n=1

(−1)nq2n
2
.

Proof of Theorem 2.14. To start we set

C(τ) = 3 + 10

∞∑
n=1

(−1)n(qn − q4n)

1− q5n
,

D(τ) = 1 + 10
∞∑
n=1

(−1)n(q2n − q3n)

(1− q5n)
.

We claim C(τ) and D(τ) are elements of M1(Γ1(10)). Here Mk(Γ ) is the
vector space of holomorphic modular forms of weight k with respect to a
congruence subgroup Γ of Γ0(1).

First we define a primitive Dirichlet character modulo 5 by

χ5(n) =



1 if n ≡ 1 (mod 5),

i if n ≡ 2 (mod 5),

−i if n ≡ 3 (mod 5),

−1 if n ≡ 4 (mod 5),

0 otherwise.

We then also have a primitive Dirichlet character given by the conjugate χ5.

As in [21] and [20] we set

Vχ5,1(τ) =
3 + i

10
+

∞∑
m=1

∞∑
n=1

χ5(n)qmn

=
3 + i

10
+

∞∑
m=1

qm − q4m

1− q5m
+ i

∞∑
m=1

q2m − q3m

1− q5m
,

Vχ5,1(τ) =
3− i
10

+

∞∑
m=1

∞∑
n=1

χ5(n)qmn

=
3− i
10

+
∞∑
m=1

qm − q4m

1− q5m
− i

∞∑
m=1

q2m − q3m

1− q5m
.
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Then Vχ5,1(τ) ∈M1(Γ0(5), χ5) and Vχ5,1(τ) ∈M1(Γ0(5), χ5). Thus we have
Vχ5,1(2τ) ∈ M1(Γ0(10), χ5) and Vχ5,1(2τ) ∈ M1(Γ0(10), χ5). Here Mk(Γ, χ)
is the vector space of holomorphic modular forms of weight k with respect
to a congruence subgroup Γ of Γ0(1) and with character χ.

We see that

C(τ) = 5(2Vχ5,1(2τ)− Vχ5,1(τ) + 2Vχ5,1(2τ)− Vχ5,1(τ)),

D(τ) = −i5(2Vχ5,1(2τ)− Vχ5,1(τ)− 2Vχ5,1(2τ) + Vχ5,1(τ)),

but since the characters are different, we must move from Γ0 to Γ1. That
is, we have C(τ), D(τ) ∈ M1(Γ1(10)). Noting η(2τ)2/η(τ)4 is a modular
form of weight −1 for Γ1(8), we then deduce that C(τ)η(2τ)2/η(τ)4 and
D(τ)η(2τ)2/η(τ)4 are modular functions with respect to Γ1(40). Here by
modular function, we mean a modular form of weight zero.

We use the following generalized eta notation as in [29]:

ηδ,g(τ) = eπiP2(g/δ)δτ
∏
m>0

m≡g (mod δ)

(1− qm)
∏
m>0

m≡−g (mod δ)

(1− qm)

where

P2(t) = {t}2 − {t}+ 1/6.

So for g = 0 we have

ηδ,0(τ) = qδ/12(qδ; qδ)2∞ = η(δτ)2

and for 0 < g < δ we have

ηδ,g(τ) = qP2(g/δ)δ/2(qg, qδ−g; qδ)∞.

Proposition 3.

(5.22) C(τ)
η(2τ)

η(τ)2
= C0(q

5) + qC1(q
5) + q2C2(q

5) + q3C3(q
5) + q4C4(q

5)

where

C0(q) =
(q5; q5)2∞(q2; q2)2∞
(q10; q10)∞(q; q)4∞

C(τ),

C1(q) = −4
(q4, q6, q10; q10)∞

(q2, q8; q10)2∞(q3, q7; q10)∞
,

C2(q) = 2
(q10; q10)∞

(q1, q9; q10)∞(q4, q6; q10)∞
,

C3(q) = −6
(q10; q10)∞

(q2, q8; q10)∞(q3, q7; q10)∞
,

C4(q) = 2
(q2, q8, q10; q10)∞

(q, q9; q10)∞(q4, q6; q10)2∞
.
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Proof. Multiplying both sides of (5.22) by η(2τ)/η(τ)2 and noting the
powers of q from ηδ,g really do match, we see that this proposition is equiv-
alent to

(5.23) C(τ)
η(2τ)2

η(τ)4
=
η(2τ)η(25τ)2η(10τ)2

η(τ)2η(50τ)η(5τ)4
C(5τ)

− 4
η2,0(τ)1/2η50,0(τ)1/2η50,20(τ)

η1,0(τ)η50,10(τ)2η50,15(τ)
+ 2

η2,0(τ)1/2η50,0(τ)1/2

η1,0(τ)η50,5(τ)η50,20(τ)

− 6
η2,0(τ)1/2η50,0(τ)1/2

η1,0(τ)η50,10(τ)η50,15(τ)
+ 2

η2,0(τ)1/2η50,0(τ)1/2η50,10(τ)

η1,0(τ)η50,5(τ)η50,20(τ)2
.

However, η(2τ)η(25τ)
2η(10τ)2

η(τ)2η(50τ)η(5τ)4
is a weight −1 modular form for Γ1(200) by The-

orem 1.64 of [26] and so

η(2τ)η(25τ)2η(10τ)2

η(τ)2η(50τ)η(5τ)4
C(5τ)

is a modular function for Γ1(200). By Theorem 3 of [29], the other four
generalized eta quotients on the right hand side of (5.23) are also modular
functions on Γ1(200).

We recall some facts about modular functions from [28] and use the
notation from Chapter 20 of [12]. Suppose f is a modular function with
respect to the congruence subgroup Γ of Γ0(1). For A ∈ Γ0(1) we have a
cusp given by ζ = A−1∞. The width N = N(Γ, ζ) of the cusp is

N(Γ, ζ) = min{k > 0 : ±A−1T kA ∈ Γ},
where T is the translation matrix

T =

(
1 1

0 1

)
.

If

f(A−1τ) =

∞∑
m=m0

bmq
m/N

and bm0 6= 0, then we say m0 is the order of f at ζ with respect to Γ and we
denote this value by OrdΓ (f ; ζ). By ord(f ; ζ) we mean the invariant order
of f at ζ given by

ord(f ; ζ) =
OrdΓ (f ; ζ)

N
.

For z in the upper half-plane H, we write ord(f ; z) for the order of f
at z as an analytic function in z. We define the order of f at z with respect
to Γ by

OrdΓ (f ; z) =
ord(f ; z)

m
,

where m is the order of z as a fixed point of Γ .
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We then have the well-known valence formula for modular functions as
the weight zero case of the valence formula for modular forms, which is
Theorem 4.1.4 of [28]. Suppose a subset F of H∪{∞}∪Q is a fundamental
region for the action of Γ along with a complete set of inequivalent cusps;
if f is not the zero function then∑

z∈F
OrdΓ (f ; z) = 0.

To prove (5.23), we use the valence formula with f being the difference
of the two sides of (5.23). We note the only poles of f can be at the cusps
corresponding to Γ1(200) and so∑

z∈F
OrdΓ (f ; z) ≥

∑
ζ∈C

OrdΓ (f ; ζ)

where C is a set of inequivalent cusps.

But if we have a lower bound on the cusps not equivalent to ∞, say∑
ζ∈C
ζ 6≡∞

OrdΓ (f ; ζ) ≥ −M,

and we know OrdΓ (f ;∞) > M , then by the valence formula, f must be
identically zero. That is, to prove (5.23) we would need only verify that the
q-series expansions agree past qM .

Since C(τ) is a holomorphic modular form, we may ignore it when es-
tablishing a lower bound on the sum of the orders. Using Theorem 4 of [29],
we can compute the order of the generalized eta quotients at the cusps.
Including ∞, there are 336 inequivalent cusps for Γ1(200). To get a lower
bound on the sum of orders at cusps not equivalent to ∞, at each cusp we
take the minimum order of the six generalized eta quotients in (5.23). Using
Maple for the calculations, we find∑

ζ∈C
ζ 6≡∞

OrdΓ (f ; ζ) ≥ −1840.

However we also verify in Maple that f vanishes past q1840, and so the
equality holds.

Proposition 4.

D(τ)
η(2τ)

η(τ)2
= D0(q

5) + qD1(q
5) + q2D2(q

5) + q3D3(q
5) + q4D4(q

5)

where

D0(q) =
(q5; q5)2∞(q2; q2)2∞
(q10; q10)∞(q; q)4∞

D(τ),
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D1(q) = 2
(q4, q6, q10; q10)∞

(q2, q8; q10)2∞(q3, q7; q10)∞
,

D2(q) = −6
(q10; q10)∞

(q, q9; q10)∞(q4, q6; q10)∞
,

D3(q) = −2
(q10; q10)∞

(q2, q8; q10)∞(q3, q7; q10)∞
,

D4(q) = 4
(q2, q8, q10; q10)∞

(q, q9; q10)∞(q4, q6; q10)2∞
.

Proof. Since D is also a weight 1 form for Γ1(10) and these are the same
products as in the previous proposition, we also need only verify that the
corresponding equality between modular functions holds past q1840. This
verification is done in Maple.

Proposition 5.

(2C(τ)−D(τ))
(q2; q2)2∞
(q; q)4∞

= 5
(q4, q6; q10)∞
(q2, q3; q5)2∞

.

Proof. We see that this proposition is equivalent to

(2C(τ)−D(τ))
η(2τ)2

η(τ)4
= 5

η10,4(τ)

η5,2(τ)2
.(5.24)

However, we know the left hand side of (5.24) is a modular function for
Γ1(40). Using Theorem 3 of [29] we find that the right hand side is as well.
Comparing the orders at cusps as we did in the proof of Proposition 3, we
find that a lower bound for the sum of orders at the cusps other than ∞
is −48. However, we verify in Maple that (5.24) holds past q48, and so the
equality must hold.

Proposition 6.

(3D(τ)− C(τ))
(q2; q2)2∞
(q; q)4∞

= 10
q

(q3, q4, q6, q7; q10)∞(q5; q10)2∞
.

Proof. We see that this proposition is equivalent to

(3D(τ)− C(τ))
η(2τ)2

η(τ)4
= 10

1

η10,3(τ)η10,4(τ)η10,5(τ)
.(5.25)

Again both sides are modular functions for Γ1(40) and taking the minimum
of orders shows that we need only verify that the equality in (5.25) holds
past q48.

With these propositions we can complete the proof of Theorem 2.14. We
have
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(−q; q)∞
(q; q)∞

(
1

2
+

∞∑
n=1

(1− ζ5)(1− ζ−15 )(−1)nqn

(1− ζ5qn)(1− ζ−15 qn)

)
=

(−q; q)∞
(q; q)∞

×
(

1

2
+
∞∑
n=1

(1− ζ5)(1− ζ−15 )(−1)nqn(1− qn)(1− ζ25qn)(1− ζ35qn)

(1− q5n)

)

=
(−q; q)∞
(q; q)∞

(
1

2
+ (3 + ζ25 + ζ35 )

∞∑
n=1

(−1)nqn

(1− q5n)

− (4 + 3ζ25 + 3ζ35 )
∞∑
n=1

(−1)nq2n

(1− q5n)
+ (4 + 3ζ25 + 3ζ35 )

∞∑
n=1

(−1)nq3n

(1− q5n)

− (3 + ζ25 + ζ35 )

∞∑
n=1

(−1)nq4n

(1− q5n)

)

=
(−q; q)∞
(q; q)∞

(
1

2
+ (3 + ζ25 + ζ35 )

∞∑
n=1

(−1)n(qn − q4n)

(1− q5n)

− (4 + 3ζ25 + 3ζ35 )
∞∑
n=1

(−1)n(q2n − q3n)

(1− q5n)

)
=

(−q; q)∞
(q; q)∞

(
1

2
− 3(3 + ζ25 + ζ35 )

10
+

4 + 3ζ25 + 3ζ35
10

+
3 + ζ25 + ζ35

10
C(τ)

− 4 + 3ζ25 + 3ζ35
10

D(τ)

)
=

(−q; q)∞
10(q; q)∞

((3 + ζ25 + ζ35 )C(τ)− (4 + 3ζ25 + 3ζ35 )D(τ))

= B0(q
5) + qB1(q

5) + q2B2(q
5) + q3B3(q

5) + q4B4(q
5)

where

B0(q) =
(q5; q5)2∞(q2; q2)2∞

10(q10; q10)∞(q; q)4∞
((3 + ζ25 + ζ35 )C(τ)− (4 + 3ζ25 + 3ζ35 )D(τ))

=
(q5; q5)2∞(q2; q2)2∞

10(q10; q10)∞(q; q)4∞
((2− ζ5 − ζ−15 )C(τ)− (1− 3ζ5 − 3ζ−15 )D(τ))

=
(q5; q5)2∞(q4, q6; q10)∞

2(q10; q10)∞(q2, q3; q5)2∞

+ (ζ5 + ζ−15 )
q(q5; q5)2∞

(q10; q10)∞(q3, q4, q6, q7; q10)∞(q5; q10)2∞
,

B1(q) = (ζ5 + ζ−15 − 1)
(q4, q6, q10; q10)∞

(q2, q8; q10)2∞(q3, q7; q10)∞
,
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B2(q) = (1− 2ζ5 − 2ζ−15 )
(q10; q10)∞

(q, q9; q10)∞(q4, q6; q10)∞
,

B3(q) = − (q10; q10)∞
(q2, q8; q10)∞(q3, q7; q10)∞

,

B4(q) = (ζ5 + ζ−15 )
(q2, q8, q10; q10)∞

(q, q9; q10)∞(q4, q6; q10)2∞
.

This finishes the proof of Theorem 2.14.

6. Remarks. In Section 3 we proved the coefficients of S(z, q), S1(z, q),

and S2(z, q) are nonnegative by showing each summand qn(−qn+1,qn+1;q)∞
(zqn,z−1qn;q)∞

has nonnegative coefficients. Numerical evidence suggests S2(z, q) also has
nonnegative coefficients. However, the corresponding individual summands
for S2(z, q) do not have nonnegative coefficients themselves. In particular
we find the coefficient of q10 in q4(−q5, q6; q2)∞/(zq4, z−1q4; q2)∞ to be
z−1 + z − 1. Thus for S2(z, q) a more complicated argument is required.

Conjecture 1. For all m and n the coefficient NS2(m,n) is nonnega-
tive.

Related to the nonnegativity of these coefficients is the difference between
the first rank and the first crank moments. If we let N(m,n) denote the
number of partitions of n with rank m and M(m,n) denote the number of
partitions of n with crank m, then for k ≥ 1 the kth rank moment Nk(n)
and kth crank moment Mk(n) are given by

Nk(n) =
∑
n∈Z

mkN(m,n), Mk(n) =
∑
n∈Z

mkM(m,n).

These rank and crank moments were introduced by Atkin and the first
author [8]. To allow for nontrivial odd moments, Andrews, Chan, and Kim [4]
defined the modified rank and crank moments by

N+
k (n) =

∞∑
n=1

mkN(m,n), M+
k (n) =

∞∑
n=1

mkM(m,n).

In the same paper they proved that M+
1 (n) > N+

1 (n) for all positive inte-
gers n. This was done by manipulating the generating function for M+

1 (n)−
N+

1 (n) and carefully grouping the terms in such a way that it is clear the co-
efficients are positive. However, it turns out thatM+

1 (n)−N+
1 (n) = NS(0, n);

the latter was proved to be nonnegative in [7] and so M+
1 (n) ≥ N+

1 (n).
Recently Andrews, Chan, Kim, and Osburn [5] considered the moments

for the rank and crank of overpartitions,

N
+
k (n) =

∞∑
n=1

mkN(m,n), M
+
k (n) =

∞∑
n=1

mkM(m,n).
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The generating functions of these moments are

Nk(q) =

∞∑
n=1

N
+
k (n)qn, Mk(q) =

∞∑
n=1

M
+
k (n)qn.

In that paper they show M
+
1 (n) > N

+
1 (n). As we will prove shortly, it also

turns out that M
+
1 (n) − N+

1 (n) = NS(0, n). Thus the nonnegativity of the

coefficients of S(z, q) gives M
+
1 (n) ≥ N+

1 (n).

To begin, we use [19, equation (7.15)]:

(q; q)∞
(zq, z−1q; q)∞

=
1

(q; q)∞

(
1+

∞∑
n=1

(1− z)(1− z−1)(−1)nqn(n+1)/2(1 + qn)

(1− zqn)(1− z−1qn)

)
,

so we have

(−q, q; q)∞
(zq, z−1; q)∞

=
(−q; q)∞
(q; q)∞

(
1+

∞∑
n=1

(1− z)(1− z−1)(−1)nqn(n+1)/2(1 + qn)

(1− zqn)(1− z−1qn)

)
.

With this we can express S(z, q) as follows:

S(z, q) =
(−q; q)∞

(1− z)(1− z−1)(q; q)∞

(
1 + 2

∞∑
n=1

(1− z)(1− z−1)(−1)nqn
2+n

(1− zqn)(1− z−1qn)

)
− (−q, q; q)∞

(z, z−1; q)∞

=
(−q; q)∞

(1− z)(1− z−1)(q; q)∞

(
1 + 2

∞∑
n=1

(1− z)(1− z−1)(−1)nqn
2+n

(1− zqn)(1− z−1qn)

)
− (−q; q)∞

(1− z)(1− z−1)(q; q)∞

×
(

1 +
∞∑
n=1

(1− z)(1− z−1)(−1)nqn(n+1)/2(1 + qn)

(1− zqn)(1− z−1qn)

)

=
(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2(1 + qn)

(1− zqn)(1− z−1qn)

− 2
(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)n+1qn
2+n

(1− zqn)(1− z−1qn)

=
(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2

(1− qn)

( ∞∑
m=0

zmqnm +

∞∑
m=1

z−mqnm
)

− 2
(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)n+1qn
2+n

(1− q2n)

( ∞∑
m=0

zmqnm +
∞∑
m=1

z−mqnm
)
.
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In the last equality we have used the identity

1− q2n

(1− zqn)(1− z−1qn)
=

1

1− zqn
+

1

1− z−1qn
− 1.

But
∑∞

n=0NS(0, n)qn is the coefficient of z0 in S(z, q). From the above we
see that

∞∑
n=0

NS(0, n)qn =
(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2

(1− qn)
(6.1)

− 2
(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)n+1qn
2+n

(1− q2n)
.

By (6.1) and Proposition 2.1 of [5] we have

M1(q)−N1(q) =
∞∑
n=1

NS(0, n)qn.

As explained earlier, we know that each NS(0, n) is nonnegative, and so this

is another proof that M
+
1 (n) ≥ N+

1 (n).

There is also the d = e = 1 case for the general spt function, which as
noted in [15] reduces to pp(n)/4, where pp(n) is the number of overpartition
pairs of n. The methods in the present paper do not give a new proof of the
congruences for pp(n). Using Bailey’s Lemma on a two-variable generating
function and applying Watson’s transformation to the generating function
for the rank of overpartition pairs does at first appear to give a difference
between the rank of overpartition pairs and some residual crank. However,
the resulting crank is

(−q; q)2∞
(zq, z−1q; q)∞

,

which can be written in terms of the rank for overpartition pairs as in
equation (2.1) of [13]. In particular, the generating function for the rank of
overpartition pairs is

∞∑
n=0

∞∑
m=−∞

NN(m,n)zmqn =
∞∑
n=0

(−1,−1; q)nq
n

(zq, z−1q; q)n

and

4

(1 + z)(1 + z−1)
+
∞∑
n=1

(−1,−1; q)nq
n

(zq, z−1q; q)n
=

4(−q; q)2∞
(zq, z−1q; q)∞

.

Thus the method of proving congruences in this paper only gives the proofs
already given by Bringmann and Lovejoy [13].
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