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1. Introduction. Given a finite set A C R, the elements of A can be
labeled in ascending order, so that a; < --- < a,. Then A is said to be
convez if

a; — Qi—1 < Q41 — Q4
for all 2 < i < n—1, and it was proved by Elekes, Nathanson and Ruzsa
([ENR]) that |A 4 A| > |A|*/2, an estimate which stood as the best known
for a decade, under various guises. Schoen and Shkredov ([SS2]) recently
made significant progress by proving that for any convex set A,

|A\8/5 |A‘14/9
(log | A[)?/5 (log|A[)?/3
See [SS2] and the references therein for more details on this problem and its
history.

In [ENR], a number of other results were proved connecting convexity

with large sumsets. In particular, it was shown that, for any convex or
concave function f and any finite set A C R,

(1.1) max{|A+ A|, |f(4) + f(A)[} > AP/,
(1.2) A+ f(A)] > AP~

By choosing particularly interesting convex or concave functions f, these
results immediately yield interesting corollaries. For example, if we choose
f(x) = logz, then immediately yields a sum-product estimate. Fur-
thermore, if f(z) = 1/, then gives information about another problem
posed by Erdés and Szemerédi ([ES]).

In this paper, the methods used by Schoen and Shkredov ([SS2]) are
developed further in order to improve on some other results from [ENR]. In
particular, the bounds in and are improved slightly, in the form
of the following results.

|A— Al > and |A+ Al >
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THEOREM 1.1. Let f be any continuous, strictly convex or concave func-
tion on the reals, and A,C C R be any finite sets such that |A| =~ |C|. Then

£+ CpA- AP > A
(log [A])?
In particular, choosing C = f(A), this implies that
’A‘M/ll

max{|f(4) + F(A)L 1A = A} > @

THEOREM 1.2. Let f be any continuous, strictly convex or concave func-
tion on the reals, and A,C C R be any finite sets such that |A| = |C|. Then

|F(A) + C|"|A+ A° > AP
(log |A])?
In particular, choosing C = f(A), this implies that
’A‘24/19

A A A+ A} >» ————.
THEOREM 1.3. Let f be any continuous, strictly convex or concave func-
tion on the reals, and A C R be any finite set. Then

’A‘24/19
(log | A[)?/19°

Applications to sum-product estimates. By choosing f(z) = logz
and applying Theorems [I.1] and some interesting sum-product type re-
sults can be specified, especially in the case when the product set is small.
A sum-product estimate is a bound on max{|A + Al,|A - A|}, and it is con-
jectured that at least one of these sets should grow to a near maximal size.
Solymosi ([Soll]) proved that max{|A + A|,|A - A|} > |A[*3/(log |A])"/3,
and this is currently the best known bound. See [Soll] and the references
therein for more details on this problem and its history.

In a similar spirit, one may conjecture that at least one of |[A — A| and
|A - Al must be large, and indeed this is somewhat true. In an earlier paper
of Solymosi ([Sol2]) on sum-product estimates, it was proved that

’ A‘M/H
(log | A[)3/11"
It is easy to change the proof slightly to obtain the same result with |A+ A|
replaced by |A—A[, however, in Solymosi’s subsequent paper on sum-product
estimates, this substitution was not possible. So, max{|A — A, |A - A|} >
|A|*/11 /(log | A])?/1T represents the current best known bound of this type.
Applying Theorem |1.1| with f(x) = logz, and noting that |f(A) + f(A)| =

|A - A|, we get the following very marginal improvement.

A+ f(A)] >

max{|A + A|,|A- A} >
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COROLLARY 1.4. We have

A|14
1.3 A-AﬁA—A5>>‘7.
(13) A APIA= AP > g
In particular, this implies that

|A|14/11

A-Al|A-A —_— .
maX{‘ |7| ‘} >> (lOg|A|)2/11
By applying Theorem in the same way, we establish that

A|24
1.4 A-A10A+A9>>|7.
(1.4) [4-APA+ AP > s

In the case when the productset is small, (1.3)) and (|1.4)) show that the
sumset and difference set grow non-trivially. This was shown in [L], and here
we get a more explicit version of the same result.

2. Notation and preliminaries. Throughout this paper, the symbols
<, > and = are used to suppress constants. For example, X <« Y means
that there exists some absolute constant C' such that X < CY, and X =Y
means that X < Y and Y <« X. Also, all logarithms are to base 2.

For sets A and B, let E(A, B) be the additive energy of A and B, defined
in the usual way. So, denoting by d4 p(s) (and respectively o4 p(s)) the
number of representations of an element s of A — B (respectively A + B),
and writing 04(s) = da.4(s), we define

E(A,B) = 6a(s)0p(s)=> 6ap(s)* =) oanls)

Given a set A C R and some s € R, let A; := AN (A+s). A crucial
observation is that |Ag| = d4(s). In this paper, following [SS2], the third
moment energy F3(A) will also be studied, where

E3(A) = da(s)®.
In much the same way, we define

E1.5<A) = Z (5,4(8)1'5.

Later on, we will need the following lemma, which was proved in [L]. Note
that the proof made use of the Katz-Koester transform (see [KK]).

LEMMA 2.1. Let A, B be any sets. Then
E15(A)?|B? < E5(A)*3E3(B)Y?E(A, A+ B).
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3. Some consequences of the Szemerédi—Trotter theorem. The
main preliminary result is an upper bound on the number of high multiplic-
ity elements of a sumset, a result which comes from an application of the
Szemerédi-Trotter incidence theorem ([ST]).

THEOREM 3.1. Let P be a set of points in the plane and L a set of curves
such that any pair of curves intersect at most once. Then

{(p,)) € P x L:pel}| <4(P|L)*? + 4P|+ |L|.

REMARK. While this paper was in the process of being drafted, a very
similar result to the following lemma was included in a paper of Schoen and
Shkredov ([SS1, Lemma 24]) which was posted on the arXiv. See their paper
for an alternative description of this result and proof. A weaker version of
this result was also proved in [L].

LEMMA 3.2. Let f be a continuous, strictly convex or concave function
on the reals, and A, B,C C R be finite sets such that |B||C| > |A|?>. Then
forall T>1,

|A+ B|*|C|?
(3.1) Hz:opa)cl) > 7H < TBle
|f(A) +C|*|B|?
2 : > .
(3.2) Hy:oasly) > 7 < O]

Proof. Let G(f) denote the graph of f in the plane. For any («, 8) € R?,
put Lo g = G(f) + (a, B). Define a set of points P = (A + B) x (f(A)+ C)
and a set of curves £ = {Lp. : (b,c) € B x C}. By convexity or concavity,
|L]| = |B]|C], and any pair of curves from £ intersect at most once. Let P,
be the set of points of P belonging to at least 7 curves from L. Applying
the aforementioned Szemerédi—Trotter theorem to P, and L, we get

7Pr| < A(|P:||B| |C)** + 4|P;| + | B [C].
Now we claim for any 7 > 0 one has
(3.3) |P:| < |BPCJ?/7°.

The reason is as follows. Firstly, since there is no point of P belonging to
at least min{|B| + 1, |C| + 1} curves from L, to prove (3.3|) we may assume
that 7 < \/|B||C]. Secondly, if 7 < 8, then (3.3) holds true since

|BI?|C)?

[P < [P| = [(A+B) x (f(4)+C)| < |AP’|B||C] < [BI*|C]* < 64—

Finally, we may assume that 8 < 7 < /|B]||C]|. In this case we have
7[P|/2 < 4(1P-| [B|[C])** + | B |C].
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Thus
P;| < max{|B|*|C|*/7%,|B||C|/7} = |BI*|C|*/7°.

This proves the claim (3.3)).

Next, suppose of(4)c(r) > 7. There exist 7 distinct elements {a;}7_,
from A and 7 distinct elements {¢;}7_; from C such that = = f(a;) + ¢; for
all i. Now we define B; := a;+ B for all i, and M(s) := >__; xB,(s), where

XB,(+) is the characteristic function of B;. Since
(a; +b,2) = (a; + b, f(a;) + ¢;) = (ai, f(a;)) + (b, ¢;) € Loy,
for all i and b, we have (s, ) € Py, (s)- Note also

Y M) =3 Y xm(s) = 7IBI.

s€cA+B i=1 s€cA+B
Let M := 7|B|/(2|A + BJ). Then
S Muls) <A+ BIM = r|B)j2
SEA+B: My (s)<M

and hence

> Ma(s) = 7|BJ/2.

SEA+B: My (s)>M

Dyadically decompose this sum, so that

(3.4) ZXj(x) > 7|B],

where
Xj(x) == > Ma(s),
51 M29 <M (s)<M2i+1
Yj(z) :=|{s € A+ B: M2 < M,(s) < M2t}

By (3.3), .
|B|7|C]
Z Yj(z) < [Puai| < SV R

ac:af(A)’O(ac)ZT
Note that X;(x) ~ Y;(z)M27, thus

BEICP
2. Nl < ppr

a::o'f<A)7C(z)27'
which followed by first summing all j’s, then applying (3.4)), gives
7Bl {x : opa),0(z) > 7} < |BPIC]P /M2
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Equivalently,
|A+ BP|C|?

Hz:opayclz) > 7H < B[

This finishes the proof of ({3.1).

In the same way one can prove . We only sketch the proof and leave
the details to the interested readers. Suppose o4 p(y) > 7. There exist 7
distinct elements {a;}7_; from A and 7 distinct elements {b;}]_; from B such
that y = a; +b;. Then we define C; := f(a;) +C and My(s) :==>.7_; xc; (),
and as before, (y,s) € Py ,(s)- In precisely the same way as in the proof
of ., one can prove that

> Mz

sEf(A)+C: My(s)>M

[BPICP
DY) < IPupl < mag
yioa,B(y

)>T
|B?|C|?
Z X;y) < 2%
y:ioa,B(Y)>T
|BI*|C|?
M2
|f(A) + C]?IBJ?
Clr?

where M := T|C’/(2|f(A)+CD’ Xi(y) = Zs:M?ngy(s)<M2j+1 My(s),
Yi(y) == |{s € f(A) +C : M2 < M,y(s) < M2/T'}|. This finishes the
whole proof. =

TICI{y s oanly) 2 TH <

Hy:oapy) > 1} <

COROLLARY 3.3. Let f be a continuous, strictly convex or concave func-
tion on the reals, and A,C,F C R be finite sets such that |A| = |C| < |F|.
Then

) E(A, A) < E15(A)Y7|f(A) + CPP| A",
) E(A,F) < |f(A4) +C| |F]*?,

) E3(A) < |f(A) + CP*| Al log | A,

) E(f(A), f(A)) < Ers(f(A)**|A+ CPP1A]?,
) E(f(A),F) < |A+C||FP?,

0) Es(f(A)) < [A+CP’|Alog |A].
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Proof. Let A > 0 be an arbitrary real number. First decomposing F(A),
then applying Lemma [3.2] with B = — A, gives

[log |A]
E(AA) = ) 6als)’+ Y > da(s)?
s:84(s)<A J=0  $:21A<5a(s)<29 1A

[log |A]

FA) + CP2A]
<VBrs S VAL s
j:
A)+C)?A
< VE B 4 LA P

Choosing an optimal value of A to balance the two terms completes the

proof of (3.5).
Similarly, applying Lemma [3.2| with B = —F gives

[log |A[]
BAF) = Y dar(s)+ Y. > dap(s)?
s:04.p(s)<O J=0  s:20A<64 p(s)<2H1A
[log |A[J
j=0

|f(A) + CPIF
ICl1A '

Choosing an optimal value of A to balance the two terms completes the

proof of .
Once again applying Lemma with B = — A gives
[log | Al]
By(A)= da(s)’

J=0  5:20<d4(s)<29t1

[log | Al]

< Y If(A) + CPIA] = [ f(A) + C*|A] log | 4],

=0

|f(A) + CP|FP?

.92 N2
cpman 8

< A|A||F| +

which proves (3.7)); and (3.8)—(3.10) can be established in the same way. m

4. Proofs of the main results

4.1. Proof of Theorem First, apply Holder’s inequality to bound
E15(A) from below:

0= (32 6al) = (30 6ale)?) 14— Al = Bus(A|A - 4]

secA—A s€eA—A
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Using this bound and Lemma [2.I] with B = — A gives

A 8
|J_m§EmMﬁMFSE%MHAA—A}
Finally, apply (3.7), and (3.6)) with F' = A — A, to conclude that
A 8
|2Jm<“ﬂM+CPA—mWAngL
and hence |A|14
A+CISA-AP >
T4+ CPIA= AP > (g a7y

as required.

4.2. Proof of Theorem Using the standard Cauchy—Schwarz
bound on the additive energy, and then (3.5)), we see that

12
AT B4, A < Bus(A21(A) + P14

A+ AP =
A)+CP?
Al
Next, apply Lemma 2.1 with B = A to get
Al + O
Fs(A)VE(A, A+ A),

and then apply (3.7), and (3.6) with F'= A + A, to get
A" |f(4) +CJ? 3 3/2

A A+ AP2|Allog | A

Arap < ja A FCFA+ APTA]log 4],

which, after rearranging, gives

| |24

(log |A])?
4.3. Proof of Theorem Observe that the Cauchy—Schwarz in-
equality applied twice tells us that

AP 3 3
E?WTF‘ E(A, f(A)® < E(A, A)’E(f(A), f(A))?,

so that after applying (3.5 and , with either C' = A or C = f(A),
|A|26
pﬁizwggMﬁ&dAﬂA+ﬂMFMWmUUwaA+ﬂ@FM
B15(APF(A)P) (B a(F(A)AP)A + F(A)*
< E3(A)E3(f(A))E(A, A+ f(4))
x E(f(A), A+ f(A)|A+ F(A)",

If(A) 4+ 1A+ AP >
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where the last inequality is a consequence of two applications of Lemma [2.1]

Next apply (3.7) and (3.10)), again with either C' = A or C' = f(A), to get
A 26
A < 1A F(A)AR(log | A)E(A, A+ F(A)E(F(A). A+ F(4))

[A+ f(A)[°
Finally, apply (3.6) and (3.9)), still with either C = A or C' = f(A), to obtain
|A* 13) 412 2
———— < |A+ f(A)|]A|”(log |A])*.
e rca < A SR og )

Then, after rearranging, we get
‘ A|24/19
(log [A])2/19°
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A+ f(A) >
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