Elementary Deuring-Heilbronn phenomenon

by

Jeffrey Stopple (Santa Barbara, CA)

Introduction. In a long series of papers in Acta Arithmetica, János Pintz gave remarkable elementary proofs of theorems concerning $L(s, \chi)$, with χ the Kronecker symbol attached to a fundamental discriminant $-D$. These include theorems of Hecke, Landau, Siegel, Page, Deuring, and Heilbronn [8]-[13]. In [11], for example, he gives his version of the Deuring phenomenon [2]: under the very strong assumption that the class number satisfies $h(-D) \leq \log ^{3 / 4} D$, he obtains a zero free region for $\zeta(s) L(s, \chi)$. As the reviewer in Math. Reviews noted, by Siegel's theorem this can hold for only finitely many D (with an ineffective constant). Subsequently the Goldfeld-Gross-Zagier theorem shows this can happen for only finitely many D with an effective constant $\left({ }^{1}\right)$. This is unfortunate, as the proof Pintz gave actually depends on the fact that the exponent of the class group $\mathcal{C}(-D)$ (v. the order) is small.

In [12] he gives an elementary version of (the contrapositive of) the Heilbronn phenomenon [4]: a zero off the critical line of an L-function $L\left(s, \chi_{k}\right)$ attached to any primitive real character can be used to give lower bounds on $L(1, \chi)$. The same Math. Reviews reviewer called the proof "ingenious and quite brief" $\left(^{2}\right)$.

Pintz's idea is very roughly as follows: With λ denoting the Liouville function, the convolution $1 * \lambda$ is the characteristic function of squares. Thus for ρ a hypothetical zero of $L\left(s, \chi_{k}\right)$ with $\operatorname{Re}(\rho)>1 / 2$, one can consider finite sums of the form

$$
\sum_{n<X} \frac{\chi_{k}(n)}{n^{\rho}} 1 * \lambda(n)
$$

[^0]Since $\chi_{k}\left(m^{2}\right)=1$ or 0 , one can compare this sum to a partial sum of $\zeta(2 \rho)$, and obtain a lower bound. Pintz decomposes the sum into two pieces, carefully chosen so that $L\left(\rho, \chi_{k}\right)=0$ shows one piece is not too big, and therefore the other piece is not too small. But if $L(1, \chi)$ were small due to the existence of a Landau-Siegel zero, χ would be a good approximation to λ, and (he can show) this second term would necessarily be small.

In this paper we adapt the method of [12] to apply to $\zeta(s)$, and thus give an elementary demonstration of the Deuring phenomenon. Because $\zeta(s)$ does not converge even conditionally in the critical strip, we assume first that D is even, and consider instead

$$
\phi(s)=\left(2^{1-s}-1\right) \zeta(s)=\sum_{n} \frac{(-1)^{n}}{n^{s}} .
$$

Suppose $\rho=\beta+i \gamma$ is a zero of $\zeta(s)$ off the critical line. Let $\delta / 2 \pi$ be the fractional part of $\log 2 \cdot \gamma / 2 \pi$ so that for integer n,

$$
\log 2 \cdot \gamma=2 \pi n+\delta, \quad-\pi<\delta \leq \pi, \quad 2^{-i \gamma}=\exp (-i \delta)
$$

Theorem 1. If $\beta>7 / 8$ and $|\delta|>\pi / 100$, then for any real primitive character χ modulo $D \equiv 0 \bmod 4, D>10^{9}$, we have the lower bound

$$
L(1, \chi)>\frac{1}{5400 \cdot U^{12(1-\beta)} \log ^{3} U}
$$

where $U=|\rho| D^{1 / 4} \log D$.
The proof actually gives some kind of nontrivial bound as long as $\beta>5 / 6$. We assume $\beta>7 / 8$ simply to get a precise constant in the theorem.

In the last section we discuss general D, adapting the proof with Ramanujan sums $c_{q}(n)$ for a fixed prime $q \mid D$.

Arithmetic function preliminaries. Generalizing Liouville's λ function, we begin by defining $\lambda_{\text {odd }}(n)$ via

$$
\lambda_{\text {odd }}(n)= \begin{cases}0 & \text { if } n \text { is even } \\ \lambda(n) & \text { if } n \text { is odd }\end{cases}
$$

So

$$
\sum_{n=1}^{\infty} \frac{\lambda_{\text {odd }}(n)}{n^{s}}=\frac{\zeta(2 s)}{\zeta(s)}\left(1+2^{-s}\right),
$$

and the convolution $1 * \lambda_{\text {odd }}(n)$ satisfies

$$
1 * \lambda_{\text {odd }}(n)= \begin{cases}1 & \text { if } n=m^{2} \text { or } n=2 m^{2} \\ 0 & \text { otherwise }\end{cases}
$$

With $\tau(n)$ the divisor function and $\nu(n)$ the number of distinct primes dividing n, we have

$$
1 * \lambda(n)=\sum_{d \mid n} 2^{\nu(d)} \lambda(d) \tau(n / d)
$$

(One needs to verify this only for $n=p^{k}$ as both sides are multiplicative.) We generalize this by defining $\tau_{\text {odd }}(n)$ to be the number of odd divisors of n, so that

$$
1 * \lambda_{\text {odd }}(n)=\sum_{d \mid n} 2^{\nu(d)} \lambda_{\text {odd }}(d) \tau_{\text {odd }}(n / d)
$$

(For n odd this follows from $\lambda_{\text {odd }}(d)=\lambda(d)$ and $\tau_{\text {odd }}(n / d)=\tau(n / d)$, while for $n=2^{k}$ both sides are equal to 1.)

Following Pintz we define, relative to the quadratic character χ modulo D, sets

$$
\begin{aligned}
A_{j} & =\{u: p \mid u \Rightarrow \chi(p)=j\} \quad \text { for } j=-1,0,1 \\
C & =\left\{c=a b: a \in A_{1}, b \in A_{0}\right\}
\end{aligned}
$$

We are assuming that $2 \in A_{0}$, so integers in A_{-1} and A_{1} are odd. We factor an arbitrary n as

$$
n=a b m=c m, \quad \text { where } a \in A_{1}, b \in A_{0}, m \in A_{-1}, c \in C
$$

We then see that

- for $a \in A_{1}, 1 * \chi(a)=\tau(a)=\tau_{\text {odd }}(a)$,
- for $b \in A_{0}, 1 * \chi(b)=1$,
- for $m \in A_{-1}, 1 * \chi(m)=1 * \lambda(m)=1 * \lambda_{\text {odd }}(m)$.

Using this and multiplicativity, for $n=a b m=c m$ as above we see that

$$
\begin{align*}
1 * \lambda_{\text {odd }}(n)=1 * \lambda_{\text {odd }}(a) \cdot 1 * \lambda_{\text {odd }}(b) \cdot 1 * \lambda_{\text {odd }}(m) \tag{1}\\
=\left(\sum_{a^{\prime} \mid a} 2^{\nu\left(a^{\prime}\right)} \lambda_{\text {odd }}\left(a^{\prime}\right) \cdot 1 * \chi\left(a / a^{\prime}\right)\right)\left(\sum_{b^{\prime} \mid b} \lambda_{\text {odd }}\left(b^{\prime}\right) \cdot 1 * \chi\left(b / b^{\prime}\right)\right) \cdot 1 * \chi(m) \\
=\sum_{\substack{c^{\prime} \mid c \\
c^{\prime}=a^{\prime} b^{\prime}}} 2^{\nu\left(a^{\prime}\right)} \lambda_{\text {odd }}\left(c^{\prime}\right) \cdot 1 * \chi\left(n / c^{\prime}\right)
\end{align*}
$$

Lower bounds

Lemma 2.

$$
\frac{1}{25} \cdot \frac{\zeta(4 \beta)}{\zeta(2 \beta)}-U^{6-12 \beta} \leq\left|\sum_{n \leq U^{12}} \frac{(-1)^{n} \cdot 1 * \lambda_{\text {odd }}(n)}{n^{\rho}}\right|
$$

Proof. We have

$$
\begin{aligned}
& \left|\sum_{n \leq U^{12}} \frac{(-1)^{n} \cdot 1 * \lambda_{\text {odd }}(n)}{n^{\rho}}\right| \\
& \quad \geq\left|\sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot 1 * \lambda_{\text {odd }}(n)}{n^{\rho}}\right|-\left|\sum_{U^{12}<n} \frac{(-1)^{n} \cdot 1 * \lambda_{\text {odd }}(n)}{n^{\rho}}\right|
\end{aligned}
$$

Now

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot 1 * \lambda_{\text {odd }}(n)}{n^{\rho}}=\sum_{m=1}^{\infty} \frac{(-1)^{m^{2}}}{m^{2 \rho}}+\sum_{m=1}^{\infty} \frac{(-1)^{2 m^{2}}}{2^{\rho} m^{2 \rho}}
$$

Observe that $(-1)^{m^{2}}=(-1)^{m}$, and of course $(-1)^{2 m^{2}}=1$. This gives

$$
\left(2^{1-2 \rho}-1\right) \zeta(2 \rho)+2^{-\rho} \zeta(2 \rho)=\left(1+2^{-\rho}\right)\left(2^{1-\rho}-1\right) \zeta(2 \rho)
$$

We compare Euler products to see

$$
\frac{1}{|\zeta(2 \rho)|}<\frac{\zeta(2 \beta)}{\zeta(4 \beta)}, \quad \text { or } \quad|\zeta(2 \rho)|>\frac{\zeta(4 \beta)}{\zeta(2 \beta)}
$$

Finally a calculation in Mathematica shows that

$$
\left|\left(1+2^{-\rho}\right)\left(2^{1-\rho}-1\right)\right|>\frac{1}{25}
$$

as long as $|\delta|>\pi / 100$. This gives the main term of the lemma.
Meanwhile

$$
\left|\sum_{U^{12}<n} \frac{(-1)^{n} \cdot 1 * \lambda_{\text {odd }}(n)}{n^{\rho}}\right| \leq\left|\sum_{U^{6}<m} \frac{(-1)^{m}}{m^{2 \rho}}\right|+\left|\frac{1}{2^{\rho}} \sum_{U^{6} / \sqrt{2}<m} \frac{1}{m^{2 \rho}}\right|
$$

The first sum on the right is bounded by $U^{-12 \beta}$, by Abel's inequality. And the second sum, via Euler summation formula [1, Theorem 3.2(c)], is $O\left(U^{6-12 \beta}\right)$. In fact, the proof given there shows the implied constant can be taken as $1 /(\sqrt{2}(2 \beta-1))<1$ for $\beta>7 / 8$.

Upper bounds. We now follow Pintz in writing

$$
\begin{aligned}
\left|\sum_{n \leq U^{12}} \frac{(-1)^{n}}{n^{\rho}} \cdot 1 * \lambda_{\text {odd }}(n)\right| & =\left|\sum_{n \leq U^{12}} \frac{(-1)^{n}}{n^{\rho}} \sum_{c \in C, c \mid n} 2^{\nu(a)} \lambda_{\text {odd }}(c) \cdot 1 * \chi(n / c)\right| \\
& =: S
\end{aligned}
$$

via (1). We change variables $n=r c$, and use the fact that for odd c we have

$$
(-1)^{r c}=(-1)^{r}, \text { and } \lambda_{\text {odd }}(c)=0 \text { unless } c \text { is odd. }
$$

(The fact that $(-1)^{n}$ is not a multiplicative function is the reason we have introduced $\lambda_{\text {odd }}(n)$.) Now

$$
S=\left|\sum_{c \leq U^{12}, c \in C} \frac{2^{\nu(a)} \lambda_{\mathrm{odd}}(c)}{c^{\rho}} \sum_{r \leq U^{12} / c} \frac{(-1)^{r}}{r^{\rho}} \cdot 1 * \chi(r)\right| \leq \Sigma_{1}^{\prime}+\Sigma_{2}^{\prime}
$$

where

$$
\begin{aligned}
\Sigma_{1}^{\prime} & =\sum_{\substack{c \leq U^{6} \\
c \in C}} \frac{2^{\nu(a)}}{c^{\beta}}\left|\sum_{r \leq U^{12} / c} \frac{(-1)^{r}}{r^{\rho}} \cdot 1 * \chi(r)\right| \\
\Sigma_{2}^{\prime} & =\sum_{\substack{U^{6}<c \leq U^{12} \\
c \in C}} \frac{2^{\nu(a)}}{c^{\beta}} \sum_{r \leq U^{12} / c} \frac{1 * \chi(r)}{r^{\beta}} .
\end{aligned}
$$

Using the inequalities

$$
2^{\nu(a)} \leq 1 * \chi(c) \leq \tau_{\mathrm{odd}}(c) \leq \tau(c), \quad 1 * \chi(r) \leq \tau(r)
$$

and dropping the condition $c \in C$ in the outer sums, we see that

$$
\begin{aligned}
& \left.\Sigma_{1}^{\prime} \leq \Sigma_{1}=\left.\sum_{n \leq U^{6}} \frac{\tau(n)}{n^{\beta}}\right|_{r \leq U^{12} / n} \frac{(-1)^{r}}{r^{\rho}} \cdot 1 * \chi(r) \right\rvert\, \\
& \Sigma_{2}^{\prime} \leq \Sigma_{2}=\sum_{U^{6}<n \leq U^{12}} \frac{1 * \chi(n)}{n^{\beta}} \sum_{r \leq U^{12} / n} \frac{\tau(r)}{r^{\beta}}
\end{aligned}
$$

REmark. The main idea of the proof is to use the fact that $\zeta(\rho)=0$ to show that Σ_{1} cannot be too big. This then implies that Σ_{2} cannot be too small, from which we can bound $L(1, \chi)$ from below.

Lemma 3. We estimate the inner sum in Σ_{1} as

$$
\left|\sum_{r \leq y} \frac{(-1)^{r}}{r^{\rho}} \sum_{d \mid r} \chi(d)\right|<\frac{2}{3} \cdot y^{1 / 2-\beta}|\rho| D^{1 / 4} \log D \log (y / \sqrt{D})
$$

Proof. We write $(-1)^{r}=(-1)^{l d}$. Since we are assuming D is even, $\chi(d)=0$ unless d is odd and so $(-1)^{l d}=(-1)^{l}$. This gives

$$
\begin{aligned}
\left|\sum_{r \leq y} \frac{(-1)^{r}}{r^{\rho}} \sum_{d \mid r} \chi(d)\right| & =\left|\sum_{d \leq y} \frac{\chi(d)}{d^{\rho}} \sum_{l \leq y / d} \frac{(-1)^{l}}{l^{\rho}}\right| \\
& \leq\left|\sum_{d \leq z} \frac{\chi(d)}{d^{\rho}} \sum_{l \leq y / d} \frac{(-1)^{l}}{l^{\rho}}\right|+\left|\sum_{l \leq y / z} \frac{(-1)^{l}}{l^{\rho}} \sum_{z<d \leq y / l} \frac{\chi(d)}{d^{\rho}}\right|
\end{aligned}
$$

The parameter z will be chosen later to make these two terms approximately the same size. Summation by parts [1, Theorem 4.2] gives

$$
\phi(s)=\sum_{l=1}^{y / d} \frac{(-1)^{l}}{l^{s}}-\frac{S(y / d)}{(y / d)^{s}}+s \int_{y / d}^{\infty} \frac{S(x)-S(y / d)}{x^{s+1}} d x
$$

where $S(x)=\sum_{n \leq x}(-1)^{n}$ is -1 or 0 . Set $s=\rho$ and use $\phi(\rho)=0$; we bound
the integral getting

$$
\left|s \int_{y / d}^{\infty} \frac{S(x)-S(y / d)}{x^{s+1}} d x\right| \leq \frac{|\rho|}{\beta(y / d)^{\beta}}, \quad\left|\frac{S(y / d)}{(y / d)^{s}}\right| \leq \frac{1}{(y / d)^{\beta}}
$$

So we claim

$$
\left|\sum_{l=1}^{y / d} \frac{(-1)^{l}}{l^{\rho}}\right| \leq \frac{|\rho|}{\beta(y / d)^{\beta}}
$$

since $1<1 / \beta$ and [3] shows that $10^{12}<|\rho|$.
Thus we can estimate the first term in the previous sum:

$$
\left|\sum_{d \leq z} \frac{\chi(d)}{d^{\rho}} \sum_{l \leq y / d} \frac{(-1)^{l}}{l^{\rho}}\right| \leq \sum_{d \leq z} \frac{1}{d^{\beta}} \cdot \frac{|\rho|}{\beta(y / d)^{\beta}}=\frac{z|\rho|}{y^{\beta} \beta}
$$

Another summation by parts gives

$$
\sum_{z<d \leq y / l} \frac{\chi(d)}{d^{s}}=\frac{S_{D}(y / l)}{(y / l)^{s}}-\frac{S_{D}(z)}{z^{s}}+s \int_{z}^{y / l} \frac{S_{D}(x)-S_{D}(\sqrt{y})}{x^{s+1}} d x
$$

where $S_{D}(x)=\sum_{n \leq x} \chi(n)$. By the Pólya-Vinogradov inequality [1, Theorem 8.21], $\left|S_{D}(x)\right|<\sqrt{D} \log D$. Neglecting the boundary terms as before, we bound the integral as

$$
\left|\sum_{z<d \leq y / l} \frac{\chi(d)}{d^{\rho}}\right| \leq \frac{|\rho| \sqrt{D} \log D}{\beta z^{\beta}}
$$

and so bound the second sum above as

$$
\left|\sum_{l \leq y / z} \frac{(-1)^{l}}{l^{\rho}} \sum_{z<d \leq y / l} \frac{\chi(d)}{d^{\rho}}\right| \leq \sum_{l \leq y / z} \frac{|\rho| \sqrt{D} \log D}{\beta l^{\beta} z^{\beta}}=\frac{|\rho| \sqrt{D} \log D}{\beta} \sum_{l \leq y / z} \frac{1}{l^{\beta} z^{\beta}}
$$

Now

$$
\sum_{l \leq y / z} \frac{1}{l^{\beta} z^{\beta}}=\frac{y^{1-\beta}}{z} \sum_{l \leq y / z} \frac{1}{l^{\beta}(y / z)^{1-\beta}}<\frac{y^{1-\beta}}{z} \sum_{l \leq y / z} \frac{1}{l^{\beta} \cdot l^{1-\beta}} \sim \frac{y^{1-\beta} \log (y / z)}{z}
$$

where the inequality follows since $l<y / z$. This gives, for the second sum, the bound

$$
\frac{|\rho| \sqrt{D} \log D}{\beta} \cdot \frac{y^{1-\beta} \log (y / z)}{z}
$$

Comparing the two estimates, we see they are approximately the same size when

$$
\frac{z}{y^{\beta}}=\frac{\sqrt{D} y^{1-\beta}}{z}, \quad \text { or } \quad z=D^{1 / 4} y^{1 / 2}
$$

Combining the two sum estimates, and with

$$
\frac{1}{\beta}<\frac{6}{5} \quad \text { and } \quad 1<\frac{\log (y / \sqrt{D}) \log D}{18}
$$

we have

$$
\begin{aligned}
& \frac{y^{1 / 2-\beta}|\rho| D^{1 / 4}}{\beta}+\frac{y^{1 / 2-\beta}|\rho| \log (y / \sqrt{D}) D^{1 / 4} \log D}{2 \beta} \\
&<\frac{6}{5}\left(\frac{1}{18}+\frac{1}{2}\right) y^{1 / 2-\beta} \log (y / \sqrt{D})|\rho| D^{1 / 4} \log D \\
&=\frac{2}{3} y^{1 / 2-\beta} \log (y / \sqrt{D})|\rho| D^{1 / 4} \log D
\end{aligned}
$$

Lower bounds again. Applying Lemma 3 with $y=U^{12} / n$, so $U^{6}<$ $y<U^{12}$, we get

$$
\Sigma_{1}<8 U^{6-12 \beta} \log U|\rho| D^{1 / 4} \log D \sum_{n \leq U^{6}} \frac{\tau(n)}{\sqrt{n}}=8 U^{7-12 \beta} \log U \sum_{n \leq U^{6}} \frac{\tau(n)}{\sqrt{n}}
$$

With an estimate by the standard 'method of the hyperbola' (e.g. [5, (2.9), p. 37]), we get

$$
\sum_{n \leq X} \frac{\tau(n)}{\sqrt{n}}=X^{1 / 2}(2 \log X+4 C-4)+O(1)
$$

Thus

$$
\Sigma_{1}<96 U^{10-12 \beta} \log ^{2} U
$$

and so, for $\beta>5 / 6, \Sigma_{1}$ is small. In fact, from

$$
\frac{1}{25} \cdot \frac{\zeta(4 \beta)}{\zeta(2 \beta)}-U^{6-12 \beta} \leq \Sigma_{1}+\Sigma_{2}
$$

Mathematica tells us $1 / 50<\Sigma_{2}$ when $\beta>7 / 8$ and $U>10^{16}$. (We are assuming $D>10^{9}$, and Gourdon [3] has verified the Riemann Hypothesis for the first 10^{13} zeros. Therefore our hypothetical ρ satisfies $|\rho|>2.4 \cdot 10^{12}$, so necessarily $U=|\rho| D^{1 / 4} \log D>10^{16}$.)

We now convert the lower bound for Σ_{2} to a lower bound for $L(1, \chi)$. Recall that

$$
\Sigma_{2}=\sum_{U^{6}<n \leq U^{12}} \frac{1 * \chi(n)}{n^{\beta}} \sum_{r \leq U^{12} / n} \frac{\tau(r)}{r^{\beta}}
$$

Writing $r^{-\beta}=r^{1-\beta} / r$ and using $r^{1-\beta}<U^{12(1-\beta)} n^{\beta-1}$ we see that

$$
\frac{1}{50}<\Sigma_{2}<U^{12(1-\beta)} \sum_{U^{6}<n \leq U^{12}} \frac{1 * \chi(n)}{n} \sum_{r \leq U^{12} / n} \frac{\tau(r)}{r}
$$

The 'method of the hyperbola' argument shows in [5, Ex. 11.2.1 (g)] ($\left.{ }^{3}\right)$ that

$$
\begin{aligned}
\sum_{U^{6} \leq n \leq U^{12}} \frac{1 * \chi(n)}{n} & =\log \left(U^{6}\right) L(1, \chi)+O\left(D^{1 / 4} U^{-3} \log D \log \left(U^{6}\right)\right) \\
& =\log \left(U^{6}\right) L(1, \chi)+O\left(U^{-2} \log \left(U^{6}\right)\right) \\
& =\log \left(U^{6}\right)\left(L(1, \chi)+O\left(U^{-2}\right)\right)
\end{aligned}
$$

Meanwhile one more application of this same tool (along with Euler summation) gives

$$
\sum_{r<X} \frac{\tau(r)}{r}=\frac{1}{2} \log ^{2} X+2 C \log X+O(1)
$$

So

$$
\sum_{r \leq U^{12} / n} \frac{\tau(r)}{r} \sim \frac{1}{2} \log ^{2}\left(U^{12} / n\right)<\frac{1}{2} \log ^{2}\left(U^{6}\right)
$$

as $U^{6}<n$. Finally

$$
\begin{aligned}
\frac{1}{50}<\Sigma_{2} & <U^{12(1-\beta)} \log \left(U^{6}\right)\left(L(1, \chi)+O\left(U^{-2}\right)\right) \cdot \frac{1}{2} \log ^{2}\left(U^{6}\right) \\
& =108 U^{12(1-\beta)} \log ^{3} U\left(L(1, \chi)+O\left(U^{-2}\right)\right)
\end{aligned}
$$

The implied constant is no worse than 6 , and

$$
U^{-2}=\frac{1}{|\rho|^{2} \sqrt{D} \log ^{2} D}<\frac{1}{\sqrt{D}}
$$

so the theorem follows.

The general case. We fix a prime $q \mid D$ and consider

$$
\sum_{n=1}^{\infty} \frac{c_{q}(n)}{n^{s}}=\left(q^{1-s}-1\right) \zeta(s)
$$

where $c_{q}(n)$ is the Ramanujan sum

$$
c_{q}(n)=\sum_{k=1}^{q-1} \exp (2 \pi i k n / q)= \begin{cases}-1 & \text { if }(n, q)=1 \\ q-1 & \text { if } q \mid n\end{cases}
$$

(Observe that $c_{2}(n)=(-1)^{n}$.) Since $\left|\sum_{n<x} c_{q}(n)\right|<q$, the Dirichlet series converges conditionally for $\operatorname{Re}(s)>0$. The Ramanujan sums are not multiplicative in n, but we have $c_{q}(d m)=c_{q}(m)$ if $(d, q)=1$. Instead of $\lambda_{\text {odd }}$ we define a function $\lambda_{q}(n)=0$ if $q \mid n$. The proof goes through as before. We

[^1]find that in Lemma 2 we have
$$
\sum_{n=1}^{\infty} \frac{c_{q}(n) \cdot 1 * \lambda_{q}(n)}{n^{\rho}}=\left(1+q^{-\rho}\right)\left(1-q^{1-\rho}\right) \zeta(2 \rho)
$$
so the trivial zeros along $\operatorname{Re}(s)=1$ when $\gamma=2 \pi n / \log q$ still cause a problem. In fact, the constant $1 / 25$ in Lemma 2 which works for $q=2$ is a decreasing function of q in the general case.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
[2] M. Deuring, Imaginäre quadratische Zahlkörper mit der Klassenzahl 1, Math. Z. 37 (1933), 405-415.
[3] X. Gourdon, The 10^{13} first zeros of the Riemann Zeta function, and zeros computation at very large height, preprint, http://numbers.computation.free.fr/Constants/ Miscellaneous/zetazeros1e13-1e24.pdf.
[4] H. Heilbronn, On the class-number in imaginary quadratic fields, Quart. J. Math. Oxford Ser. 5 (1934), 150-160.
[5] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge Stud. Adv. Math. 97, Cambridge Univ. Press, 2007.
[6] Y. Motohashi, On the Deuring-Heilbronn phenomenon. I, II, Proc. Japan Acad. Ser. A. Math. Sci. 53 (1977), 1-2, 25-27
[7] Y. Motohashi, Lectures on Sieve Methods and Prime Number Theory, Tata Inst. Fund. Res. Lect. Math. Phys. 72, Springer, 1983.
[8] J. Pintz, On Siegel's theorem, Acta Arith. 24 (1973/74), 543-551.
[9] J. Pintz, Elementary methods in the theory of L-functions. I. Hecke's theorem, Acta Arith. 31 (1976), 53-60.
[10] J. Pintz, Elementary methods in the theory of L-functions. II. On the greatest real zero of a real L-function, Acta Arith. 31 (1976), 273-289.
[11] J. Pintz, Elementary methods in the theory of L-functions. III. The Deuring phenomenon, Acta Arith. 31 (1976), 295-306.
[12] J. Pintz, Elementary methods in the theory of L-functions. IV. The Heilbronn phenomenon, Acta Arith. 31 (1976), 419-429.
[13] J. Pintz, Elementary methods in the theory of L-functions. V. The theorems of Landau and Page, Acta Arith. 32 (1977), 163-171.
[14] J. Stopple, Notes on the Deuring-Heilbronn phenomenon, Notices Amer. Math. Soc. 53 (2006), 864-875.

Jeffrey Stopple
Mathematics Department
UC Santa Barbara
Santa Barbara, CA 93106, U.S.A.
E-mail: stopple@math.ucsb.edu

[^0]: 2010 Mathematics Subject Classification: Primary 11M20; Secondary 11M26. Key words and phrases: Landau-Siegel zero, Deuring-Heilbronn phenomenon.
 $\left.{ }^{(}{ }^{1}\right)$ In fact there are 61 such fundamental discriminants, all with $-1555 \leq-D$.
 $\left(^{2}\right)$ See also [6, [7] §4.2] for an elementary proof by Motohashi which is based on the Selberg sieve.

[^1]: $\left(^{3}\right)$ The implied constant in that exercise, combining six big Oh terms with implied constant equal to 1 , can be taken to be 6 .

