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On the number of solutions
of decomposable polynomial equations

by

A. Bérczes and K. Győry (Debrecen)

1. Introduction. Let F (X) = F (X1, . . . ,Xm) ∈ Q[X1, . . . ,Xm] be
a decomposable polynomial of degree n ≥ 3 in m ≥ 2 variables, that is,
a polynomial which can be written in the form

F (X) =
n∏

i=1

li(X),

where l1(X), . . . , ln(X) are linear polynomials with coefficients in an alge-
braic number field G. This factorization is unique up to proportional factors
from G∗. Let S = {p1, . . . , ps} be a finite set of s ≥ 0 rational primes, and
denote by ZS the ring of S-integers in Q. Consider the equation

F (x) = b in x = (x1, . . . , xm) ∈ ZmS ,(1)

where b is a given non-zero S-integer. We assume throughout the paper
that F has coefficients in ZS . Then (1) is called a decomposable polynomial
equation over ZS . If in particular F is a form, (1) is a decomposable form
equation.

We recall (cf. [7]) that if F is a finite set of linear forms in G[X1, . . . ,Xk],
k ≥ 2, then a non-zero Q-linear subspace V of the vector space Qk is called
F-non-degenerate if F contains a subset of at least three linear forms whose
restrictions to V are linearly dependent, but pairwise linearly independent.
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Otherwise V is called F-degenerate. Further, V is called F-admissible if no
form in F vanishes identically on V .

Denote by L a maximal subset of pairwise linearly independent polyno-
mials among the linear factors l1, . . . , ln of F over G. Put

L∗ = {Xm+1} ∪
{
Xm+1 · l

(
X1

Xm+1
, . . . ,

Xm

Xm+1

)
: l ∈ L

}
.

Then L∗ consists of linear forms in X1, . . . ,Xm+1 with coefficients in G.
It was shown in [5], Theorem 1, that (1) has only finitely many solu-

tions for every S and b if and only if the following condition holds: (i) the
linear forms in L∗ have rank m + 1 over G, and every L∗-admissible linear
subspace of Qm+1 of dimension ≥ 3 is L∗-non-degenerate. Further, under
the assumption (i), a non-explicit bound was derived (cf. [5], Theorem 2)
for the number of solutions of (1) which does not depend on the coefficients
of F . This bound was given explicitly in terms of the numbers of solutions of
some unit equations. However, when the paper [5] was written, no explicit
upper bound was available on the number of solutions of those equations.
On combining the bound of [5] with an explicit upper bound of Evertse [3]
on the number of solutions of unit equations, one can easily show that under
the assumption (i), our equation (1) has at most

n(218m)g(m+2)4(s+ωS(b)+1)/2(2)

solutions. Here ωS(b) denotes the number of those distinct primes p, not
contained in S, for which p | b in ZS , and g denotes the degree of the field G
over Q. If G is chosen to be the splitting field of F over Q then g ≤ n!, and
this bound for g cannot be diminished in general.

In our paper we give a much better explicit upper bound for the number
of solutions of (1) which is already polynomial in n. Further, we extend our
result to the more general equation

F (x) ∈ bZ∗S in x = (x1, . . . , xm) ∈ ZmS ,(3)

where Z∗S denotes the group of S-units in ZS . We point out that under the
assumption (i) this equation may have infinitely many solutions. Then we
show that (i) together with the condition: (i′) for at least one polynomial
l∗ ∈ L∗ we have l∗(a) 6= 0 for any 0 6= a ∈ Qm+1, already imply the
finiteness of the number of solutions. Further, under these assumptions we
derive explicit upper bounds for the number of solutions of (3). Moreover,
for b = 1, we give a similar upper bound, provided only that the number of
solutions of (3) is finite.

The significant improvement in our bounds is due to a new approach
which is different from that of [5]. As a generalization of Schmidt’s famous
results [15] on norm form equations, Győry [10] proved that for homogeneous
F , the set of solutions of both (1) and (3) is the union of finitely many so-
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called families of solutions. Further, he gave an explicit upper bound for
the number of these families. This bound was later improved by Evertse
and Győry [8]. In the proofs of our main results we first reduce equations
(1) and (3) to homogeneous decomposable polynomial equations in m + 1
unknowns. Then we apply the above-mentioned results of [10] and [8] to
derive bounds for the numbers of solutions of (1) and (3).

We give several consequences for inhomogeneous Thue equations, dis-
criminant polynomial equations, norm polynomial equations and resultant
polynomial equations. In particular, our results are also valid in the homo-
geneous case. However, in this case slightly better estimates are known in
the literature (cf. [3], [4], [8], [12], [13]), hence we shall not deal here with
applications of our results to decomposable form equations.

2. Main results. To state our results we need some further notation.
For a prime p not contained in S, denote by ordp(b) the greatest integer a
such that pa | b in ZS. Put

ψS(b, n,m) =
(
n+ 1
m

)ωS(b) ∏

p prime
p6∈S

(
ordp(b) +m

m

)

where the product is taken over all primes p not contained in S, and let

δ(m) = 2
3(m+ 1)(m+ 2)(2m+ 3)− 4.

We note that δ(m) ≤ 2(m + 1)3. We also use the notation introduced in
Section 1.

Theorem 1. Suppose that

(i) the linear forms in L∗ have rank m+1 over G, and every L∗-admissible
linear subspace of Qm+1 of dimension ≥ 3 is L∗-non-degenerate.

Then the number of solutions of equation (1) does not exceed the bounds

n(217n)δ(m)(s+1) · ψS(b, n,m)(4)

and
n(217n)δ(m)(s+ωS(b)+1).(5)

As is easily seen, the bound (5) is in general much better than (2). In the
special case when F in (1) is homogeneous, the assumption (i) is equivalent
(cf. [5], Corollary 1) to the fact that every L-admissible linear subspace of
Qm of dimension≥ 2 is L-non-degenerate. In this case slightly better bounds
are given in [3] and [8] for the number of solutions of (1).

Our example given below shows that in contrast with the case of decom-
posable form equations, Theorem 1 cannot be generalized to decomposable
polynomial equations of the form (3). However, if we replace condition (i)
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of Theorem 1 with a stronger assumption, we are able to derive a finiteness
theorem and explicit bounds for the number of solutions of (3).

Theorem 2. Suppose that the condition (i) holds, and that

(i′) for at least one polynomial l∗ ∈ L∗ we have l∗(a) 6= 0 for any 0 6=
a ∈ Qm+1.

Then the number of solutions of equation (3) does not exceed the bound

(217n)δ(m)(s+ωS(b)+1).(6)

As a consequence of Theorem 2 we now give another finiteness condition
for the number of solutions of (3) which is sometimes easier to check. Let
L∗0 = L∗ \ {Xm+1}.

Corollary 1. Suppose that

(ii′) L∗0 has rank m + 1 over G, and l∗(a) 6= 0 for each l∗ ∈ L∗0 and for
any 0 6= a ∈ Qm+1.

Then the number of solutions of (3) does not exceed the bound (6).

We note that in the inhomogeneous case our Theorem 2 and Corollary 1
provide bounds also for the number of solutions of the corresponding Mahler
type equation.

The following example shows that condition (i′) in Theorem 2 is also
necessary.

Example. Put S = {5, 13} and consider the polynomial F (X1,X2) =
(4X1 + 6X2 − 5)(X2 + 4)(X2 + 12) ∈ ZS [X1,X2]. This polynomial satisfies
the condition (i) of Theorem 1, but there is no linear factor l of F for
which the corresponding linear form l∗(X1,X2,X3) has the property that
l∗(x1, x2, x3) 6= 0 for (0, 0, 0) 6= (x1, x2, x3) ∈ Q3. It is easy to see that the
equation

F (x1, x2) ∈ Z∗S in x1, x2 ∈ ZS
has infinitely many solutions of the form (x1, 1).

Theorem 3. Assume that rank(L∗) = m + 1 and b = 1. If the number
of solutions of (3) is finite, then this number does not exceed the bound

(217n)δ(m)(s+1).(7)

In the next section we formulate some consequences and applications of
our Theorems 1 to 3. Following our proofs, our results could be extended to
the case when the ground ring is a ring of S-integers of an arbitrary number
field. We shall not work this out here.
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3. Some consequences and applications. First let F0(X) =
F0(X1, . . . ,Xm) ∈ ZS[X1, . . . ,Xm] be a decomposable form in m ≥ 2
variables and assume that

F0(X) =
n∏

i=1

hi(X)

with linear forms hi(X) ∈ G[X1, . . . ,Xm] for i = 1, . . . , n. Let L0 denote
a maximal subset of pairwise non-proportional linear forms in {h1, . . . , hn}
over G. Let Λ be the set of all n-tuples λ = (λ1, . . . , λn) ∈ Gn for which the
decomposable polynomial

Fλ(X) =
n∏

i=1

(hi(X) + λi)

has coefficients in ZS . Clearly, F0(X) = F0(X), hence 0 ∈ Λ. Our Theorem 1
implies the following.

Corollary 2. Suppose that

(ii) every subspace of Qm of dimension ≥ 2 is L0-non-degenerate.

Then for any b ∈ ZS \{0} and for every fixed λ ∈ Λ, the number of solutions
of the equation

Fλ(x) = b in x ∈ ZmS(8)

does not exceed the bounds occurring in (4) and (5).

In what follows, we apply Corollary 2 to inhomogeneous Thue equations,
discriminant polynomial equations and norm polynomial equations. In the
case of equations considered over ZS , our Corollary 2 and Corollaries 3,
5 and 7 below give improved, explicit versions of Corollaries 2 to 5 of [5]
where non-explicit bounds were given for the numbers of solutions of the
corresponding equations.

Let F (X1,X2) ∈ ZS [X1,X2] be a decomposable polynomial of degree n.
Assume that

F (X1,X2) =
n∏

i=1

(hi(X1,X2) + λi)(9)

where hi(X1,X2) is a linear form with coefficients in G and λi ∈ G for
i = 1, . . . , n. Let b be a non-zero S-integer.

Corollary 3. Suppose that

(iii) there are at least three pairwise linearly independent forms among
h1(X1,X2), . . . , hn(X1,X2).

Then the number of solutions of the inhomogeneous Thue equation

F (x1, x2) = b in x1, x2 ∈ ZS(10)
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does not exceed the bounds

n(217n)52(s+1) · ψS(b, n, 2) and n(217n)52(s+ωS(b)+1).

From Theorem 2 we shall deduce the following.

Corollary 4. Suppose that

(iii′) there are at least three linearly independent polynomials among
h1(X1,X2) + λ1, . . . , hn(X1,X2) + λn, and for some i, hi(x1, x2) 6∈
{0,−λi} for any (0, 0) 6= (x1, x2) ∈ Q2.

Then the number of solutions of the equation

F (x1, x2) ∈ bZ∗S in x1, x2 ∈ ZS(11)

does not exceed the bound

(217n)52(s+ωS(b)+1).

The bounds in Corollaries 3 and 4 are also valid in the case of Thue and
Thue–Mahler equations, when λi = 0 for i = 1, . . . , n. However, when in
(10) F (X1,X2) is an irreducible binary form, Evertse [4] obtained a much
better bound for the numbers of solutions of (10) and (11).

Let M be a number field of degree n ≥ 3, α0 = 1, α1, . . . , αm linearly
independent elements of M over Q such that M = Q(α1, . . . , αm), and λ an
arbitrary element of M . Let σ1 = id, σ2, . . . , σn be the Q-isomorphisms of
M into C. For any α ∈M , let α(i) = σi(α). Put

L(i)(X) := X0 + α
(i)
1 X1 + . . .+ α(i)

mXm + λ(i)

with the convention that L(X) = L(1)(X). Then the decomposable polyno-
mial

DM/Q(L(X)) :=
∏

1≤i<j≤n
(L(i)(X)− L(j)(X))2

is called a discriminant polynomial. We consider the discriminant polynomial
equation

a0DM/Q(α1x1 + . . .+ αmxm + λ) = b in x1, . . . , xm ∈ ZS ,(12)

where a0 ∈ Q∗, b ∈ ZS \{0}. Further, suppose that a0 is chosen such that the
discriminant polynomial a0DM/Q(α1X1 + . . .+ αmXm + λ) has coefficients
in ZS .

Corollary 5. Under the above conditions, the number of solutions of
equation (12) does not exceed the bounds (4) and (5) with n replaced by
n(n− 1).

In the important special case λ = 0, somewhat better bounds follow for
the number of solutions of (12) from the results of [3] and [8] concerning
decomposable form equations. Under some conditions on the normal closure
of M/Q, even better bounds can be found in [6], [1] and [14] for λ = 0.
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With the above assumptions, consider the following generalization of
equation (12):

a0DM/Q(α1x1 + . . .+ αmxm + λ) ∈ bZ∗S in x1, . . . , xm ∈ ZS .(13)

From Corollary 1 we shall deduce

Corollary 6. Suppose that the number field M has no proper subfield ,
and that 1, α1, . . . , αm, λ are linearly independent over Q. Then the number
of solutions of equation (13) does not exceed the bound (6) with n replaced
by n(n− 1).

In the case λ = 0, the results of [3] and [8] concerning decomposable
form equations provide somewhat better bounds for the number of solutions
of (13).

Let again M be a number field of degree n ≥ 3, α1 = 1, α2, . . . , αm
linearly independent elements of M over Q such that M = Q(α2, . . . , αm),
and λ ∈M . As above, put

L(i)(X) := α
(i)
1 X1 + . . .+ α(i)

mXm + λ(i).

Then the polynomial

NM/Q(α1X1 + . . .+ αmXm + λ) =
n∏

i=1

L(i)(X)

is called a norm polynomial. Consider the norm polynomial equation

a0NM/Q(α1x1 + . . .+ αmxm + λ) = b in x1, . . . , xm ∈ ZS,(14)

where b ∈ ZS \ {0}, and a0 ∈ Q∗ is chosen so that the norm polynomial
a0NM/Q(α1X1 + . . .+ αmXm + λ) has coefficients in ZS .

Denote by M the Z-module generated by α1, . . . , αm in M . Then M
is called non-degenerate if the Q-vector space generated by M does not
contain any subspace of the form µM ′ where µ ∈ M∗ and M ′ is a subfield
of M such that Q (M ′ ⊆M . Otherwise M is called degenerate.

Corollary 7. Suppose that

(iv) M is non-degenerate.

Then the number of solutions of equation (14) does not exceed the bounds
occurring in (4) and (5).

We note that for λ = 0, slightly better bounds are given in [3] and [8]
for the number of solutions of (14).

As a generalization of (14), consider now the equation

a0NM/Q(α1x1 + . . .+ αmxm + λ) ∈ bZ∗S in x1, . . . , xm ∈ ZS .(15)
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The next corollary is a special case of our Corollary 1. Corollary 8 was
proved independently by Evertse, Stewart and Tijdeman (private commu-
nication) and by the authors of the present paper.

Corollary 8. Suppose that in (15) α1, . . . , αm and λ are linearly in-
dependent over Q. Then the number of solutions of equation (15) does not
exceed the bound (6).

The number of solutions of (15) can be finite also in the case when
α1, . . . , αm and λ are linearly dependent. The following corollary follows
immediately from our Theorem 3.

Corollary 9. Suppose that for b = 1 equation (15) has only finitely
many solutions. Then the number of these solutions does not exceed the
bound (7).

Finally, we apply Corollary 2 to resultant equations. Let P ∈ ZS [X] be a
polynomial of degree n ≥ 3 with leading coefficient a0 and without multiple
zeros. Let α1, . . . , αn denote the zeros of P , and put G = Q(α1, . . . , αn).
Fix a positive integer m, and let λ = (λ1, . . . , λn) ∈ Gn be such that the
decomposable polynomial

am0

n∏

i=1

(αmi X0 + αm−1
i X1 + . . .+Xm + λi)(16)

has coefficients in ZS. This is the case e.g. for λ = 0 when the corresponding
decomposable form in (16) is just the resultant Res(P,Q) of the polynomials
P (X) and Q(X) = X0X

m+X1X
m−1+. . .+Xm. Hence in the case λ = 0 we

call (16) a resultant form, and in general a resultant polynomial. We denote
this polynomial by Resλ(P,Q) with the above Q. Consider the resultant
polynomial equation

Resλ(P,Q) = b in Q ∈ ZS [X],(17)

where b is a given non-zero element of ZS .
It follows from Theorem 5 of [12] that for λ = 0, b ∈ Z∗S and m < n/2,

the number of solutions of (17) in Q ∈ ZS [X] with degree m is at most

2(234n2)(m+1)3(s+1).(18)

Further, it was pointed out in [12] that the assumption m < n/2 cannot be
replaced by m ≤ n/2 in general.

From our Corollary 2 we shall deduce the following.

Corollary 10. Let m be a positive integer with m < n/2, and suppose
that P (X) has no non-constant divisor of degree < m in Q[X]. Then the
number of solutions Q(X) of (17) with degree m does not exceed the bounds
(4) and (5) with m replaced by m+ 1.



Decomposable polynomial equations 179

For λ = 0 and b ∈ Z∗S , our bound (5) provided by Corollary 10 can be
compared with (18). It is likely that Corollary 10 remains valid without the
assumption that P has no non-constant factor with rational coefficients and
with degree less than m.

We note that similar results can be deduced from Theorem 2 and Corol-
lary 1 for the number of those polynomials Q ∈ ZS [X] for which Resλ(P,Q)
∈ bZ∗S .

4. Proofs. To prove our results we shall need some lemmas. First we
introduce some further notation.

Let F̂ (X) ∈ ZS [X1, . . . ,Xk], k ≥ 2, be a decomposable form of degree
r ≥ 3, and assume that there are k linearly independent linear forms among
the linear factors of F̂ over Q. Let b be a non-zero element of ZS , and
consider the decomposable form equation

F̂ (x) ∈ bZ∗S in x = (x1, . . . , xk) ∈ ZkS .(19)

We recall that if x is a solution of (19) then so is εx for each ε ∈ Z∗S . Such
a set of solutions is called a Z∗S-coset of solutions of (19). The form F̂ is a
product of norm forms. More precisely, it can be written in the form

F̂ (X) = c

t∏

j=1

NMj/Q(lj(X)),

where c ∈ Q∗, M1, . . . ,Mt are algebraic number fields, and lj(X) is a linear
form in X = (X1, . . . ,Xk) with coefficients in Mj for j = 1, . . . , t (cf. [2],
pp. 77–81). Let

A = M1 ⊕ . . .⊕Mt

denote the direct Q-algebra sum of M1, . . . ,Mt, i.e. the cartesian product
M1 × . . . ×Mt endowed with coordinatewise addition and multiplication.
Thus A is an algebra over Q with unit element 1A = (1, . . . , 1). Denote by
A∗ the multiplicative group of invertible elements in A, and by NA/Q(a) the
norm of a = (α1, . . . , αt) ∈ A. Then we have

NA/Q(a) = NM1/Q(α1) . . .NMt/Q(αt).

Denote by MS the finitely generated ZS-module

{x = (l1(x), . . . , lt(x)) : x ∈ ZkS}
in the algebra A. Now equation (19) can be written in the form

cNA/Q(x) ∈ bZ∗S in x ∈MS .(20)

For any algebraic number field M we denote by OM,S the integral closure
of ZS in M , and by O∗M,S the unit group of OM,S . Similarly, for each Q-
subalgebra B of A with 1A ∈ B we denote by OB,S the integral closure of
ZS in B, and by O∗B,S the unit group of OB,S . The dimension of A as a
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Q-vector space is r, and the Q-vector space V := MSQ generated by MS

over Q has dimension k. Put

ψ̂S(b) =
(

r

k − 1

)ωS(b) ∏

pprime
p6∈S

(
ordp(b) + k − 1

k − 1

)

and
e(k) = 1

3k(k + 1)(2k + 1)− 2.

Lemma 1. The set of solutions of equation (20) is contained in some
finite union

x1O∗B1,S ∪ . . . ∪ xwO∗Bw ,S with w ≤ (233r2)e(k)(s+1)ψ̂S(b)(21)

such that for i = 1, . . . , w, Bi is a Q-subalgebra of A with 1A ∈ Bi, and
xi ∈ A∗ with xiBi ⊂ V .

Proof. This is a special case of Theorem 1 of [8]. We note that the proof in
[8] is based on a combination of some deep results of Győry [10] and Evertse
[3]. The proof of the result used from [3] depends on Evertse’s improvement
(cf. [9]) of Schmidt’s quantitative subspace theorem.

Consider the above factorization of F̂ into linear factors, and let L̂ be a
maximal subset of pairwise linearly independent linear factors of F̂ . By the
assumption made on the linear factors of F̂ , L̂ has rank k over Q. Hence the
linear mapping

Φ : Qk → V, x 7→ (l1(x), . . . , lt(x))

gives an isomorphism between Qk and V .

Lemma 2. Let H be a non-zero subspace of the vector space Qk. Then
the following statements are equivalent :

(a) H is L̂-admissible and L̂-degenerate.
(b) Φ(H) = xB for some x ∈ Φ(H)∩A∗ and some Q-subalgebra B of A

with 1A ∈ B.

Proof. This is Lemma 8 of [10].

Lemma 3. Suppose that every L̂-admissible linear subspace of Qk of di-
mension ≥ 3 is L̂-non-degenerate. Then all solutions of (19) are contained
in a finite union of at most two-dimensional subspaces H1, . . . ,Hw of Qk
such that

w ≤ (233r2)e(k)(s+1)ψ̂S(b).

Proof. Consider equation (19) in the form (20). By Lemma 1, the set of
solutions of equation (20) is contained in some finite union of the form (21)
with the properties specified in Lemma 1.
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Now fix a coset xiO∗Bi,S from (21). We have xiO∗Bi,S ⊂ xiBi. Since xiBi
is a Q-linear subspace of V with 1A ∈ Bi, there exists a linear subspace Hi of
Qk such that Φ(Hi) = xiBi and xi ∈ Φ(Hi) ∩A∗. Further, for each solution
x of (20) which is contained in xiBi, the corresponding solution x of (19) is
contained in Hi, and vica versa. Moreover, by Lemma 2 we infer that Hi is
an L̂-admissible and L̂-degenerate subspace of Qk. However, by assumption,
every L̂-admissible and L̂-degenerate subspace of Qk is of dimension ≤ 2.
This completes the proof.

Lemma 4. Suppose that equation (19) has only finitely many Z∗S-cosets
of solutions. Then this number is at most

(233r2)e(k)(s+1)ψ̂S(b).

Proof. This is Corollary 2 in [8].

To prove Theorems 1 to 3, we first introduce some notation. Consider
equations (1) and (3), where

F (X) = F (X1, . . . ,Xm) ∈ ZS [X1, . . . ,Xm]

is a decomposable polynomial of degree n ≥ 3 in m ≥ 2 variables. Let
l1, . . . , ln denote the linear factors of F over G. Put

F ∗(X∗) = F ∗(X1, . . . ,Xm,Xm+1) = Xn+1
m+1 · F

(
X1

Xm+1
, . . . ,

Xm

Xm+1

)
,

l∗i (X
∗) = Xm+1li

(
X1

Xm+1
, . . . ,

Xm

Xm+1

)
, i = 1, . . . , n,

l∗n+1(X∗) = Xm+1.

Proof of Theorem 1. There is a one-to-one correspondence between the
solutions x = (x1, . . . , xm) ∈ ZmS of (1) and the corresponding solutions
x∗ = (x1, . . . , xm, xm+1) with xm+1 = 1 of the equation

F ∗(x∗) = b in x∗ ∈ Zm+1
S .(22)

We give an upper bound for the number of solutions of (22) with xm+1 = 1.
By applying Lemma 3 to this equation we infer that all solutions of (22) are
contained in a union

⋃w
i=1Hi of at most two-dimensional subspaces Hi of

Qm+1 with
w ≤ (233(n+ 1)2)e(m+1)(s+1)ψS(b, n,m).(23)

If dimQHi = 1 then (22) can have at most one solution contained in Hi

with xm+1 = 1. Hence it suffices to prove that for each two-dimensional sub-
space H of Qm+1, there are at most n solutions x∗ = (x1, . . . , xm, xm+1) of
(22) in H with xm+1 = 1. Suppose that (22) has at least two such solutions,
say x∗1 and x∗2. Then they are Q-linearly independent elements of H. Then
for any solution x∗ = (x1, . . . , xm, xm+1) of (22) in H with xm+1 = 1, we
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can write
x∗ = λx∗1 + µx∗2(24)

with suitable rational numbers λ, µ. This implies that

l∗i (x
∗) = λl∗i (x

∗
1) + µl∗i (x

∗
2), i = 1, . . . , n+ 1,(25)

which gives µ = 1− λ for i = n+ 1. From (22) we infer that

b = F ∗(x∗) =
n+1∏

i=1

(l∗i (x
∗
1 − x∗2)λ+ l∗i (x

∗
2)),(26)

which is a polynomial of degree at most n in λ. The assumption that L∗ has
rank m+1 over G implies that this is not a constant polynomial in λ. Hence
there are at most n possible values of λ for which (26) and (24) hold. Since
2e(m+ 1) = δ(m), this proves that the number of solutions of (1) does not
exceed the bound occurring in (4).

Next we derive the bound (5). Let S ′ = S∪{p | p prime with p | b in ZS}
and s′ the cardinality of S′. Then s′ = s+ ωS(b). Put F ′(X) = (1/b)F (X).
Then from F (X) ∈ ZS [X1, . . . ,Xm], b ∈ Z∗S′ and S ⊂ S′ we deduce that
F ′(X) ∈ ZS′ [X1, . . . ,Xm]. Further, the number of solutions of (1) is not
greater than the number of solutions of

F ′(x) = 1 in x ∈ ZmS′ .(27)

However, the assumption (i) of Theorem 1 clearly holds also for F ′. Hence,
by the above, equation (27) cannot have more than

n(217n)δ(m)(s′+1) · ψS′(1, n,m)

solutions. Since ψS′(1, n,m) = 1 and s′ = s+ωS(b), the proof is complete.

Proof of Theorem 2. Let ZS′ be as above, and let Z∗S′ denote the unit
group of ZS′ . For every solution x = (x1, . . . , xm) ∈ ZmS of (3), the corre-
sponding vector x∗ = (x1, . . . , xm, xm+1) with xm+1 = 1 is a solution of the
equation

F ∗(x∗) ∈ Z∗S′ in x∗ ∈ Zm+1
S′ .(28)

Further, each Z∗S′-coset of solutions of (28) contains at most one solution of
(3). Hence it suffices to derive an upper bound for the number of Z∗S′-cosets
of solutions of (28).

We may assume that the number field G is a normal extension of Q. Let
OG,S′ denote the integral closure of ZS′ in G. By Lemma 2 of [5] we may
assume that the linear factors l1, . . . , ln of F are chosen so that

l∗i (x
∗) ∈ O∗G,S′ , i = 1, . . . , n,(29)

for each solution x∗ ∈ Zm+1
S′ of (28). Further, we may also assume that each

element σ of Gal(G/Q) permutes the linear factors l∗1, . . . , l
∗
n of F ∗.
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We first show that under the assumption of Theorem 2, equation (28)
has only finitely many Z∗S′-cosets of solutions. From Lemma 3 we again infer
that the solutions of (28) are contained in a finite union of at most two-
dimensional subspaces of Qm+1. Each one-dimensional subspace contains at
most one Z∗S′-coset of solutions. Hence it remains to show that each fixed
subspaceH ofQm+1 of dimension 2 contains at most finitely many Z∗S′-cosets
of solutions.

The linear factor l∗n+1 = Xm+1 is a divisor of the form F ∗(X∗) over ZS′ .
Hence (28) implies that each Z∗S′-coset of solutions of (28) contains exactly
one x∗ = (x1, . . . , xm, xm+1) with xm+1 = 1. Such a solution x∗ will be
called normalized.

Suppose that H contains two distinct Z∗S′-cosets of solutions, say x∗1Z∗S′
and x∗2Z∗S′ , where x∗1 and x∗2 are normalized. Then for each Z∗S′-coset of
solutions x∗Z∗S′ ⊂ H where x∗ is normalized we deduce again (24), (25)
and, in place of (26),

n+1∏

i=1

(l∗i (x
∗
1 − x∗2)λ+ l∗i (x

∗
2)) = F ∗(x∗) ∈ Z∗S′ .(30)

In (24), x∗,x∗1 and x∗2 are S′-integers and x∗1,x
∗
2 are fixed. Hence using

Cramer’s rule one can easily see that there is a finite set S ′′ of primes with
S′′ ⊇ S′ such that for each x∗ considered above, the corresponding value of
λ is contained in ZS′′ . We show that the polynomial

P (λ) =
n+1∏

i=1

(l∗i (x
∗
1 − x∗2)λ+ l∗i (x

∗
2))

in λ has at least two distinct zeros. Then, as is known (see e.g. [16], Ch. 10),
equation (30) has finitely many solutions in λ.

Put κi = l∗i (x
∗
2)/l∗i (x

∗
1) for i = 1, . . . , n. If κi ∈ Q for some i, then by (29),

κi ∈ Q∩O∗G,S′ = Z∗S′ , and so l∗i (x
∗
2−κix∗1) = 0 where 0 6= x∗2−κix∗1 ∈ Qm+1.

However, by our assumption, there is at least one l∗ ∈ L∗ such that l∗(a) 6= 0
for all 0 6= a ∈ Qm+1. Consequently, there exists at least one i such that
κi 6∈ Q. But κi ∈ G, hence there is a κj which is different from κi such that
κj = σ(κi) for some σ ∈ Gal(G/Q). Then it is easy to check that

−l∗i (x∗2)/l∗i (x
∗
1 − x∗2) and − l∗j (x∗2)/l∗j (x

∗
1 − x∗2)

are distinct zeros of P (λ). As mentioned above, this implies that (30) has
only finitely many solutions λ ∈ ZS′′ . Then also (28) has only finitely many
Z∗S′-cosets of solutions. We can now apply Lemma 4 to (28) with r = n+ 1,
k = m+ 1, b = 1, S = S′, to infer that the number of Z∗S′-cosets of solutions
of (28) does not exceed

(233(n+ 1)2)e(m+1)(s+ωS(b)+1).

This implies the bound (6) for the number of solutions of (3).
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Proof of Corollary 1. In view of Theorem 2 we only have to prove that
condition (ii′) implies (i) and (i′). This means that we have to prove that
under the assumption of Corollary 1 every L∗-admissible subspace H of
Qm+1 of dimension ≥ 3 is L∗-non-degenerate.

Suppose that H is L∗-admissible and dimQH = t ≥ 3. By our assump-
tion we have rank(L∗0) = m+ 1, and thus we get

Xm+1 =
n∑

i=1

cil
∗
i (X

∗)(31)

with suitable constants ci. Since H is L∗-admissible, Xm+1 does not vanish
on H. Thus there exists a basis a∗1, . . . ,a

∗
t of H such that the (m + 1)th

coordinate of a∗1 is 1 and the (m+ 1)th coordinates of a∗2, . . . ,a
∗
t are 0. Put

X∗ = Y1a∗1 + . . .+ Yta∗t .

Now Xm+1 takes the form Y1 on H, and we also have

l∗i (X
∗) = Y1l

∗
i (a
∗
1) + . . .+ Ytl

∗
i (a
∗
t ), i = 1, . . . , n,

on H. Further, by (ii′) the coefficients of the forms Y1l
∗
i (a
∗
1) + . . .+ Ytl

∗
i (a
∗
t )

are non-zero. Thus among the restrictions of the forms Xm+1, l∗1(X∗), . . . ,
l∗n(X∗) to the subspace H there are at least two which are linearly indepen-
dent. Further, by (31) there are at least three forms among these restric-
tions which are pairwise linearly independent. However, (31) implies that
the restrictions of Xm+1, l

∗
1, . . . , l

∗
n to H are linearly dependent. Hence H is

L∗-non-degenerate and Corollary 1 follows from Theorem 2.

Proof of Theorem 3. Consider equation (3) and the corresponding equa-
tion (28) with b = 1. Then in (28) we have S ′ = S. Further, for every
solution x = (x1, . . . , xm) of (3), x∗ = (x1, . . . , xm, xm+1) with xm+1 = 1 is
a solution of (28). Conversely, in view of b = 1 any Z∗S-coset of solutions of
(28) contains exactly one solution x∗ = (x1, . . . , xm, xm+1) with xm+1 = 1
and then x = (x1, . . . , xm) is clearly a solution of (3). Hence the number of
solutions of (3) coincides with the number of Z∗S-cosets of solutions of (28).
By applying now Lemma 4 to equation (28) with r = n + 1, k = m + 1,
b = 1 the assertion immediately follows.

Proof of Corollary 2. It was proved in [5] that under condition (ii) and
the other assumptions concerning equation (8), condition (i) of our Theo-
rem 1 holds. Hence Corollary 2 follows at once from Theorem 1.

Proof of Corollary 3. We prove that under condition (iii), equation
(10) satisfies condition (ii) of Corollary 2. By (iii) there are at least three
pairwise linearly independent linear forms in the set

L0 = {h1(X1,X2), . . . , hn(X1,X2)}.
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We may suppose that these forms are hi(X1,X2) = aiX1 + biX2 for
i = 1, 2, 3. They are obviously linearly dependent. Hence Q2 is L0-non-
degenerate, and so Corollary 3 follows at once from Corollary 2.

Proof of Corollary 4. It is easy to check that condition (iii′) of Corollary
4 implies conditions (i) and (i′) of Theorem 2 with m = 2. Hence Corollary
4 follows from Theorem 2.

Proof of Corollary 5. We keep the notation of Corollary 5. Using some
ideas from the proof of Theorem 2 in [6] we prove that equation (12) satisfies
condition (ii) of Corollary 2. Put

L
(i)
0 (X) := α

(i)
1 X1 + . . .+ α(i)

mXm.

Denote by L0 a maximal subset of pairwise linearly independent forms
among L

(i)
0 − L

(j)
0 , 1 ≤ i 6= j ≤ n. Since 1, α1, . . . , αm are linearly inde-

pendent over Q, it is easy to see that L0 has rank m. The set L0 is spanned
by the linear forms L(1)

0 −L
(j)
0 , 2 ≤ j ≤ n. Then one can easily show that for

every subspace V of Qm of dimension ≥ 2 there are at least two forms among
L

(1)
0 −L

(j)
0 , 2 ≤ j ≤ n, which are linearly independent on V , say L(1)

0 −L
(2)
0

and L
(1)
0 − L

(3)
0 . Then clearly L

(1)
0 − L(2)

0 , L(1)
0 − L(3)

0 and L
(2)
0 − L(3)

0 are
pairwise linearly independent on V and

(L(1)
0 − L

(2)
0 )− (L(1)

0 − L
(3)
0 ) + (L(2)

0 − L
(3)
0 ) = 0,

which implies that condition (ii) of Corollary 2 holds. Now Corollary 5 is a
simple consequence of Corollary 2.

Proof of Corollary 6. Keeping the above notation, put

l∗(i)(X) := α
(i)
1 X1 + . . .+ α(i)

mXm + λ(i)Xm+1.

Denote by L∗0 a maximal subset of pairwise linearly independent forms
among l∗(i)−l∗(j), 1 ≤ i < j ≤ n. We can see as above that rank(L∗0) = m+1.
Further, if l∗(i)(a) − l∗(j)(a) = 0 for some distinct i, j and some 0 6= a ∈
Qm+1, then l∗(i)(a) cannot be a primitive element of M . However, by our as-
sumptions the field M is primitive, hence it follows that l∗(i)(a) ∈ Q, which
contradicts the fact that 1, α1, . . . , αm and λ are linearly independent over
Q. Thus condition (ii′) of Corollary 1 holds, and Corollary 6 follows from
Corollary 1.

Proof of Corollary 7. As shown in [5], under the assumptions of Corol-
lary 7, equation (14) satisfies condition (ii) of Corollary 2. Hence Corollary 7
follows immediately from Corollary 2.

Proof of Corollary 8. It is easy to see that under the assumptions of
Corollary 8, equation (15) satisfies the conditions of Corollary 1. Hence the
assertion follows.
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For any system F of linear forms with coefficients in a number field G,
denote by VG(F) the G-vector space generated by the forms in F .

Lemma 5. Let F̂ (X0,X1, . . . ,Xk) (k ≥ 1) be a decomposable form of
degree n with coefficients in Q which factorizes into linear factors over a
number field G. Suppose that any k + 1 linear factors in the factorization
of F̂ are linearly independent. Denote by L̂ a maximal subset of pairwise
linearly independent forms among the linear factors of F̂ . Then for each
proper non-empty subset L̂1 of L̂ we have

(VG(L̂1) ∩ VG(L̂ \ L̂1)) ∩ L̂ 6= ∅.
Proof. This is proved in the proof of Theorem 3 in [11].

Lemma 6. Under the assumptions of Lemma 5 the following two state-
ments are equivalent :

(a) Every L̂-admissible subspace of Gk+1 of dimension ≥ 2 is L̂-non-
degenerate.

(b) The forms in L̂ have rank k+1 over G and for each proper non-empty
subset L̂1 of L̂ we have

(VG(L̂1) ∩ VG(L̂ \ L̂1)) ∩ L̂ 6= ∅.
Proof. This is the Proposition in [7].

Proof of Corollary 10. For convenience, we denote by Fλ(X0, . . . ,Xm)
the resultant polynomial occurring in (16). Then for each solution Q(X) =
x0X

m + . . .+ xm of (17), x0, . . . , xm is a solution of the equation

Fλ(x0, . . . , xm) = b in x0, . . . , xm ∈ ZS .(32)

Let L0 denote the set of linear forms

hi(X) = αmi X0 + αm−1
i X1 + . . .+Xm, i = 1, . . . , n.

It is clear that any m+ 1 forms in L0 are linearly independent over G, the
splitting field of Fλ over Q.

By our assumptions, P (X) has no non-constant factor of degree < m in
Q[X]. This implies that for given i with 1 ≤ i ≤ n, there are no linearly
independent vectors a1,a2 in Qm+1 such that hi(a1) = hi(a2) = 0. This
means that every linear subspace of Qm+1 of dimension≥ 2 is L0-admissible.

We now show that every linear subspace V of Qm+1 of dimension ≥ 2 is
L0-non-degenerate. Our equation (32) satisfies the conditions of Lemma 5.
Hence

(VG(L1) ∩ VG (L0 \ L1)) ∩ L0 6= ∅
for each proper non-empty subset L1 of L0. By Lemma 6, this is equivalent to
the fact that every L0-admissible G-linear subspace of Gm+1 of dimension
≥ 2 is L0-non-degenerate. However, this implies that every L0-admissible
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linear subspace V of Qm+1 of dimension ≥ 2 is also L0-non-degenerate.
This proves our claim above. Therefore condition (ii) of Corollary 2 holds
for equation (32), and Corollary 10 follows from Corollary 2 with the choice
m+ 1 in place of m.
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[10] K. Győry, On the numbers of families of solutions of systems of decomposable form
equations, Publ. Math. Debrecen 42 (1993), 65–101.

[11] —, Some applications of decomposable form equations to resultant equations, Colloq.
Math. 65 (1993), 267–275.

[12] —, On the irreducibility of neighbouring polynomials, Acta Arith. 67 (1994), 283–
294.

[13] —, On the distribution of solutions of decomposable form equations, in: Number
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