Cantor series constructions of sets of normal numbers

by
Bill Mance (Columbus, OH)

1. Introduction

Definition 1.1. Let b and k be positive integers. A block of length k in base b is an ordered k-tuple of integers in $\{0,1, \ldots, b-1\}$. A block of length k is a block of length k in some base b. A block is a block of length k in base b for some integers k and b. Given a block $B,|B|$ will represent the length of B.

Definition 1.2. Given an integer $b \geq 2$, the b-ary expansion of a real x in $[0,1)$ is the (unique) expansion of the form

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} \frac{E_{n}}{b^{n}}=0 . E_{1} E_{2} \ldots \tag{1.1}
\end{equation*}
$$

such that E_{n} is in $\{0,1, \ldots, b-1\}$ for all n with $E_{n} \neq b-1$ infinitely often.
Denote by $N_{n}^{b}(B, x)$ the number of times a block B occurs with its starting position no greater than n in the b-ary expansion of x.

Definition 1.3. A real number x in $[0,1)$ is normal in base b if for all k and blocks B in base b of length k, one has

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{N_{n}^{b}(B, x)}{n}=b^{-k} . \tag{1.2}
\end{equation*}
$$

A number x is simply normal in base b if (1.2) holds for $k=1$.
Borel introduced normal numbers in 1909 and proved that almost all (in the sense of Lebesgue measure) real numbers in $[0,1)$ are normal in all bases [3]. The best known example of a number that is normal in base 10 is due to Champernowne [5. The number $H_{10}=0.123456789101112 \ldots$, formed by concatenating the digits of every natural number written in increasing order in base 10, is normal in base 10 . Any H_{b}, formed similarly to H_{10} but in base b, is known to be normal in base b. Since then, many examples have

[^0]been given of numbers that are normal in at least one base. One can find a more thorough literature review in [6] and [10].

The Q-Cantor series expansion, first studied by Georg Cantor in 4], is a natural generalization of the b-ary expansion.

Definition 1.4. $Q=\left(q_{n}\right)_{n=1}^{\infty}$ is a basic sequence if each q_{n} is an integer greater than or equal to 2 .

Definition 1.5. Given a basic sequence Q, the Q-Cantor series expansion of a real x in $[0,1)$ is the (unique ($\left.{ }^{1}\right)$ expansion of the form

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} \frac{E_{n}}{q_{1} \cdots q_{n}} \tag{1.3}
\end{equation*}
$$

such that E_{n} is in $\left\{0,1, \ldots, q_{n}-1\right\}$ for all n with $E_{n} \neq q_{n}-1$ infinitely often. We abbreviate (1.3) with the notation $x=0 . E_{1} E_{2} E_{3} \ldots$ with respect to Q.

Clearly, the b-ary expansion is a special case of (1.3) where $q_{n}=b$ for all n. If one thinks of a b-ary expansion as representing an outcome of repeatedly rolling a fair b-sided die, then a Q-Cantor series expansion may be thought of as representing an outcome of rolling a fair q_{1}-sided die, followed by a fair q_{2}-sided die and so on. For example, if $q_{n}=n+1$ for all n, then the Q-Cantor series expansion of $e-2$ is

$$
e-2=\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\cdots
$$

If $q_{n}=10$ for all n, then the Q-Cantor series expansion of $1 / 4$ is

$$
\frac{1}{4}=\frac{2}{10}+\frac{5}{10^{2}}+\frac{0}{10^{3}}+\frac{0}{10^{4}}+\cdots
$$

For a given basic sequence Q, let $N_{n}^{Q}(B, x)$ denote the number of times a block B occurs starting at a position no greater than n in the Q-Cantor series expansion of x. Additionally, define

$$
Q_{n}^{(k)}=\sum_{j=1}^{n} \frac{1}{q_{j} q_{j+1} \cdots q_{j+k-1}} .
$$

A. Rényi [15] defined a real number x to be normal with respect to Q if for all blocks B of length 1,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{N_{n}^{Q}(B, x)}{Q_{n}^{(1)}}=1 \tag{1.4}
\end{equation*}
$$

If $q_{n}=b$ for all n, then (1.4) is equivalent to simple normality in base b, but

[^1]not equivalent to normality in base b. Thus, we want to generalize normality in a way that is equivalent to normality in base b when all $q_{n}=b$.

Definition 1.6. A real number x is Q-normal of order k if for all blocks B of length k,

$$
\lim _{n \rightarrow \infty} \frac{N_{n}^{Q}(B, x)}{Q_{n}^{(k)}}=1
$$

We say that x is Q-normal if it is Q-normal of order k for all k. Additionally, x is simply Q-normal if it is Q-normal of order 1 .

We make the following definitions:
Definition 1.7. A basic sequence Q is k-divergent if $\lim _{n \rightarrow \infty} Q_{n}^{(k)}=\infty$; fully divergent if it is k-divergent for all k; and k-convergent if it is not k-divergent.

Definition 1.8. A basic sequence Q is infinite in limit if $q_{n} \rightarrow \infty$.
For Q that are infinite in limit, it has been shown that the set of all x in $[0,1)$ that are Q-normal of order k has full Lebesgue measure if and only if Q is k-divergent [15]. Therefore if Q is infinite in limit, then the set of all x in $[0,1)$ that are Q-normal has full Lebesgue measure if and only if Q is fully divergent.

Definition 1.9. Let x be a number in $[0,1)$ and let Q be a basic sequence. Then $T_{Q, n}(x)$ is defined as $q_{1} \cdots q_{n} x(\bmod 1)$.

Definition 1.10. A number x in $[0,1)$ is Q-distribution normal if the sequence $\left(T_{Q, n}(x)\right)_{n=0}^{\infty}$ is uniformly distributed in $[0,1)$.

Remark 1.11. For every basic sequence Q, the set of Q-distribution normal numbers has full Lebesgue measure.

Note that in base b, where $q_{n}=b$ for all n, the notions of Q-normality and Q-distribution normality are equivalent. This equivalence is fundamental in the study of normality in base b. It is surprising that this equivalence breaks down in the more general context of Q-Cantor series for general Q. Examples are given in [2] of numbers that satisfy one notion of normality and not others.

In general, it is more difficult to give explicit constructions of normal numbers (for various notions of normality) than it is to give typicality results. An explicit construction of a basic sequence Q and a real number x such that x is Q-normal and Q-distribution normal is given in [2] and [12]. In this paper, we will construct a set of Q-distribution normal numbers for any Q that is infinite in limit. None of these numbers will be Q-normal. Additionally, this set of Q-distribution normal numbers will be perfect and nowhere dense.

We recall the following standard definition that will be useful in studying distribution normality:

Definition 1.12. For a finite sequence $z=\left(z_{1}, \ldots, z_{n}\right)$, we define the star discrepancy $D_{n}^{*}(z)=D_{n}^{*}\left(z_{1}, \ldots, z_{n}\right)$ as

$$
\sup _{0<\gamma \leq 1}\left|\frac{A([0, \gamma), z)}{n}-\gamma\right| .
$$

Given an infinite sequence $w=\left(w_{1}, w_{2}, \ldots\right)$, we furthermore define $D_{n}^{*}(w)=$ $D_{n}^{*}\left(w_{1}, \ldots, w_{n}\right)$. For convenience, set $D^{*}\left(z_{1}, \ldots, z_{n}\right)=D_{n}^{*}\left(z_{1}, \ldots, z_{n}\right)$.

The star discrepancy will be useful to us due to the following theorem:
Theorem 1.13. The sequence $w=\left(w_{1}, w_{2}, \ldots\right)$ is uniformly distributed $\bmod 1$ if and only if $\lim _{n \rightarrow \infty} D_{n}^{*}(w)=0$.

Remark 1.14. For any sequence $w, 1 / n \leq D_{n}^{*}(w) \leq 1$.
The following theorem $\left[{ }^{2}\right)$ was proven by N. Korobov in [9] and will be of central importance in this paper:

Theorem 1.15. Given a basic sequence Q and a real number x with Q-Cantor series expansion $x=\sum_{n=1}^{\infty} \frac{E_{n}}{q_{1} \cdots q_{n}}$, if Q is infinite in limit, then x is Q-distribution normal if and only if $\left(E_{n} / q_{n}\right)_{n=1}^{\infty}$ is uniformly distributed mod 1 .

We note the following theorem of J. Galambos [8]:
Theorem 1.16. Let Q be a 1-divergent basic sequence. Let E_{k} be the digits of the Q-Cantor series expansion of x and put $\theta_{k}=\theta_{k}(x)=E_{k} / q_{k}$. Then, for almost all x in $[0,1)$,

$$
D_{n}^{*}(\theta) \geq \frac{1}{2 n} \sum_{k=1}^{n} \frac{1}{q_{k}}
$$

for sufficiently large n.
A discrepancy estimate, valid for certain Q, will be given for the Q distribution normal numbers that we will construct. We will make use of the following definition from [10]:

Definition 1.17. For $0 \leq \delta<1$ and $\epsilon>0$, a finite sequence $x_{1}<\cdots<x_{N}$ in $[0,1)$ is called an almost arithmetic progression- (δ, ϵ) if there exists an η, $0<\eta \leq \epsilon$, such that the following conditions are satisfied:

$$
\begin{align*}
& 0 \leq x_{1} \leq \eta+\delta \eta ; \tag{1.5}\\
& \eta-\delta \eta \leq x_{n+1}-x_{n} \leq \eta+\delta \eta \quad \text { for } 1 \leq n \leq N-1 \tag{1.6}\\
& 1-\eta-\delta \eta \leq x_{N}<1 \tag{1.7}
\end{align*}
$$

$\left(^{2}\right)$ T. Šalát proved a stronger result in [16, but we will not need it in this paper.

Almost arithmetic progressions were introduced by P. O'Neil in [14. He proved that a sequence $\left(x_{n}\right)_{n}$ of real numbers in $[0,1)$ is uniformly distributed mod 1 if and only if the following holds: for any three positive real numbers δ, ϵ, and ϵ^{\prime}, there exists a positive integer N such that for all $n>N$, the initial segment x_{1}, \ldots, x_{n} can be decomposed into an almost arithmetic progression- (δ, ϵ) with at most N_{0} elements left over, where $N_{0}<\epsilon^{\prime} N$.

In [1], R. Adler, M. Keane, and M. Smorodinsky showed that the real number whose continued fraction expansion is given by the concatenation of the digits of the continued fraction expansion of the rational numbers

$$
\begin{equation*}
\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \ldots \tag{1.8}
\end{equation*}
$$

is normal with respect to the continued fraction expansion. For every Q that is infinite in limit, we use Definition 1.17 to construct a set Θ_{Q} of Q distribution normal numbers that are defined similarly to the concatenation of the numbers in 1.8). We prove the following results on Θ_{Q} :

1 . If $x \in \Theta_{Q}$, then x is Q-distribution normal and not simply Q-normal (Theorem 2.20 and Proposition 2.21).
2. Θ_{Q} is perfect and nowhere dense (Theorems 3.8 and 3.10).
3. If $x \in \Theta_{Q}, x=0 . E_{1} E_{2} \ldots$ with respect to Q, and $X=\left(E_{n} / q_{n}\right)_{n=1}^{\infty}$, then for certain basic sequences Q, there exists a constant γ_{Q} such that for all $\psi>1$,

$$
D_{n}^{*}(X)<\psi \cdot \gamma_{Q} \cdot n^{-1 / 2}
$$

for large enough n (Theorem 3.3). For many basic sequences, we can determine the constant γ_{Q}. In particular, $\gamma_{Q}=\sqrt{8}$ if $q_{n} \geq 5 n$ for all n.
4. The Hausdorff dimension of Θ_{Q} is evaluated or approximated for several classes of basic sequences (Theorems 3.17, 3.21, 3.22, and 3.24). Given any $\alpha \in[0,1]$, we provide an example of a basic sequence Q such that Θ_{Q} has α as its Hausdorff dimension (Theorem 3.26).
2. The construction. For the rest of this section, we fix a basic sequence Q that is infinite in limit.
2.1. Notation and conventions. For the rest of this paper, let $\tau(n)=$ $1+\cdots+n=n(n+1) / 2$ be the nth triangular number. Given a basic sequence Q, we will construct a sequence l_{1}, l_{2}, \ldots of positive integers. The following definition will be needed:

Definition 2.1. For each positive integer j, we define

$$
\nu_{j}=\min \left\{N: q_{m} \geq 2 j^{2} \text { for all } m \geq N\right\} .
$$

We now recursively define the sequence l_{1}, l_{2}, \ldots :
Definition 2.2. We set $l_{1}=\max \left(\nu_{2}-1,1\right)$. Given l_{1}, \ldots, l_{i-1}, we define l_{i} to be the smallest positive integer such that

$$
l_{1}+2 l_{2}+3 l_{3}+\cdots+i l_{i} \geq \nu_{i+1}-1 .
$$

Thus, we have

$$
l_{i}=\max \left(\min \left\{k: l_{1}+2 l_{2}+\cdots+(i-1) l_{i-1}+i k \geq \nu_{i+1}-1\right\}, 1\right) .
$$

Additionally, for any non-negative integer i, we set

$$
L_{i}=\sum_{j=1}^{i} j l_{j}=l_{1}+2 l_{2}+\cdots+i l_{i} .
$$

Lemma 2.3. Suppose that a, c, and q are positive integers and $q \geq 2 a^{2}$. Then there exist at least two integers F such that

$$
\begin{equation*}
\frac{F}{q} \in\left[\frac{c}{a}-\frac{1}{2 a^{2}}, \frac{c}{a}+\frac{1}{2 a^{2}}\right] . \tag{2.1}
\end{equation*}
$$

Proof. We assume, for contradiction, that there are fewer than two solutions to (2.1). Thus, there exists an integer F such that

$$
\frac{F}{q}<\frac{c}{a}-\frac{1}{2 a^{2}} \quad \text { and } \quad \frac{c}{a}+\frac{1}{2 a^{2}}<\frac{F+2}{q}
$$

so

$$
\begin{equation*}
\left[\frac{c}{a}-\frac{1}{2 a^{2}}, \frac{c}{a}+\frac{1}{2 a^{2}}\right] \nsubseteq\left[\frac{F}{q}, \frac{F+2}{q}\right] . \tag{2.2}
\end{equation*}
$$

By (2.2), we conclude that

$$
\left(\frac{c}{a}+\frac{1}{2 a^{2}}\right)-\left(\frac{c}{a}-\frac{1}{2 a^{2}}\right)<\frac{F+2}{q}-\frac{F}{q},
$$

so

$$
\begin{equation*}
\frac{1}{a^{2}}<\frac{2}{q} . \tag{2.3}
\end{equation*}
$$

Cross-multiplying (2.3) gives $q<2 a^{2}$, which contradicts $q \geq 2 a^{2}$.
Definition 2.4. Let $S_{Q}=\left\{(a, b, c) \in \mathbb{N}^{3}: b \leq l_{a}, c \leq a\right\}$ and define $\phi_{Q}: S_{Q} \rightarrow \mathbb{N}$ by $\phi_{Q}(a, b, c)=L_{a-1}+(b-1) a+c$.

Lemma 2.5. The function ϕ_{Q} is a bijection from S_{Q} to \mathbb{N}.
Proof. Starting at $n=1$, put l_{1} boxes of length 1 , followed by l_{2} boxes of length $2, l_{3}$ boxes of length 3 , and so on. Then the position of the component c of the b th box of length a is at

$$
1 l_{1}+2 l_{2}+\cdots+(a-1) l_{a-1}+(b-1) a+c=\phi_{Q}(a, b, c),
$$

so ϕ_{Q} is a bijection from S_{Q} to \mathbb{N}.

Definition 2.6. The sequence $F=\left(F_{(a, b, c)}\right)_{(a, b, c) \in S_{Q}}$ is a Q-special sequence if $F_{(a, b, 1)}=0$ for $(a, b, 1) \in S_{Q}$ and

$$
\frac{F_{(a, b, c)}}{q_{\phi_{Q}(a, b, c)}} \in\left[\frac{c-1}{a}-\frac{1}{2 a^{2}}, \frac{c-1}{a}+\frac{1}{2 a^{2}}\right]
$$

for $(a, b, c) \in S_{Q}$ with $c>1$. Let Γ_{Q} denote the set of all Q-special sequences.
Given a Q-special sequence F, Lemma 2.5 allows us to define $E_{F}=$ $\left(E_{F, n}\right)_{n=1}^{\infty}$ as follows:

Definition 2.7. Suppose that F is a Q-special sequence. For any positive integer n, we define $E_{F, n}=F_{\phi_{Q}^{-1}(n)}$ and let $E_{F}=\left(E_{F, n}\right)_{n=1}^{\infty}$.

Given finite sequences w_{1}, w_{2}, \ldots, we let $w_{1} w_{2} w_{3} \ldots$ denote their concatenation.

Definition 2.8. If F is a Q-special sequence and $(a, b, 1) \in S_{Q}$, then we define

$$
y_{F, a, b}=\left(\frac{F_{(a, b, c)}}{q_{\phi_{Q}}(a, b, c)}\right)_{c=1}^{a}
$$

and let $D_{F, a, b}^{*}=D^{*}\left(y_{F, a, b}\right)$. We also set

$$
y_{F}=y_{F, 1,1} y_{F, 1,2} \ldots y_{F, 1, l_{1}} y_{F, 2,1} y_{F, 2,2} \ldots y_{F, 2, l_{2}} y_{F, 3,1} y_{F, 3,2} \ldots y_{F, 3, l_{3}} y_{F, 4,1} \ldots
$$

Definition 2.9. If F is a Q-special sequence, define

$$
x_{F}=\sum_{n=1}^{\infty} \frac{E_{F, n}}{q_{1} \cdots q_{n}}
$$

We also let $\Theta_{Q}=\left\{x_{F}: F \in \Gamma_{Q}\right\}$.
REMARK 2.10. By construction, $y_{F}=\left(E_{F, n} / q_{n}\right)_{n=1}^{\infty}$, so by Theorem 1.15 , x_{F} is Q-distribution normal if and only if y_{F} is uniformly distributed mod 1 .
2.2. Basic lemmas. We will use the following theorem from [13]:

Theorem 2.11. Let $x_{1}<\cdots<x_{N}$ be an almost arithmetic progression(δ, ϵ) and let η be the positive real number corresponding to the sequence according to Definition 1.17. Then
$D_{N}^{*} \leq \frac{1}{N}+\frac{\delta}{1+\sqrt{1-\delta^{2}}} \quad$ for $\delta>0 \quad$ and $\quad D_{N}^{*} \leq \min \left(\eta, \frac{1}{N}\right) \quad$ for $\delta=0$.
Corollary 2.12. Let $x_{1}<\cdots<x_{N}$ be an almost arithmetic progres-sion- (δ, ϵ) and let η be the positive real number corresponding to the sequence according to Definition 1.17. Then $D_{N}^{*} \leq 1 / N+\delta$.

Lemma 2.13. If F is a Q-special sequence, then the sequence $y_{F, a, b}$ is an almost arithmetic progression- $(1 / a, 1 / a)$ and $D_{F, a, b}^{*} \leq 2 / a$.

Proof. The case $a=1$ is trivial, so suppose that $a>1$. To show that $y_{F, a, b}$ is an almost arithmetic progression- $(1 / a, 1 / a)$, we first note that $F_{(a, b, 1)}=0$,

$$
0 \leq \frac{F_{(a, b, 1)}}{q_{\phi_{Q}(a, b, 1)}} \leq \frac{1}{a}+\frac{1}{a^{2}}
$$

so 1.5 holds.
Next, suppose that $2 \leq c \leq a-1$. By construction,
$\frac{F_{(a, b, c)}}{q_{\phi_{Q}(a, b, c)}} \in\left[\frac{c-1}{a}-\frac{1}{2 a^{2}}, \frac{c-1}{a}+\frac{1}{2 a^{2}}\right], \quad \frac{F_{(a, b, c+1)}}{q_{\phi_{Q}(a, b, c+1)}} \in\left[\frac{c}{a}-\frac{1}{2 a^{2}}, \frac{c}{a}+\frac{1}{2 a^{2}}\right]$ so

$$
\begin{align*}
& \frac{F_{(a, b, c+1)}}{q_{\phi_{Q}(a, b, c+1)}}-\frac{F_{(a, b, c)}}{q_{\phi_{Q}(a, b, c)}} \leq\left(\frac{c}{a}+\frac{1}{2 a^{2}}\right)-\left(\frac{c-1}{a}-\frac{1}{2 a^{2}}\right), \tag{2.4}\\
& \frac{F_{(a, b, c+1)}}{q_{\phi_{Q}(a, b, c+1)}}-\frac{F_{(a, b, c)}}{q_{\phi_{Q}(a, b, c)}} \geq\left(\frac{c}{a}-\frac{1}{2 a^{2}}\right)-\left(\frac{c-1}{a}+\frac{1}{2 a^{2}}\right) . \tag{2.5}
\end{align*}
$$

Combining (2.4) and (2.5), we see that

$$
\frac{1}{a}-\frac{1}{a^{2}} \leq \frac{F_{(a, b, c+1)}}{q_{\phi_{Q}(a, b, c+1)}}-\frac{F_{(a, b, c)}}{q_{\phi_{Q}(a, b, c)}} \leq \frac{1}{a}+\frac{1}{a^{2}}
$$

so (1.6) holds.
Lastly, by construction,

$$
\frac{a-1}{a}-\frac{1}{a^{2}} \leq \frac{F_{(a, b, a)}}{q_{\phi_{Q}(a, b, a)}}<\frac{a-1}{a}+\frac{1}{a^{2}}
$$

so

$$
1-\frac{1}{a}-\frac{1}{a^{2}} \leq \frac{F_{(a, b, a)}}{q_{\phi_{Q}(a, b, a)}} \leq 1-\frac{1}{a}+\frac{1}{a^{2}}<1
$$

and we have verified 1.7). Therefore, $y_{F, a, b}$ is an almost arithmetic progres-sion- $(1 / a, 1 / a)$. By Corollary $2.12, D_{F, a, b}^{*} \leq 1 / a+1 / a=2 / a$.

Throughout the rest of this paper, for a given n, the symbol $i=i(n)$ means the unique integer satisfying $L_{i}<n \leq L_{i+1}$. Given a positive integer n, let $m=n-L_{i}$. Note that m can be written uniquely as $m=\alpha(i+1)+\beta$ with

$$
0 \leq \alpha \leq l_{i+1} \quad \text { and } \quad 0 \leq \beta<i+1
$$

We define α and β as the unique integers satisfying these conditions.
The following results from [10] will be needed:
LEMMA 2.14. If t is a positive integer and for $1 \leq j \leq t, z_{j}$ is a finite sequence in $[0,1)$ with star discrepancy at most ϵ_{j}, then

$$
D^{*}\left(z_{1} \cdots z_{t}\right) \leq \frac{\sum_{j=1}^{t}\left|z_{j}\right| \epsilon_{j}}{\sum_{j=1}^{t}\left|z_{j}\right|}
$$

Corollary 2.15. If t is a positive integer and for $1 \leq j \leq t$, z_{j} is a finite sequence in $[0,1)$ with star discrepancy at most ϵ_{j}, then

$$
D^{*}\left(l_{1} z_{1} \cdots l_{t} z_{t}\right) \leq \frac{\sum_{j=1}^{t} l_{j}\left|z_{j}\right| \epsilon_{j}}{\sum_{j=1}^{t} l_{j}\left|z_{j}\right|}
$$

Recall that $D^{*}(z)$ is bounded above by 1 for all finite sequences z of real numbers in $[0,1)$. By Corollary 2.15 ,

$$
\begin{aligned}
D_{n}^{*}\left(y_{F}\right) \leq f_{i}(\alpha, \beta): & =\frac{\sum_{j=1}^{i} l_{j} \cdot j \cdot \frac{2}{j}+\alpha \cdot(i+1) \cdot \frac{2}{i+1}+\beta}{\sum_{j=1}^{i} j l_{j}+(i+1) \alpha+\beta} \\
& =\frac{\sum_{j=1}^{i} 2 l_{j}+2 \alpha+\beta}{\sum_{j=1}^{i} j l_{j}+(i+1) \alpha+\beta}
\end{aligned}
$$

Note that $f_{i}(\alpha, \beta)$ is a rational function of α and β. We consider the domain of f_{i} to be $\mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+}$, where \mathbb{R}_{0}^{+}is the set of all non-negative real numbers. Given a Q-special sequence F, we now give an upper bound for $D_{n}^{*}\left(y_{F}\right)$. Since $D_{n}^{*}\left(y_{F}\right)$ is at most $f_{i}(\alpha, \beta)$, it is enough to bound $f_{i}(\alpha, \beta)$ from above on $\left[0, l_{i+1}\right] \times[0, i]$. Set

$$
\bar{\epsilon}_{i}=f_{i}(0, i+1)=\frac{\sum_{j=1}^{i} 2 l_{j}+i+1}{\sum_{j=1}^{i} j l_{j}+i+1} .
$$

The following lemma is proven similarly to Lemma 11 in [2]:
Lemma 2.16. If $i>2$ and

$$
\begin{equation*}
\sum_{j=1}^{i} j l_{j}>\sum_{j=1}^{i} 2 l_{j} \tag{2.6}
\end{equation*}
$$

and

$$
(w, z) \in\left\{0, \ldots, l_{i+1}\right\} \times\{0, \ldots, i\}
$$

then

$$
f_{i}(w, z)<f_{i}(0, i+1)=\bar{\epsilon}_{i}
$$

We will now prove a series of lemmas to show that $\bar{\epsilon}_{i} \rightarrow 0$. The following was proven by O. Toeplitz in [17]:

THEOREM 2.17. Let $\left(\gamma_{n, k}: 1 \leq k \leq n, n \geq 1\right)$ be an array of real numbers such that:
(1) $\lim _{n \rightarrow \infty} \gamma_{n, k}=0$ for each $k \in \mathbb{N}$;
(2) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \gamma_{n, k}=1$;
(3) there exists $C>0$ such that $\sum_{k=1}^{n}\left|\gamma_{n, k}\right| \leq C$ for all positive integers n.

Then for any convergent sequence $\left(\alpha_{n}\right)$, the transformed sequence $\left(\beta_{n}\right)$ given by

$$
\beta_{n}=\sum_{k=1}^{n} \gamma_{n, k} \alpha_{k}, \quad n \geq 1,
$$

is also convergent and $\lim _{n \rightarrow \infty} \beta_{n}=\lim _{n \rightarrow \infty} \alpha_{n}$.
We will need the following result that follows from Theorem 2.17.
Lemma 2.18. Let L be a real number and $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be two sequences of positive real numbers such that $\sum_{n=1}^{\infty} b_{n}=\infty$ and $\lim _{n \rightarrow \infty} a_{n} / b_{n}$ $=L$. Then

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}}=L .
$$

We may now show that $\bar{\epsilon}_{i} \rightarrow 0$.
Lemma 2.19. $\lim _{n \rightarrow \infty} \bar{\epsilon}_{i}=0$.
Proof. We will first show that $\lim _{i \rightarrow \infty} \bar{\epsilon}_{i} \rightarrow 0$. The lemma will then follow as $i=i(n)$ satisfies $\lim _{n \rightarrow \infty} i(n)=\infty$.

We apply Lemma 2.18 with $a_{1}=2 l_{1}+2, b_{1}=l_{1}+2$ and for $j>1$, $a_{j}=2 l_{j}+1$ and $b_{j}=j l_{j}+1$. Thus,

$$
a_{1}+\cdots+a_{i}=\sum_{j=1}^{i} 2 l_{j}+i+1 \quad \text { and } \quad b_{1}+\cdots+b_{i}=\sum_{j=1}^{i} j l_{j}+i+1 .
$$

Since $\lim _{i \rightarrow \infty} \frac{a_{i}}{b_{i}}=\lim _{i \rightarrow \infty} \frac{2 l l_{i}+1}{i l_{i}+1}=0$, we see that

$$
\lim _{i \rightarrow \infty} \bar{\epsilon}_{i}=\lim _{i \rightarrow \infty} \frac{\sum_{j=1}^{i} 2 l_{j}+i+1}{\sum_{j=1}^{i} j l_{j}+i+1}=\lim _{i \rightarrow \infty} \frac{a_{i}}{b_{i}}=0
$$

2.3. Main theorem

Theorem 2.20. Suppose that F is a Q-special sequence. Then x_{F} is Q-distribution normal.

Proof. Suppose that n is large enough so that $i>2$ and $(i-2) l_{i}>l_{1}$. Then

$$
\begin{equation*}
i l_{i}+2 l_{2}+l_{1}>2 l_{i}+2 l_{2}+2 l_{1} . \tag{2.7}
\end{equation*}
$$

We also note that

$$
\begin{equation*}
j l_{j}>2 l_{j} \quad \text { for } j>2 . \tag{2.8}
\end{equation*}
$$

Combining (2.7) and (2.8) gives

$$
\sum_{j=1}^{i} j l_{j}>\sum_{j=1}^{i} 2 l_{j} .
$$

By Lemma 2.16. $D_{n}^{*}\left(y_{F}\right)<\bar{\epsilon}_{i(n)}$, and by Lemma 2.19, $\bar{\epsilon}_{i(n)} \rightarrow 0$, so the sequence y_{F} is uniformly distributed mod 1 . Thus, by Theorem 1.15, x_{F} is Q-distribution normal.

We will now show that while Theorem 2.20 allows us to construct Q distribution normal numbers, none of these numbers will be simply Q normal.

Proposition 2.21. If F is a Q-special sequence, then x_{F} is not simply Q-normal.

Proof. If Q is 1-convergent, then x_{F} is not simply Q-normal as the digit 0 occurs infinitely often in the Q-Cantor series expansion of x_{F}.

Next, suppose that Q is 1-divergent. We will show that the digit 1 may only occur finitely often in the Q-Cantor series expansion of x_{F}. Suppose that $(a, b, 2) \in F$ and $a \geq 2$. Then, by construction, we have

$$
\frac{F_{(a, b, 2)}}{q_{\phi_{Q}(a, b, 2)}} \in\left[\frac{1}{a}-\frac{1}{2 a^{2}}, \frac{1}{a}+\frac{1}{2 a^{2}}\right]
$$

and $q_{\phi_{Q}(a, b, 2)} \geq 2 a^{2}$. Thus, we see that

$$
\frac{F_{(a, b, 2)}}{q_{\phi_{Q}(a, b, 2)}} \geq \frac{1}{a}-\frac{1}{2 a^{2}}
$$

so

$$
\begin{equation*}
F_{(a, b, 2)} \geq\left(\frac{1}{a}-\frac{1}{2 a^{2}}\right) q_{\phi_{Q}(a, b, 2)} \geq\left(\frac{1}{a}-\frac{1}{2 a^{2}}\right) \cdot 2 a^{2}=2 a-1>1 . \tag{2.9}
\end{equation*}
$$

Thus, by 2.9$), F_{(a, b, 2)}>1$ when $a \geq 2$. Since $F_{(a, b, 1)}=0$ whenever $(a, b, 1)$ $\in S_{Q}$, there are at most finitely many n such that $E_{F, n}=1$, so x_{F} is not simply Q-normal.

3. Other properties of Θ_{Q}

3.1. Discrepancy results

Lemma 3.1. Suppose that Q is a basic sequence such that there exist constants M and t with $\nu_{i+1}-\nu_{i} \leq M i$ for all $i>t$. Then $l_{i} \leq\lceil M+1\rceil$ for all $i>t$.

Proof. Suppose that $i>t$ and $l_{i} \geq 2$. Then by definition of $\left(l_{i}\right)_{i}$, we have $\left({ }^{3}\right)$

$$
\nu_{i+1}-1 \leq L_{i}<\nu_{i+1}+i-1 \quad \text { and } \quad \nu_{i}-1 \leq L_{i-1} .
$$

Thus,

$$
L_{i}=L_{i-1}+i l_{i}<\nu_{i+1}+i-1
$$

[^2]so
\[

$$
\begin{aligned}
l_{i} & <\frac{\nu_{i+1}+i-1-L_{i-1}}{i} \leq \frac{\nu_{i+1}+i-1-\left(\nu_{i}-1\right)}{i}=1+\frac{\nu_{i+1}-\nu_{i}}{i} \\
& \leq 1+\frac{M i}{i}=1+M \leq\lceil 1+M\rceil
\end{aligned}
$$
\]

Proposition 3.2. Suppose that Q is a basic sequence such that there exist constants M and t where $l_{j} \leq M$ for $j>t$. Then for all Q-special sequences F and real numbers $\psi>1$, we have

$$
D_{n}^{*}\left(y_{F}\right)<\psi \sqrt{2 M}(2 M+1) \cdot n^{-1 / 2}
$$

for large enough n.
Proof. By Lemma 2.16, for large enough n, we have

$$
D_{n}^{*}\left(y_{F}\right)<\frac{\sum_{j=1}^{i} 2 l_{j}+i+1}{\sum_{j=1}^{i} j l_{j}+i+1}
$$

Set $\kappa=\sum_{j=1}^{t} j l_{j}$. Since $l_{j} \geq 1$ for all j, we see that

$$
\begin{align*}
D_{n}^{*}\left(y_{F}\right) & <\frac{2 \kappa+\sum_{j=1}^{i} 2 M+i+1}{\sum_{j=1}^{i} j \cdot 1+i+1} \tag{3.1}\\
& =\frac{2 \kappa+2 M i+i+1}{i(i+1) / 2+i+1}=\frac{(2 \kappa+1)+(2 M+1) i}{i^{2}+3 i+3 / 2} \\
& <\frac{2(2 \kappa+1)+2(2 M+1) i}{i^{2}+3 i / 2}=\frac{2(2 \kappa+1) / i+2(2 M+1)}{i+3 / 2}
\end{align*}
$$

However,

$$
\begin{aligned}
\frac{i(i+1)}{2} & =\sum_{j=1}^{i} j \cdot 1 \leq \sum_{j=1}^{i} j l_{j} \\
& <n \leq \kappa+\sum_{j=1}^{i+1} j l_{j} \leq \kappa+\sum_{j=1}^{i+1} j M=\kappa+\frac{(i+1)(i+2)}{2} M
\end{aligned}
$$

Thus, we see that $i \geq p$, where p is the positive solution to $n=\kappa+$ $(p+1)(p+2) M / 2$. Therefore,

$$
\begin{equation*}
p=\frac{-3+\sqrt{(8 / M) n+(1-8 \kappa / M)}}{2} \tag{3.2}
\end{equation*}
$$

Substituting (3.2) into (3.1), we arrive at the inequality

$$
D_{n}^{*}\left(y_{F}\right)<\frac{2(\kappa+1) / i+2(2 M+1)}{\frac{-3+\sqrt{(8 / M) n+(1-8 \kappa / M)}}{2}+\frac{3}{2}}=\frac{4(\kappa+1) / i+4(2 M+1)}{\sqrt{(8 / M) n+(1-8 \kappa / M)}}
$$

Let $\psi>1$. Then for large enough n,

$$
\frac{4(\kappa+1) / i(n)+4(2 M+1)}{\sqrt{(8 / M) n+(1-8 \kappa / M)}}<\psi \frac{4(2 M+1)}{\sqrt{(8 / M) n}}=\psi \sqrt{2 M}(2 M+1) n^{-1 / 2}
$$

so $D_{n}^{*}\left(y_{F}\right)<\psi \sqrt{2 M}(2 M+1) n^{-1 / 2}$.
Theorem 3.3. Suppose that Q is a basic sequence such that there exist constants M and t where $\nu_{i+1}-\nu_{i} \leq M i$ for $j>t$. Then for all Q-special sequences F and real numbers $\psi>1$, we have

$$
D_{n}^{*}\left(y_{F}\right)<\psi \sqrt{2\lceil M+1\rceil}(2\lceil M+1\rceil+1) n^{-1 / 2}
$$

for large enough n.
Proof. This follows directly from Lemma 3.1 and Proposition 3.2,
REMARK 3.4. If $q_{m} \geq 2 n^{2}$ for $\tau(n-1)<m \leq \tau(n)$, then $l_{i}=1$ for all i and Theorem 3.3 implies that for all $\psi>1$ and large enough n, we have

$$
\begin{equation*}
D_{n}^{*}\left(y_{F}\right)<\psi \sqrt{8} n^{-1 / 2} \tag{3.3}
\end{equation*}
$$

For example, (3.3) holds if $q_{n} \geq 5 n$ for all n.
3.2. Θ_{Q} is perfect and nowhere dense. The goal of this subsection will be to show that Θ_{Q} is a perfect, nowhere dense subset of $[0,1)$. We first remark that the existence of a set of normal numbers that is perfect and nowhere dense should not be surprising. However, constructing a specific example of such a set may not lend itself to an obvious solution.

We will now work towards showing that Θ_{Q} is perfect and nowhere dense. In order to proceed, we define a function, d, from $\Gamma_{Q} \times \Gamma_{Q}$ to \mathbb{R} :

Definition 3.5. Suppose F_{1} and F_{2} are Q-special sequences. If $F_{1} \neq F_{2}$, we define $\zeta_{F_{1}, F_{2}}=\min \left\{n: E_{F_{1}, n} \neq E_{F_{2}, n}\right\}$. Define ($\left.{ }^{4}\right) d: \Gamma_{Q} \times \Gamma_{Q} \rightarrow \mathbb{R}$ by

$$
d\left(F_{1}, F_{2}\right)= \begin{cases}\frac{1}{q_{1} \cdots q_{\zeta_{F_{1}, F_{2}}-1}} & \text { if } F_{1} \neq F_{2} \\ 0 & \text { if } F_{1}=F_{2}\end{cases}
$$

Lemma 3.6. If $F_{1}, F_{2} \in \Gamma_{Q}$, then $\left|x_{F_{1}}-x_{F_{2}}\right| \leq d\left(F_{1}, F_{2}\right)$.
Proof. Let $n=\zeta_{F_{1}, F_{2}}$. We write the Q-Cantor series expansions of $x_{F_{1}}$ and $x_{F_{2}}$ as follows:

$$
\begin{aligned}
& x_{F_{1}}=\frac{E_{1}}{q_{1}}+\frac{E_{2}}{q_{1} q_{2}}+\cdots+\frac{E_{n-1}}{q_{1} \cdots q_{n-1}}+\frac{E_{F_{1}, n}}{q_{1} \cdots q_{n}}+\frac{E_{F_{1}, n+1}}{q_{1} \cdots q_{n+1}}+\cdots, \\
& x_{F_{2}}=\frac{E_{1}}{q_{1}}+\frac{E_{2}}{q_{1} q_{2}}+\cdots+\frac{E_{n-1}}{q_{1} \cdots q_{n-1}}+\frac{E_{F_{2}, n}}{q_{1} \cdots q_{n}}+\frac{E_{F_{2}, n+1}}{q_{1} \cdots q_{n+1}}+\cdots,
\end{aligned}
$$

$\left.{ }^{4}\right)\left(\Gamma_{Q}, d\right)$ is a metric space.
so

$$
\begin{aligned}
& \left|x_{F_{1}}-x_{F_{2}}\right| \\
& \quad=\left|\left(\frac{E_{F_{1}, n}}{q_{1} \cdots q_{n-1}}-\frac{E_{F_{2}, n}}{q_{1} \cdots q_{n-1}}\right)+\left(\frac{E_{F_{1}, n+1}}{q_{1} \cdots q_{n+1}}-\frac{E_{F_{2}, n+1}}{q_{1} \cdots q_{n+1}}\right)+\cdots\right| \\
& \quad \leq \frac{\left|E_{F_{1}, n}-E_{F_{2}, n}\right|}{q_{1} \cdots q_{n}}+\frac{\left|E_{F_{1}, n+1}-E_{F_{2}, n+1}\right|}{q_{1} \cdots q_{n+1}}+\cdots \leq \frac{1}{q_{1} \cdots q_{n-1}}=d\left(F_{1}, F_{2}\right) .
\end{aligned}
$$

Lemma 3.7. If $F \in \Gamma_{Q}$, then there exists a sequence of Q-special sequences $F_{1}, F_{2}, F_{3}, \ldots$ such that $F \neq F_{n}$ for all n and $\lim _{n \rightarrow \infty} d\left(F, F_{n}\right)=0$.

Proof. By Lemma 2.3, we may define a sequence of Q-special sequences as follows. Let n be any positive integer and put $(\alpha, \beta, \gamma)=\phi_{Q}^{-1}(n)$. We must now consider three cases. First, if $\gamma \neq 1$, then for $m \neq n$, we set $E_{n, m}=E_{F, m}$ and we let $E_{n, n} \neq E_{F, n}$ be any value that satisfies

$$
\frac{E_{n, n}}{q_{n}} \in\left[\frac{\gamma-1}{\alpha}-\frac{1}{2 \alpha^{2}}, \frac{\gamma-1}{\alpha}+\frac{1}{2 \alpha^{2}}\right] .
$$

Second, we suppose that $\gamma=1$ and $\alpha>1$. Put $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=\phi_{Q}^{-1}(n+1)$. Then for $m \neq n+1$, we set $E_{n, m}=E_{F, m}$ and we let $E_{n, n+1} \neq E_{F, n+1}$ be any value that satisfies

$$
\frac{E_{n, n+1}}{q_{n+1}} \in\left[\frac{\gamma^{\prime}-1}{\alpha^{\prime}}-\frac{1}{2 \alpha^{\prime 2}}, \frac{\gamma^{\prime}-1}{\alpha^{\prime}}+\frac{1}{2 \alpha^{\prime 2}}\right] .
$$

Third, we consider the case where $\alpha=\gamma=1$. Set $t=\phi_{Q}(2,1,2)$ and note that $t>n$. Then for $m \neq t$, put $E_{n, m}=E_{F, m}$ and let $E_{n, t} \neq E_{F, t}$ be any value that satisfies

$$
\frac{E_{n, t}}{q_{t}} \in\left[\frac{2-1}{2}-\frac{1}{2 \cdot 2^{2}}, \frac{2-1}{2}+\frac{1}{2 \cdot 2^{2}}\right]=\left[\frac{3}{8}, \frac{5}{8}\right] .
$$

Now that we have determined $\left(E_{n, m}\right)_{m=1}^{\infty}$, set $F_{n}=\left(E_{n, \phi_{Q}(a, b, c)}\right)_{(a, b, c) \in S_{Q}}$. Thus, $F \neq F_{n}$ for all n, and for large enough m we have

$$
d\left(F, F_{m}\right) \leq \max \left(\frac{1}{q_{1} \cdots q_{m}}, \frac{1}{q_{1} \cdots q_{m-1}}\right)=\frac{1}{q_{1} \cdots q_{m-1}}
$$

so $F_{n} \rightarrow F$.
Theorem 3.8. The set Θ_{Q} is perfect.
Proof. Suppose that $x \in \Theta_{Q}$ and that $x=x_{F}$. By Lemma 3.7, there exists a sequence of Q-special sequences F_{1}, F_{2}, \ldots, none of which are equal to F, with $F_{n} \rightarrow F$. Thus, $x \neq x_{F_{n}}$ for all n. Let $\epsilon>0$ and suppose that N is large enough so that for all $n>N$, we have $d\left(F, F_{n}\right)<\epsilon$. Clearly, $\left|x-x_{F_{n}}\right| \leq d\left(F, F_{n}\right)<\epsilon$, so $x_{F_{n}} \rightarrow x_{F}$ and Θ_{Q} is perfect.

We need the following simple lemma:

Lemma 3.9. If $a \geq 1$, then

$$
\frac{a-1}{a}+\frac{1.5}{2 a^{2}}<1
$$

Theorem 3.10. The set Θ_{Q} is nowhere dense.
Proof. Let $I \subset[0,1)$ be any interval such that $\Theta_{Q} \cap I \neq \emptyset$. We will show that there exists an interval $K \subset I$ such that $\Theta_{Q} \cap K=\emptyset$. Thus, there exists a positive integer n and an interval $J \subset I$ with

$$
J=\left[\frac{E_{1}}{q_{1}}+\frac{E_{2}}{q_{1} q_{2}}+\cdots+\frac{E_{n}}{q_{1} \cdots q_{n}}, \frac{E_{1}}{q_{1}}+\frac{E_{2}}{q_{1} q_{2}}+\cdots+\frac{E_{n}+1}{q_{1} \cdots q_{n}}\right)
$$

and $E_{j} \in\left[0, q_{j}-1\right) \cap \mathbb{Z}$ for $j=1, \ldots, n$. Put $(a, b, c)=\phi_{Q}^{-1}(n+1)$. By Lemma 3.9, we may set
$K=\left[\frac{E_{1}}{q_{1}}+\cdots+\frac{E_{n}}{q_{1} \cdots q_{n}}+\left(\frac{a-1}{a}+\frac{1.5}{2 a^{2}}\right) \frac{1}{q_{1} \cdots q_{n}}, \frac{E_{1}}{q_{1}}+\cdots+\frac{E_{n}+1}{q_{1} \cdots q_{n}}\right)$.
If $\Theta_{Q} \cap J=\emptyset$, we are finished, so assume that $\Theta_{Q} \cap J \neq \emptyset$. Suppose that $F \in \Gamma_{Q}$ is such that $x_{F} \in J$ and

$$
x=0 . E_{1} \ldots E_{n} E_{n+1} \ldots \quad \text { with respect to } Q
$$

By construction, if $c \neq 1$, we have

$$
\frac{E_{n+1}}{q_{n+1}} \in\left[\frac{c-1}{a}-\frac{1}{2 a^{2}}, \frac{c-1}{a}+\frac{1}{2 a^{2}}\right] .
$$

If $c=1$, then $E_{n+1}=0$. Therefore,

$$
\begin{aligned}
x_{F} & \leq \frac{E_{1}}{q_{1}}+\frac{E_{2}}{q_{1} q_{2}}+\cdots+\frac{E_{n}}{q_{1} \cdots q_{n}}+\left(\frac{c-1}{a}+\frac{1}{2 a^{2}}\right) \frac{1}{q_{1} \cdots q_{n}} \\
& <\frac{E_{1}}{q_{1}}+\frac{E_{2}}{q_{1} q_{2}}+\cdots+\frac{E_{n}}{q_{1} \cdots q_{n}}+\left(\frac{a-1}{a}+\frac{1.5}{2 a^{2}}\right) \frac{1}{q_{1} \cdots q_{n}}
\end{aligned}
$$

so $x_{F} \notin K$. Hence, $K \cap \Theta_{Q}=\emptyset$ and Θ_{Q} is nowhere dense.
3.3. Hausdorff dimension of Θ_{Q}. Given a basic sequence Q and a positive integer n, we will define the functions $a(n), b(n)$, and $c(n)$ by $(a(n), b(n), c(n))=\phi_{Q}^{-1}(n)$. Set $\omega_{n}=\#\left\{E_{F, n}: F \in \Gamma_{Q}\right\}$,

$$
A(k)= \begin{cases}1 & \text { if } 1 \leq k \leq l_{1} \\ p & \text { if } l_{1}+\cdots+l_{p-1}<k \leq l_{1}+\cdots+l_{p}\end{cases}
$$

and $\gamma(k)=A(1)+\cdots+A(k)$.
Note that $\omega_{n}=1$ if and only if $c(n)=1$. By Lemma 2.3, we are guaranteed that $\omega_{n} \geq 2$ if $c(n) \neq 1$. Additionally, we can say that

$$
\begin{equation*}
\frac{q_{n}}{a(n)^{2}} \leq \omega_{n} \leq \frac{q_{n}}{a(n)^{2}}+1<\frac{2 q_{n}}{a(n)^{2}} \tag{3.4}
\end{equation*}
$$

when $\omega_{n} \neq 1$. If q_{n} grows quickly enough that $l_{1}=l_{2}=\cdots=1$, then $A(k)=k$ and $\gamma(k)=\tau(k)$, so $a(n)=\lfloor(1+\sqrt{8 n-7}) / 2\rfloor$. Thus, we have

$$
\begin{equation*}
\sqrt{n} \leq a(n)<\sqrt{3 n} \tag{3.5}
\end{equation*}
$$

Combining (3.4) and (3.5), we see that

$$
\begin{equation*}
\frac{q_{n}}{3 n} \leq \omega_{n}<\frac{2 q_{n}}{n} \tag{3.6}
\end{equation*}
$$

Definition (3.6) (${ }^{5}$). A basic sequence Q grows nicely if $n^{s}=o\left(q_{n}\right)$ for all positive integers s, and

$$
\begin{aligned}
\log q_{\tau(k-1)+1}+\log q_{\tau(k)} & =o\left(\log \prod_{n=1}^{\tau(k-1)-1} q_{n}\right), \\
\log \prod_{n=0}^{k-2} q_{\tau(k)+1} & =o\left(\log \prod_{n=1}^{\tau(k-1)-1} q_{n}\right) .
\end{aligned}
$$

A basic sequence Q grows slowly if there exists a constant M such that $\omega_{n} \leq M$ for all $n \geq 1$. Lastly, Q grows quickly if

$$
\log \prod_{n=1}^{\tau(k)-1} q_{n}=o\left(\log q_{\tau(k)}\right)
$$

EXAMPLE 3.12 . The basic sequences given by $q_{n}=n+1$ and by $q_{n}=$ $\max (2,\lfloor\log n\rfloor)$ grow slowly. If $t \geq 2$, then $q_{n}=\left\lfloor t^{n}\right\rfloor$ and $q_{n}=2^{2^{n}}$ are examples of nicely growing basic sequences. If we let $q_{1}=2$ and $q_{n+1}=$ $2^{q_{1} \cdots q_{n}}$, then Q grows quickly.

If $J \subset[0,1)$ is a subset of $[0,1)$, we will denote its Hausdorff dimension by $\operatorname{dim}_{\mathrm{H}} J$. In this section, we will compute the Hausdorff dimension of Θ_{Q} for a few classes of basic sequences. We will show that $\operatorname{dim}_{H} \Theta_{Q}=0$ when Q grows slowly or quickly. When Q grows nicely, we will have $\operatorname{dim}_{\mathrm{H}} \Theta_{Q}=1$.

Definition 3.13 . Let J be any non-empty subset of $[0,1)$ and let $C_{\delta}(J)$ be the smallest number of sets of diameter at most δ which can cover J. Then the box-counting dimension of J, if it exists, is defined as

$$
\operatorname{dim}_{\mathrm{B}} J=\lim _{\delta \rightarrow 0} \frac{\log C_{\delta}(J)}{-\log \delta}
$$

The lower box-counting dimension and upper box-counting dimension of J are defined as

$$
\underline{\operatorname{dim}}_{\mathrm{B}} J=\liminf _{\delta \rightarrow 0} \frac{\log C_{\delta}(J)}{-\log \delta} \quad \text { and } \quad \overline{\operatorname{dim}}_{\mathrm{B}} J=\limsup _{\delta \rightarrow 0} \frac{\log C_{\delta}(J)}{-\log \delta}
$$

respectively.

[^3]The following standard result (see [7]) will be used frequently and without mention:

Theorem 3.14. Let J be a non-empty subset of $[0,1]$. Then

$$
0 \leq \operatorname{dim}_{\mathrm{H}} J \leq \underline{\operatorname{dim}}_{\mathrm{B}} J \leq{\operatorname{\operatorname {dim}}_{\mathrm{B}}} \text {. }
$$

We will make use of the following general construction found in 7]. Suppose that $[0,1]=I_{0} \supset I_{1} \supset I_{2} \supset \cdots$ is a decreasing sequence of sets, with each I_{k} a union of a finite number of disjoint closed intervals (called $k t h$ level basic intervals). Then we will consider the set $\bigcap_{k=0}^{\infty} I_{k}$. We will construct a set Θ_{Q}^{\prime} that may be written in this form such that $\operatorname{dim}_{\mathrm{H}} \Theta_{Q}=$ $\operatorname{dim}_{\mathrm{H}} \Theta_{Q}^{\prime}$.

Given a block of digits $B=\left(b_{1}, \ldots, b_{s}\right)$ and a positive integer n, define

$$
\mathcal{S}_{Q, B}=\left\{x=0 . E_{1} E_{2} \ldots \text { with respect to } Q: E_{1}=b_{1}, \ldots, E_{t}=b_{s}\right\}
$$

Let P_{n} be the set of all possible values of $E_{n}(x)$ for $x \in \Theta_{Q}$. Put $J_{0}=[0,1)$ and

$$
J_{k}=\bigcup_{\substack{ \\\prod_{n=1}^{\gamma(k)} P_{n}}} \mathcal{S}_{Q, B}
$$

Then $J_{k} \subset J_{k-1}$ for all $k \geq 0$ and $\Theta_{Q}=\bigcap_{k=0}^{\infty} J_{k}$, which gives the following:
Proposition 3.15. Θ_{Q} can be written in the form $\bigcap_{k=0}^{\infty} J_{k}$, where each J_{k} is the union of a finite number of disjoint half-open intervals.

We now set $I_{k}=\bar{J}_{k}$ for all $k \geq 0$ and put $\Theta_{Q}^{\prime}=\bigcap_{k=0}^{\infty} I_{k}$. Since each set J_{k} consists of only a finite number of intervals, the set $I_{k} \backslash J_{k}$ is finite.

Lemma 3.16. $\operatorname{dim}_{\mathrm{H}} \Theta_{Q}=\operatorname{dim}_{\mathrm{H}} \Theta_{Q}^{\prime}$.
Proof. The lemma follows as $\Theta_{Q}^{\prime} \backslash \Theta_{Q}$ is a countable set.
For $k \geq 1$, we note that, by construction, there are $\omega_{1} \cdots \omega_{\gamma(k)-1} k$ th level intervals and they are all of length $\left(q_{1} \cdots q_{\gamma(k)}\right)^{-1}$. Additionally, they are all separated by a distance of at least $\left(q_{1} \cdots q_{\gamma(k)}\right)^{-1}\left(1+2 / A(k)^{2}\right)$. This gives

$$
\begin{align*}
& \operatorname{dim}_{\mathrm{B}} \Theta_{Q}=\liminf _{k \rightarrow \infty} \frac{\log \left(\omega_{1} \cdots \omega_{\gamma(k)-1}\right)}{\log \left(q_{1} \cdots q_{\gamma(k)}\right)} \\
& \overline{\operatorname{dim}}_{\mathrm{B}} \Theta_{Q}=\limsup _{k \rightarrow \infty} \frac{\log \left(\omega_{1} \cdots \omega_{\gamma(k)-1}\right)}{\log \left(q_{1} \cdots q_{\gamma(k)}\right)} \tag{3.7}\\
& \operatorname{dim}_{\mathrm{B}} \Theta_{Q}=\lim _{k \rightarrow \infty} \frac{\log \left(\omega_{1} \cdots \omega_{\gamma(k)-1}\right)}{\log \left(q_{1} \cdots q_{\gamma(k)}\right)}
\end{align*}
$$

Theorem 3.17. Suppose that Q grows slowly. Then

$$
\operatorname{dim}_{\mathrm{H}} \Theta_{Q}=\operatorname{dim}_{\mathrm{B}} \Theta_{Q}=0
$$

Proof. Since Q is infinite in limit, for all $z>M$, there exists a positive integer t such that $q_{1} \cdots q_{\gamma(k)} \geq z^{\gamma(k)}$ for all $k>t$. Substituting $\omega_{n} \leq M$ into (3.7), we see that

$$
\overline{\operatorname{dim}}_{\mathrm{B}} \Theta_{Q} \leq \limsup _{k \rightarrow \infty} \frac{\log M^{\gamma(k)-1}}{\log z^{\gamma(k)}}=\frac{\log M}{\log z},
$$

so $\operatorname{dim}_{B} \Theta_{Q}=0$.
We will use the following result from [7]:
Theorem 3.18. Suppose that each $(k-1)$ th level interval of I_{k-1} contains at least $m_{k} k$ th level intervals $(k=1,2, \ldots)$ which are separated by gaps of at least ϵ_{k}, where $0 \leq \epsilon_{k+1}<\epsilon_{k}$ for each k. Then

$$
\operatorname{dim}_{\mathrm{H}}\left(\bigcap_{k=0}^{\infty} I_{k}\right) \geq \liminf _{k \rightarrow \infty} \frac{\log \left(m_{1} \cdots m_{k-1}\right)}{-\log \left(m_{k} \epsilon_{k}\right)} .
$$

Lemma 3.19.

$$
\operatorname{dim}_{H} \Theta_{Q}^{\prime} \geq \liminf _{k \rightarrow \infty} \frac{\log \left(\omega_{1} \cdots \omega_{\gamma(k-1)-1}\right)}{\log ^{\frac{q_{1} \cdots q_{\gamma(k)}}{\omega_{\gamma(k-1)} \omega_{\gamma}(k-1)+1} \cdots \omega_{\gamma(k)-1}}} .
$$

Proof. We substitute

$$
m_{1} \cdots m_{k-1}=\omega_{1} \cdots \omega_{\gamma(k-1)-1}, \quad m_{k}=\omega_{\gamma(k-1)} \omega_{\gamma(k-1)+1} \cdots \omega_{\gamma(k)-1}
$$

and

$$
\epsilon_{k}=\left(q_{1} \cdots q_{\gamma(k)}\right)^{-1}\left(1+2 / A(k)^{2}\right)
$$

into Theorem 3.18. Since $\lim _{k \rightarrow \infty} A(k)=\infty$, we see that $1<1+2 / A(k)^{2}$ ≤ 3, so
$\liminf _{k \rightarrow \infty} \frac{\log \left(m_{1} \cdots m_{k-1}\right)}{-\log \left(m_{k} \epsilon_{k}\right)}=\liminf _{k \rightarrow \infty} \frac{\log \left(\omega_{1} \cdots \omega_{\gamma(k-1)-1}\right)}{\log \left(\frac{q_{1} \cdots q_{\gamma(k)}}{\omega_{\gamma(k-1)} \omega_{\gamma}(k-1)+1 \omega_{\gamma(k)-1}}(1+2 / A(k))^{-1}\right)}$

$$
=\liminf _{k \rightarrow \infty} \frac{\log \left(\omega_{1} \cdots \omega_{\gamma(k-1)-1}\right)}{\log _{\frac{\sigma_{1}}{}}^{\omega_{\gamma(k-1)} \omega_{\gamma}\left(k q_{\gamma(1)+1} \cdots \omega_{\gamma(k)-1}\right.}}
$$

Lemma 3.20. Suppose that $l_{i}=1$ for all i. Then

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{H}} \Theta_{Q}^{\prime} \geq \liminf _{k \rightarrow \infty} \frac{\mathrm{~N}}{\mathrm{D}} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{N}= & \log \prod_{n=1}^{\tau(k-1)-1} q_{n}-\log 3^{\tau(k-2)-1}-\log (\tau(k-1)-1)!-\log \prod_{n=0}^{k-2} q_{\tau(n)+1} \\
\mathrm{D}= & \log \prod_{n=1}^{\tau(k-1)-1} q_{n}+\log q_{\tau(k-1)+1} \\
& +\log q_{\tau(k)}+\log 3^{k-1}+\log \frac{(\tau(k)-1)!}{(\tau(k-1)-1)!(\tau(k-1)+1)}
\end{aligned}
$$

Proof. Since $l_{i}=1$ for all i, 3.6) holds and $\gamma(k)=\tau(k)$ for all k. Note that $\omega_{n}=1$ if and only if $n=\tau(k)+1$ for some k. Therefore,
so

$$
\begin{aligned}
\omega_{1} \omega_{2} & \cdots \omega_{\gamma(k-1)-1} \\
& \geq \frac{q_{1}}{3 \cdot 1} \frac{q_{2}}{3 \cdot 2} \cdots \frac{q_{\tau(k-1)-1}}{3(\tau(k-1)-1)} \prod_{n=0}^{k-2} \frac{3(\tau(n)+1)}{q_{\tau(n)+1}} \\
& \geq\left(\prod_{n=1}^{\tau(k-1)-1} q_{n}\right) \cdot 3^{-(\tau(k-1)-1)}(\tau(k-1)-1)!^{-1} \cdot 3^{k-1} \prod_{n=0}^{k-2} q_{\tau(n)+1}^{-1} \\
& =\left(\prod_{n=1}^{\tau(k-1)-1} q_{n}\right) \cdot 3^{-(\tau(k-2)-1)}(\tau(k-1)-1)!^{-1} \prod_{n=0}^{k-2} q_{\tau(n)+1}^{-1},
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(\omega_{1} \cdots \omega_{\gamma(k-1)-1}\right) \\
& \quad \geq \log \prod_{n=1}^{\tau(k-1)-1} q_{n}-\log 3^{\tau(k-2)-1}-\log (\tau(k-1)-1)!-\log \prod_{n=0}^{k-2} q_{\tau(n)+1} .
\end{aligned}
$$

Next, since $\omega_{\gamma(k-1)+1}=1$, we arrive at the estimate

$$
\begin{aligned}
& \frac{q_{1} \cdots q_{\gamma(k)}}{\omega_{\gamma(k-1)} \omega_{\gamma(k-1)+1} \cdots \omega_{\gamma(k)-1}} \\
& \leq \frac{q_{1} \cdots q_{\tau(k)}}{\left(\frac{q_{\tau(k-1)}}{3 \tau(k-1)} \frac{q_{\tau(k-1)+1}}{3(\tau(k-1)+1)} \cdots \frac{q_{\tau(k)-1}}{3(\tau(k)-1)}\right) \frac{3(\tau(k-1)+1)}{q_{\tau(k-1)+1}}} \\
& =\left(\prod_{n=1}^{\tau(k-1)-1} q_{n}\right) q_{\tau(k-1)+1} q_{\tau(k)} \cdot 3^{k-1} \frac{(\tau(k)-1)!}{(\tau(k-1)-1)!(\tau(k-1)+1)} .
\end{aligned}
$$

Thus, Lemma 3.19 yields the conclusion.
Theorem 3.21. Suppose that Q grows nicely. Then $\operatorname{dim}_{H} \Theta_{Q}=1$.
Proof. We will show that $\operatorname{dim}_{\mathrm{H}} \Theta_{Q}^{\prime}=1$, so that $\operatorname{dim}_{\mathrm{H}} \Theta_{Q}=1$ immediately follows. We need only consider the case where $l_{i}=1$ for all i. Since Q grows nicely, the dominant term of both the numerator and denominator in 3.8 is $\log \prod_{n=1}^{\tau(k-1)-1} q_{n}$, so $\operatorname{dim}_{H} \Theta_{Q}^{\prime}=1$ by Lemma 3.20 .

Theorem 3.22. Suppose that Q grows quickly. Then $\operatorname{dim}_{H} \Theta_{Q}=$ $\operatorname{dim}_{\mathrm{B}} \Theta_{Q}=0$.

Proof. It will be sufficient to consider the case where $l_{k}=1$ for all k. We will show that $\overline{\operatorname{dim}}_{\mathrm{B}} \Theta_{Q}=0$. Recall that $\omega_{n}<2 q_{n} / n$, so $\gamma(k)=\tau(k)$ and

$$
\omega_{1} \cdots \omega_{\gamma(k)-1}<\frac{2 q_{1}}{1} \frac{2 q_{2}}{2} \cdots \frac{2 q_{\tau(k)-1}}{\tau(k)-1}=\left(\prod_{n=1}^{\tau(k)-1} q_{n}\right) \cdot 2^{\tau(k)-1} /(\tau(k)-1)!
$$

$$
\begin{equation*}
\overline{\operatorname{dim}}_{\mathrm{B}} \Theta_{Q} \leq \limsup _{k \rightarrow \infty} \frac{\log \prod_{n=1}^{\tau(k)-1} q_{n}+\log 2^{\tau(k)-1}-\log (\tau(k)-1)!}{\log \prod_{n=1}^{\tau(k)-1} q_{n}+\log q_{\tau(k)}} \tag{3.9}
\end{equation*}
$$

However, the dominant terms in the numerator and denominator of (3.9) are $\log \prod_{n=1}^{\tau(k)-1} q_{n}$ and $\log q_{\tau(k)}$, respectively, so

$$
\overline{\operatorname{dim}}_{\mathrm{B}} \Theta_{Q} \leq \limsup _{k \rightarrow \infty} \frac{\log \prod_{n=1}^{\tau(k)-1} q_{n}}{\log q_{\tau(k)}}=0
$$

The Hausdorff dimension of Θ_{Q} is less certain when q_{n} grows like a polynomial. The following lemma will be needed:

Lemma 3.23.

$$
\log \frac{(\tau(k)-1)!}{(\tau(k-1)-1)!(\tau(k-1)+1)}=o(\log (\tau(k-1)-1)!) .
$$

Proof. Suppose that $k>2$. Then

$$
\begin{aligned}
& \frac{(\tau(k)-1)!}{(\tau(k-1)-1)!(\tau(k-1)+1)} \\
& \quad<\frac{(\tau(k)-1)!}{(\tau(k-1)-1)!}<(\tau(k)-1)^{k}=e^{k \log \left(\frac{1}{2}\left(k^{2}+k-2\right)\right)}<e^{k \log \left(k^{2}\right)}=e^{2 k \log k}
\end{aligned}
$$

so

$$
\log \frac{(\tau(k)-1)!}{(\tau(k-1)-1)!(\tau(k-1)+1)}<2 k \log k .
$$

By Stirling's formula,

$$
\begin{aligned}
(\tau(k-1)-1)! & >\sqrt{2 \pi}(\tau(k-1)-1)^{\tau(k-1)-1 / 2} e^{-(\tau(k-1)-1)} \\
& =\sqrt{2 \pi}\left(\frac{1}{2}\left(k^{2}-k-2\right)\right)^{\frac{1}{2}\left(k^{2}-k-1\right)} e^{-\frac{1}{2}\left(k^{2}-k-2\right)} \\
& =\sqrt{2 \pi} e^{\frac{1}{2}\left(k^{2}-k-2\right) \log \left(\frac{1}{2}\left(k^{2}-k-1\right)\right)-\frac{1}{2}\left(k^{2}-k-2\right)},
\end{aligned}
$$

so

$$
\log (\tau(k-1)-1)!>\frac{1}{2}\left(k^{2}-k-2\right)\left(\log \left(\frac{1}{2}\left(k^{2}-k-1\right)\right)-1\right)
$$

Since $\lim _{k \rightarrow \infty} \frac{2 k \log k}{\frac{1}{2}\left(k^{2}-k-2\right)\left(\log \left(\frac{1}{2}\left(k^{2}-k-1\right)\right)-1\right)}=0$, the lemma follows.
TheOrem 3.24. Suppose that there exists reals number $t>1$ and λ_{1}, λ_{2} ≥ 1 such that $\lambda_{1} n^{t} \leq q_{n} \leq \lambda_{2} n^{t}$ for all n and $q_{m} \geq 2 p^{2}$ for $\tau(p-1)<$ $m \leq \tau(p)$. Then $\operatorname{dim}_{\mathrm{B}} \Theta_{Q}=1$ and

$$
1-1 / t \leq \operatorname{dim}_{\mathrm{H}} \Theta_{Q} \leq 1 .
$$

Proof. Since $\lambda_{1} n^{t} \leq q_{n} \leq \lambda_{2} n^{t}$,

$$
\begin{aligned}
\log \lambda_{1}^{\tau(k-1)-1} & +t \log (\tau(k-1)-1)! \\
& \leq \log \prod_{n=1}^{\tau(k-1)-1} q_{n} \leq \log \lambda_{2}^{\tau(k-1)-1}+t \log (\tau(k-1)-1)!
\end{aligned}
$$

so
$\log \prod_{n=1}^{\tau(k-1)-1} q_{n}-\log (\tau(k-1)-1)!\geq(t-1) \log (\tau(k-1)-1)!+\log \lambda_{1}^{\tau(k-1)-1}$.
Note that $l_{i}=1$ for all i, so by Lemmas 3.20 and 3.23 ,

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{H}} \Theta_{Q}^{\prime} & \geq \liminf _{k \rightarrow \infty} \frac{(t-1) \log (\tau(k-1)-1)!+\log \lambda_{1}^{\tau(k-1)-1}}{t \log (\tau(k-1)-1)!+\log \lambda_{2}^{\tau(k-1)-1}} \\
& =\liminf _{k \rightarrow \infty} \frac{(t-1) \log (\tau(k-1)-1)!}{t \log (\tau(k-1)-1)!}=1-\frac{1}{t}
\end{aligned}
$$

A similar computation gives $\underline{\operatorname{dim}}_{\mathrm{B}} \Theta_{Q}=1$, so $\operatorname{dim}_{\mathrm{B}} \Theta_{Q}=1$.
Let $\alpha \in(0,1)$. We will now work towards constructing a basic sequence Q_{α} such that $\operatorname{dim}_{H} \Theta_{Q_{\alpha}}=\alpha$. Define the basic sequence $Q_{\alpha}=\left(q_{\alpha, n}\right)_{n}$ by

$$
q_{\alpha, n}= \begin{cases}\max \left(\left\lfloor\left(\prod_{m=1}^{n-1} q_{\alpha, m}\right)^{(1-\alpha) / \alpha}\right\rfloor, 2 n^{2}\right) & \text { if } n=\tau(k) \text { for even } k \tag{3.10}\\ 2 n^{2} & \text { for all other values of } n\end{cases}
$$

We will write $V_{k}=q_{\alpha, \tau(k)}$ and $P_{k}=\prod_{n=1}^{\tau(k)-1} q_{\alpha, n}$, so for large enough integers k that are even,

$$
\begin{equation*}
V_{k}=\left\lfloor P_{k}^{(1-\alpha) / \alpha}\right\rfloor \tag{3.11}
\end{equation*}
$$

Lemma 3.25. If k is even, then

$$
\frac{1-\alpha}{\alpha} \log P_{k-1}<\log V_{k}<\frac{1-\alpha}{\alpha} \log P_{k-1}+\frac{4-4 \alpha}{\alpha} k \log k
$$

Proof. We have

$$
\begin{aligned}
\log V_{k} & \leq \log \left(P_{k-1} \prod_{n=\tau(k-1)}^{\tau(k)-1} 2 n^{2}\right)^{(1-\alpha) / \alpha}=\frac{1-\alpha}{\alpha} \log P_{k-1}+\frac{1-\alpha}{\alpha} \log \prod_{n=\tau(k-1)}^{\tau(k)-1} 2 n^{2} \\
& <\frac{1-\alpha}{\alpha} \log P_{k-1}+\frac{1-\alpha}{\alpha} \log \left(2 \tau(k)^{2}\right)^{k} \\
& <\frac{1-\alpha}{\alpha} \log P_{k-1}+\frac{1-\alpha}{\alpha} k \log k^{4}=\frac{1-\alpha}{\alpha} \log P_{k-1}+\frac{4-4 \alpha}{\alpha} k \log k .
\end{aligned}
$$

The lower bound follows similarly.

THEOREM 3.26. If $\alpha \in(0,1)$, then $\operatorname{dim}_{H} \Theta_{Q_{\alpha}}=\underline{\operatorname{dim}}_{\mathrm{B}} \Theta_{Q_{\alpha}}=\alpha$ and $\overline{\operatorname{dim}}_{\mathrm{B}} \Theta_{Q_{\alpha}}=1$.

Proof. For this basic sequence, $l_{i}=1$ for all i, so we may use our usual estimates. Thus, by (3.7) and (3.11),

$$
\begin{aligned}
& \underline{\operatorname{dim}}_{\mathrm{B}} \Theta_{Q_{\alpha}}=\liminf _{k \rightarrow \infty} \frac{\log \left(\omega_{1} \cdots \omega_{\gamma(k)-1}\right)}{\log \left(q_{\alpha, 1} \cdots q_{\alpha, \gamma(k)}\right)} \leq \liminf _{k \rightarrow \infty} \frac{\log \prod_{n=1}^{\tau(k)-1} \frac{2 q_{\alpha, n}}{n}}{\log \prod_{n=1}^{\tau(k)-1} q_{\alpha, n}+\log q_{\alpha, \tau(n)}} \\
& \quad=\min \left(\lim _{k \rightarrow \infty, k \text { even }} \frac{\log P_{k}}{\log P_{k}+\frac{1-\alpha}{\alpha} \log P_{k}}, \lim _{k \rightarrow \infty, k \text { odd }} \frac{\log P_{k}}{\log P_{k}+\log \left(2 \tau(k)^{2}\right)}\right) \\
& \quad=\min \left(\frac{1}{1+\frac{1-\alpha}{\alpha}}, 1\right)=\alpha .
\end{aligned}
$$

Following a similar computation, $\overline{\operatorname{dim}}_{\mathrm{B}} \Theta_{Q_{\alpha}}=1$. By Lemmas 3.20 and 3.25 ,

$$
\begin{aligned}
\operatorname{dim}_{H} \Theta_{Q_{\alpha}}^{\prime} \geq & \liminf _{k \rightarrow \infty} \frac{\log P_{k-1}}{\log P_{k-1}+\log V_{k}} \\
= & \min \left(\lim _{k \rightarrow \infty, k \text { even }} \frac{\log P_{k-1}}{\log P_{k-1}+\frac{1-\alpha}{\alpha} \log P_{k-1}}\right. \\
& \left.\lim _{k \rightarrow \infty, k \text { odd }} \frac{\log P_{k-1}}{\log P_{k-1}+\log \left(2 \tau(k)^{2}\right)}\right)=\alpha
\end{aligned}
$$

so $\operatorname{dim}_{\mathrm{H}} \Theta_{Q_{\alpha}}=\operatorname{dim}_{\mathrm{B}} \Theta_{Q_{\alpha}}=\alpha$.
Acknowledgements. I would like to thank Vitaly Bergelson and Gerald Edgar for many helpful discussions and Alexandra Nichols for her help in editing this paper.

References

[1] R. Adler, M. Keane and M. Smorodinsky, A construction of a normal number for the continued fraction transformation, J. Number Theory 13 (1981), 95-105.
[2] C. Altomare and B. Mance, Cantor series constructions contrasting two notions of normality, Monatsh. Math. 164 (2011), 1-22.
[3] E. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271.
[4] G. Cantor, Ueber die einfachen Zahlensysteme, Z. Math. Phys. 14 (1869), 121-128.
[5] D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254-260.
[6] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Springer, Berlin, 1997.
[7] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, Hoboken, NJ, 2003.
[8] J. Galambos, Uniformly distributed sequences mod 1 and Cantor's series representation, Czechoslovak Math. J. 26 (1976), 636-641; Correction, ibid. 27 (1977), 672.
[9] N. M. Korobov, Concerning some questions of uniform distribution, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 215-238.
[10] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Dover, Mineola, NY, 2006.
[11] P. Lafer, Normal numbers with respect to Cantor series representation, Ph.D. thesis, Washington State Univ., 1974, 52 pp.
[12] B. Mance, Construction of normal numbers with respect to the Q-Cantor series expansion for certain Q, Acta Arith. 148 (2011), 135-152.
[13] H. Niederreiter, Almost arithmetic progressions and uniform distribution, Trans. Amer. Math. Soc. 161 (1971), 283-292.
[14] P. E. O'Neil, A new criterion for uniform distribution, Proc. Amer. Math. Soc. 24 (1970), 1-5.
[15] A. Rényi, On the distribution of the digits in Cantor's series, Mat. Lapok 7 (1956, 77-100.
[16] T. Šalát, Zu einigen Fragen der Gleichvertleilung (mod 1), Czechoslovak Math. J. 18 (1968), 476-488.
[17] O. Toeplitz, Über allgemeine lineare Mittelbildungen, Prace Mat.-Fiz. 22 (1911), 113-119.

Bill Mance

Department of Mathematics
The Ohio State University
231 West 18th Avenue
Columbus, OH 43210-1174, U.S.A.
E-mail: mance.8@osu.edu

[^0]: 2010 Mathematics Subject Classification: Primary 11K16; Secondary 11A63.
 Key words and phrases: Cantor series expansion, normal numbers.

[^1]: $\left.{ }^{1}\right)$ Uniqueness can be proven in the same way as for the b-ary expansion.

[^2]: $\left({ }^{3}\right)$ Note that we cannot conclude that $L_{i}<\nu_{i+1}+i-1$ if $l_{i}=1$: consider $q_{n}=8^{n}$, where $l_{i}=1, L_{i}=i(i+1) / 2$, and $\nu_{i}=\left\lceil\log _{8}\left(2 i^{2}\right)\right\rceil$ for all i.

[^3]: $\left({ }^{5}\right)$ A basic sequence may still grow slowly no matter how fast q_{n} grows when n is restricted to those values for which $\omega_{n}=1$.

